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Abstract

This paper explores low observability flight path planning of unmanned air vehicles (UAV’s)
in the presence of radar detection systems. The probability of detection model of an aircraft
near an enemy radar depends on aircraft attitude, range, and configuration. A detection model
is coupled with a simplified aircraft dynamics model. The Nonlinear Trajectory Generation
(NTG) software package developed at Caltech is used. The NTG algorithm is a gradient descent
optimization method that combines three technologies: B–splines, output space collocation and
nonlinear optimization tools. Implementations are formulated with temporal constraints that
allow periods of high observability interspersed with periods of low observability. Illustrative
examples of optimized routes for low observability are presented.

1 Introduction

As the development of new unmanned vehicles progresses, research focused on coordinating large
teams of these vehicles has highlighted many new challenges for control. Due to complexity of large–
scale unmanned vehicle systems, several control design algorithms in a hierarchical, distributed
manner have been proposed. The Mixed Initiative Control of Automa–teams (MICA) of DARPA
studies a multi–layer planning, assessment, and control architecture of distributed semi–autonomous
forces with collective obectives. The approach taken in the DARPA MICA program is to decompose
the control design into several layers: TCT–Team Composition and Tasking– for specifying group
level tasks, TDT–Team Dynamics and Tactics– for tasking team activities, CPP–Cooperative Path
Planning– for generating feasible missions. At the CPP level of the MICA, the design goals are
to command the vehicles to pursue dynamically feasible routes, such as those with speed and
turning rate limits, while avoiding threats and collisions with other vehicles. Driven by battlespace
management needs, real-world threats can be much more complex than those modeled in prior
trajectory generation work. The detectability of an aircraft traveling near an enemy radar depends
on more than just the distance to the radar; it depends on the aircraft attitude and configuration
as well. This feature in the threat model introduces nonconvexities, path dependencies, as well
as sharp gradients into the underlying optimization problems, and it presents new challenges for
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trajectory generation techniques. In this paper, we investigate the use of the nonlinear trajectory
generation (NTG) method as a solution to the low-observability path planning challenge.

Trajectory generation algorithms are starting to address the low-observability detectability
problem. Work by McFarland et al. [6] uses motion planning techniques using potential field
theory for UAV path planning in the presence of detection systems. This is a technique originally
used in robot motion planning.

For the low-observability problem, the use of NTG is motivated by recent extensions in its ability
to deal with temporal constraints. In [7], NTG is used for a missile intercept problem. In [4], NTG
is extended to a multi-vehicle problem with precedence constraints such as look after strike and
simultaneous strike. The low-observability routing problem could be considered to be temporal in
nature, by allowing periods of high observability interspersed with periods of low observability. This
is desirable because of the way the opponent systems work. Although it might not be possible to get
close to the opponent territories while maintaining low-observability at all times; by strategically
flying low-observable paths for part of the time, it may be possible to drive the opponent systems
into a condition called lock-loss. This condition aborts the opponent plans after a specified time of
no detection.

Computational efficiency as well as the capability to enforce more realistic constraints, are two
additional motivations that have prompted the choice for NTG in past problems. The method
combines three technologies- differential flatness, splines and nonlinear optimization and has been
extensively investigated [8, 9, 3]. Differentially flat systems have the property that the input
variables and states can be written in terms of the output variables and their derivatives. This
can aid in computationally efficiency by eliminating the need to integrate as in shooting methods
[1]. The use of splines also addresses computational issues by allowing complicated functions
to be written with low order polynomials that are active over distinctive intervals.The NPSOL
[10] package, which uses sequential quadratic programming, is used in this work as a nonlinear
optimization tool.

The contribution of this paper is the application of nonlinear trajectory generation (NTG)
methods to generate low-observability routes air vehicles. The aircraft model and detection models
are described in the second section. The third section presents an NTG approach formulated for
low observability. The fourth section contains examples. The examples demonstrate the ability of
NTG to converge to solutions which constrain observability to acceptable levels; however, they also
highlight some difficulties with the approach.

2 Model

This section presents the model. These models are based on the Open Experimental Platform
(OEP) model developed by Boeing as part of the DARPA MICA program by [2]. In this program,
as the problems become progressively more challenging, the models become more refined to capture
more realistic features. For the purposes of this report, the models used here are simplified.

The two main components are the aircraft and the detection models, as shown in figure 1. First
we discuss the aircraft models, and then the detection models. Throughout this report, we assume
that the aircraft maintains a fixed altitude and the radar is on the ground, although the OEP model
allows for more complexity. The inputs to the aircraft model include the current aircraft state
information, with current waypoint position and velocity, and the destination waypoint position.
A constant speed for travel between waypoints is also an input. Note that time could be used as an
alternative input to speed, but in the development presented here, we focus on speed. The output
of the aircraft model is the aircraft position and attitude in inertial coordinates (North,East, Up).

Figure 2 illustrates an aircraft traveling between waypoints. Important things to note about the
point mass model are that changes in speed and heading occur instantaneously at the waypoints,
while simple differential equations are used between the waypoints. The equations below represent
the state equations for the vehicle traveling from waypoint i to the next waypoint i+ 1.
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Figure 1: The aircraft dynamics and the detection model comprise two main components of the
model.

ṅac = Uicos(ψi)
ėac = Uisin(ψi)
ḣac = 0 (1)

where nac, eac, and hac are the aircraft positions along the north, east and up axes, respectively. Ui

is the speed and ψi is the heading, which is the angle between the nose and north and is positive
clockwise about the up axis. Equivalently, assuming that the velocity vector is aligned with the
nose, it is useful to write the heading ψi as a function of the velocities as follows

ψi = tan−1 ėac

ṅac
(2)

The aircraft position (nac, eac, uac) is combined with the radar position (nR, eR, uR) to form a
vector from the aircraft to the radar.

R = (nR − nac)n̂+ (eR − eac)ê+ (uR − uac)û (3)

This vector is then transformed to body axes. Assuming zero pitch and bank angles, for this
model, the transformation is

Rbody =

 xRac

yRac

zRac

 =

 cos(ψ) sin(ψ) 0
−sin(ψ) cos(ψ) 0

0 0 1


 (nR − nac)

(eR − eac)
(uR − uac)

 (4)
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Figure 2: The first version of aircraft model is a point mass model. Speed and heading changes
occur instantaneously at the waypoints

The inputs to the detection model are the azimuth, elevation and slant range (az, el, Rs). To
obtain these values the vector Rbody is transformed to spherical coordinates as follows

az = tan−1
(
yRac

xRac

)
(5)

el = tan−1

(
zRac

Rg

)
(6)

Rs =
√
x2

Rac + y2
Rac + z2

Rac (7)

where Rg =
√
x2

Rac + y2
Rac is the ground range. Note that since heading is a function of velocities

as in equation 2, then these equations can be rewritten as functions of the positions and velocities.
For the next part of the detection model, two tables are used. The tables depend on the type

of aircraft, the configuration of the aircraft, as well as the type of radar. In the presentation that
follows, we use tables are based on the small UAV with normal configuration and Long Surface Air
Missile (SAM) radar model parameters as an example. The first table computes the radar signature
given the azimuth and elevation in degrees. The signature is a unitless, intermediary variable that
is related to radar cross section. Note for azimuths within +/- 30 degrees (“nose-in” flight), the
signature values are lower than for azimuths outside this range (“nose-out” flight). The second
table relates the probability of detection with the signature and the slant range.
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el /az 0.0 +/-30 +/-31 +/-180
0.0 1.5 1.5 5.5 5.5
+/-20 2.5 2.5 5.5 5.5
+/-45 3.5 3.5 6.0 6.0
+/-90 6.5 6.5 6.5 6.5

Table 1: Signature Values with Respect to Azimuth and Elevation

Signature Pd=.99 Pd=.5 Pd=.1 Pd=.01
7 380.1 481.2 555.6 656.6
6 213.7 270.6 312.5 369.2
5 120.2 152.2 175.7 207.6
4 67.6 85.6 98.8 116.8
3 38.0 48.1 55.6 65.7
2 21.4 27.1 31.2 36.9
1 12.0 15.2 17.6 20.8

Table 2: Probability of Detection (Pd) Values Respect to Range and Signature

At fixed altitude, it is interesting to consider the how the probability of detection varies with
ground range as in figure (3). The figure shows that “nose in” flight is significantly less detectable
than “nose out flight”. Near 50 km, the approximate range of a homing missile, the detection
probabilities vary approximatlely from 0.4 to 0.65. Outside the 80 km radar range, the detection
probabilities are zero.

Figure 3: At fixed altitude the probability of detection is smaller for “nose in” flight with azimuths
within 30 deg and decreases with increasing ground range

To aid in understanding how the probability of detection varies along various trajectories, we
focus on an example where the radar is located at the origin of an inertial coordinate frame with
coordinates. An aircraft starts at position (-100 km, -100 km, 12 km) (north, east, up) and may
travel along different flight paths. Two flight paths are shown in figure 4. Positions are shown in
the (north, east) plane. Times are not indicated on the plot. The trajectory marked with circles is
a straight line approach to the origin. The heading is initially 45 degrees, and the azimuth is always
near zero. As an airplane following the “circle” trajectory flies closer to the origin, the elevation
angle has a larger magnitude and the probability of detection rises. The “plus” trajectory consists
of several segments with portions in easterly, northerly and straight line approaches towards the
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radar. Note that the occasional sharp changes in the “plus” trajectory occur because the azimuth
changes in and out of the +/- 30 degree bound. In the first table, azimuths outside this range
yielded higher signatures and consequently higher probability of detections.

Figure 4: Probability of Detection exhibits sharp gradients and path dependencies.

From the two tables, an analytical observability model, generically shown in equation (8) can
be developed using any number of function approximation techniques.

sig = sig(az, el)
pd = pd(R, sig)

We have used the B–spline curve fits because of their flexibility and ease of computing their deriva-
tives to find an analytical model for the signature data given in table 1. Figure (5) shows the
result of the fit function model of the signature values by B–spline tensor product functions versus
the actual data points indicated by ‘o’. The probability of detection table can be fit in a similar
fashion.

Then the problem is to find trajectories for the dynamic system in equation (1) such that the
trajectories are optimized with respect to the detection models described in this section. This
section illustrates that even for highly simplified models, the optimization of trajectories for low
observability flight can be quite challenging.

3 Approach

In this section, we first briefly outline the NTG algorithm with temporal constraints and then
describe our approach to the low observability trajectory optimization problem formulation. Illus-
trative examples will be given in the next section.

3.1 Brief Summary of NTG Algorithm

The baseline NTG algorithm has been described extensively in the literature [7, 9, 8, 3], therefore
in this section we outline it briefly.

The NTG software package is based on a combination of nonlinear control theory, spline theory
and sequential quadratic programming. There are three steps in NTG algorithm. The first step
is to use the differential flatness property to find a new set of outputs of a system so that the
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Figure 5: The Signature Data Fit Function by B–Spline Tensor Product Functions.

system dynamics can be mapped down to a lower dimensional space. All the states and controls of
the system must be recovered from the new lower dimensional representation of the system. Let’s
consider a nonlinear system given by:

ẋ = f(x, u) (8)

where x ∈ Rn and u ∈ Rm represents the states and the inputs, respectively. It is assumed that
all vector fields and functions are real–analytic. The goal is to find a minimizing trajectory of the
system given in equation (8) for the following cost function (J) which consists of initial (φ0), final
(φf ) and trajectory (L) cost functions;

J(x, u) = φ0(x(t0), u(t0)) + φf (x(tf ), u(tf )) +
∫ tf

t0
L(x(t), u(t))dt (9)

The system given in equation (8) is subject to the following constraints;

lb0 ≤ ψ0(x(t0), u(t0)) ≤ ub0 N0 initial constraints

lbf ≤ ψf (x(tf ), u(tf )) ≤ ubf Nf final constraints (10)

lbt ≤ ψt(x(t), u(t)) ≤ ubt Nt trajectory constraints
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The system in equation (8) can be mapped to a lower dimensional space, in which it will be
easier and computationally more efficient to solve the optimization problem, by finding an output
z = z1, · · · , zq of the form

z = A
(
x, u, u(1), · · · , u(r)

)
(11)

where u(i) denotes ith derivative of u respect to time.

If equation (8) is differentially flat then the states and inputs of the system, (x, u), can be completely
established from equation (12). If there is no flat output exists or one cannot find a flat output,
then (x, u) can still be completely determined from the lowest dimensional space possible given in
equation (13). A necessary condition for the existance of such outputs is given in [5].

(x, u) = B
(
z, z(1), · · · , z(s)

)
(12)

(x, u) = B1

(
z, z(1), · · · , z(s1)

)
(13)

(x, u) = B2

(
z, z(1), · · · , z(s2)

)

where z(i) denotes ith derivative of z respect to time.

The second step in NTG is to further represent these outputs in terms of the B–spline functions as

zj(t) =
pj∑

i=1

Bi,kj
(t)Cj

i for the knot sequence tj , j = 1, · · · , q

where Bi,kj
(t) represents the B–spline basis function for the output zj with the degree of spline

polynomial kj . C
j
i represents the coefficients of the B–splines, lj is the number of knot intervals,

and mj is the number of smoothness conditions at the knot points, pj is the number of coefficients
of the each output given by

pj = lj(kj −mj) +mj

Finally to solve the coefficients of the B–spline functions by sequential quadratic programming
package NPSOL, the cost function and constraints given in equations (9) and (10), respectively,
are re–formulated in terms of the B–spline coefficients. Therefore, the problem now can be stated
as the following nonlinear programming form:

miny∈RM F (y) subject to lb ≤ c(y) ≤ ub

where J(x, u) → F (y) and {φ0(x(t0), u(t0)), φf (x(tf ), u(tf )), φt(x(t), u(t))} → c(y)

y =
(
C1

1 , · · · , C1
p1
, · · · , Cq

1 , · · · , Cq
pq

)
and M =

∑q
i=1 pi
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3.2 Using Temporal Constraints with NTG

While the NTG formulation allows any spatial constraint to be easily coded into the constraint set,
including temporal constraints requires more care. [7, 4]. A key idea in the temporal formulation
of NTG is to let event times become state variables in the optimization. This allows precedence
constraints to be included in the optimization by equations relating the event times. For example
suppose that n events occur at Ti for i = 0, 1, · · · , n− 1. In equation (14), we define τ as a scaled
time variable. It is equal zero when time, t, is equal to zero, but it is equal to one when all events
have occurred at T =

∑n−1
i=0 Ti. In the setup of the optimization problem, which will be detailed

below, scaled time τ rather than time t is used. In the optimization details below, the use of new
time variable, τ , has implications for the way integrals and derivatives are written. For example,
derivatives with respect to t become derivatives with respect to τ with the chain rule as in equation
(15).

τ =
t

T
(14)

d

dt
→ d

dτ

dτ

dt
=

1
T

d

dτ
(15)

As a result, after introducing new state variable T , cost and constraint functions given in equations
(9) and (10) become

J(x, u, T ) = φ0(x(0), u(0), T ) + φf (x(1), u(1), T ) +
∫ 1

0
L(x(τ), u(τ), T )dτ (16)

lb0 ≤ ψ0(x(0), u(0), T ) ≤ ub0 N0 initial constraints

lbf ≤ ψf (x(1), u(1), T ) ≤ ubf Nf final constraints (17)

lbt ≤ ψt(x(τ), u(τ), T ) ≤ ubt Nt trajectory constraints

There will be also additional temporal constraints which can be expressed as a set of inequalities
given below

lbT ≤ ψT (T ) ≤ ubT NT temporal constraints

3.3 Formulation of the Low Observability Problem

Now that we have outlined the general methods, we focus on how to apply these methods to the
low observability problem. Define a set of event times T2i and T2i+1 for i = 0, 1, · · · , n and the
number of events 2n + 1 is specified. We will set up events such that periods of low observability
T2i−1 ≤ t ≤ T2i are interspersed with times of high observability, T2i ≤ t ≤ T2i+1.

The system dynamics for this problem consist of the vehicle dynamics in equation (1) together
with the following dynamics on the new state variables

dT2i

dτ
= 0

dT2i+1

dτ
= 0 i = 0, ...n

Note that the system is differentially flat. All variables of interest can be written as a function
of the output variables, x, y, T2i, T2i+1 and their derivatives, where x and y denote north and east
positions respectively of an aircraft. The observability model in equation (8) is a function of the
flat variables, and is used in the optimization below.
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Next, we develop a set of cost and constraint functions. Note that we will develop a general
set, with design options to eliminate some components of the cost and constraint functions. A
cost function, J , is shown in equation (18). The first term in the cost function is standard in
the temporal approach. Since T is the mission time as shown in equation (19), this term acts to
minimize the total mission time. The second term is a speed penalty. It has also been used in the
past as a way to penalize control action. The third and fourth terms are cumulative penalities on
observability. Since probability of detection and signature are always non-negative, these terms are
appropriate and may be useful. Wu, Wp and Ws represent the weight functions on the speed,
probability and signature penalties, respectively. The integral in equation (18) is respect to the
scaled time, τ , and has bounds from zero to one. The cost function presented here is a classic
tradeoff between various performance measures and control action measures.

J = T 2 +
∫ 1

0

(
Wu

1
T 2

((
dx

dτ

)2

+
(
dy

dτ

)2
)

+Wppd +Wssig

)
Tdτ (18)

where

T =
n−1∑
i=0

(T2i + T2i+1) (19)

Next we present a set of constraints, and we divide the constraints into subsets based on the type
of constraint used. First there are constraints on the initial conditions for the variables. There are
linear constraints as in equation (20) on the initial position and event times. The initial condition
constraints on velocities become nonlinear because of the differentiation with respect to scaled time
shown above in equation (15). The constraints on velocities are presented in equation (21).

x(0) ≤ x(τ)|τ=0 ≤ x(0)
y(0) ≤ y(τ)|τ=0 ≤ y(0)

minT2i ≤ T2i|τ=0 ≤ maxT2i

minT2i+1 ≤ T2i+1|τ=0 ≤ maxT2i+1 (20)

T ẋ(0) ≤ dx

dτ
|τ=0 ≤ T ẋ(0)

T ẏ(0) ≤ dy

dτ
|τ=0 ≤ T ẏ(0) (21)

where ˙(·) = d(·)
dt

Speed and radius of curvature limits are nonlinear functions of scaled time. Constraints for these
are shown in equations (22) and (23). Note that the equations are scaled to aid in convergence of
the nonlinear optimization codes.

v2
min

v2
max

≤ 1
T 2

((
dx

dτ

)2

+
(
dy

dτ

)2
)
≤ 1 (22)

ρmin

ρmax
≤

dx
dτ

d2y
dτ2 − dy

dτ
d2x
dτ2((

dx
dτ

)2
+
(

dy
dτ

)2
)1.5 ≤ 1 (23)

Finally, constraints on observability can be included. Consider a constraint on signature as
in equations (24). In order to circumvent difficulties with discontinuous constraints, which are
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not permitted with the NTG method, a single constraint on signature is represented with two
continuous constraints. During the different low or high observability events, only one of these
two constraints is active. During low-observable times the signature is constrained to be low as
in the first equation in the set of equations in (24). The second constraint in the second line of
(24) is present, but is automatically satisfied if the first constraint is satisfied. During the times
of high-observability, the fourth equation in (24) allows the signature to reach its high value. The
constraint in the third line of (24) is present, but is automatically satisfied.

T2i ≤ t ≤ T2i+1 0 ≤ sig ≤ sigL

0 ≤ sig ≤ sigH

T2i+1 ≤ t ≤ T2i+2 0 ≤ sig(T2i) ≤ sigL

0 ≤ sig ≤ sigH (24)

Constraints on probability of detection can be included in a similar fashion shown in equation
(25).

T2i ≤ t ≤ T2i+1 0 ≤ pd ≤ pdL

0 ≤ pd ≤ pdH

T2i+1 ≤ t ≤ T2i+2 0 ≤ pd(T2i) ≤ pdL

0 ≤ pd ≤ pdH
(25)

Note that the constraints on signature and probability of detection are nonlinear function of
scaled time and are represented in the NTG code similarly to speed and curvature limits.

The last constraint in equation (26) ensures that the vehicle reaches the destination waypoint,
(xdw, ydw), within a radius bound emin and emax. This constraint is nonlinear, and it is a function
of the final scaled time, τ = 1, which corresponds to unknown actual final time of tf .

e2min

e2max

≤ (x(1)− xdw(1))2 + (y(1)− ydw(1))2 ≤ 1 (26)

4 Examples

In this secton, illustrative examples to our approach for the real time low observability nonlinear
trajectory generation problem are given. We assume that altitude is fixed at 12 km. The initial
location of the aircraft is at (-100 km, -100 km), and there is a radar located at the origin. Note that
the difficulties with flying trajectories in these examples were highlighted earlier in figure (4). In the
examples below, the aircraft travels to a target located at (5 km, -15 km). The examples highlight
the ability of the temporal methods to design for distinct periods of high and low observability.
However, they also demonstrate sensitivity to the initial coarse route.

Figure (6) results from a simulation in which the initial coarse route input to the NTG algorithm
is at (-100km, -15 km). Figure (6)(a) shows that the optimized path first circles through the left side
of the radar, thereby constraining the signature value of the aircraft during the low-observability
event as shown in figure (6)(b). In this example the low signature bound is at 4.2. After a period
of constrained low signature, the signature is allowed to increase to the maximum value at 6.5.
If NTG is initially fed with a better course route (0, -100 km), then NTG produces a different
solution as illustrated in figure (7). In this example the UAV flies “nose in”, with low azimuths,
directly toward the target. The signature values are lower than in the first example. Figure (8) is
included to highlight the distinct periods of high or low signatures.
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Figure 6: (a) Ground Track of the Optimized Path for Low Observability (b) Signature Value
Across the Optimized Path for Low Observability

5 Conclusions

Low observability flight path planning in the presence of RADAR detection systems is a new
controls challenge that will increase capabilities for unmanned air vehicles. Simple aircraft models
coupled with detection models illustrate complex behavior. Path dependencies and multiple minima
are features that make the underlying optimization difficult. Explorations with variations of the
nonlinear trajectory generation methods are capable of producing solutions that satisfy observability
constraints. The solutions highlight interesting problems for future work such as coupling NTG
with a coarse but global optimizer.
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