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Receding horizon control allows a blending of navigation and control functions
at the inner and outer loop levels and significantly enhances the ability of the control
system to react to complex dynamic and environmental constraints. In this paper, we
explore some of the limits of receding horizon control, including the extent to which
traditional control specifications can be cast as RHC problem specifications. Simu-
lation results for a planar flight vehicle with representative flight dynamics illustrate
the main features of the proposed approach.

Motivation and Philosophy

Over the past five years, the amount of com-
puting power available in flight control systems
has increased dramatically, and it has recently be-
come possible to perform online optimization quickly
enough that one can stabilize flight systems us-
ing receding horizon, optimal control.1,8 This pa-
per advocates the use of such an approach as the
primary mechanism for both inner and outer loop
control of aircraft. Furthermore, we propose a de-
sign paradigm that utilizes the insights that con-
trol designers have gained for high performance,
robust control design, while exploiting the ability
of optimization-based control approaches to handle
constraints and reconfigurable operation.

The basic philosophy that we propose is illus-
trated in Figure 1. We begin with a nonlinear
system, including a description of the constraint set.
We linearize this system about a representative equi-
librium point and perform a linear control design
using standard (modern) tools. Such a design gives
provably robust performance around the equilibrium
point and, more importantly, allows the designer to
meet a wide variety of formal and informal perfor-
mance specifications through experience and the use
of sophisticated linear design tools.

This linear control law then serves as a specifi-
cation of the desired control performance for the
entire nonlinear system. We convert the control law
specification into a receding horizon control formula-
tion, chosen such that for the linearized system, the
receding horizon controller gives comparable perfor-
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Fig. 1 Optimization-based control approach.

mance. However, because of its use of optimization
tools that can handle nonlinearities and constraints,
the receding horizon controller is able to provide the
desired performance over a much larger operating
envelope than the controller design based just on the
linearization. Furthermore, by choosing cost formu-
lations that have certain properties, we can provide
proofs of stability for the full nonlinear system and,
in some cases, the constrained system.

The advantage of the proposed approach is that
it exploits the power of humans in designing sophis-
ticated control laws in the absence of constraints
with the power of computers to rapidly compute
trajectories that optimize a given cost function in
the presence of constraints. New advances in online
trajectory generation serve as an enabler for this
approach and their demonstration on representa-
tive flight control experiments shows their viability.
This approach can be extended to existing nonlin-
ear paradigms as well, as we describe in more detail
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below.
To our knowledge, the basic philosophy that we

propose has not been explored in detail in other
flight control applications and is certainly not a
mainstream approach to flight control design. It
represents a shift in the basic methods for control
law design of complex, nonlinear systems by focusing
the designer on the fundamental (linearized) dynam-
ics of the system and using computation to provide
full-envelope, highly aggressive flight control laws.

This paper is organized as follows. We first pro-
vide a review of some of the prior work related to the
approach described above. Following this review, we
give some preliminary results on some of the possi-
bilities and limits for our framework. These results
analyze some simple cases that serve as both ex-
amples and bounds on what is achievable. We next
present simulation results for a simple flight-like sys-
tem that demonstrates the efficacy of our approach.
Finally, we give our conclusions and a discussion of
next steps.

Review of Relevant Previous Work
In this section we present a brief review of rele-

vant work and indicate some of the prior studies in
the same direction as what is proposed here. This
review is not intended to be exhaustive, but rather
to put into context some of the results that guide
and bound our approach. Some of the material in
this section is drawn from a recent book chapter by
the authors.1

Optimization-based control

Optimization-based control refers to the use of on-
line, optimal trajectory generation as a part of the
feedback stabilization of a (typically nonlinear) sys-
tem. The basic idea is to use a receding horizon
control technique: a (optimal) feasible trajectory is
computed from the current position to the desired
position over a finite time T horizon, used for a short
period of time δ < T , and then recomputed based
on the new position.

A key advantage of optimization-based ap-
proaches is that they allow the potential for cus-
tomization of the controller based on changes in
mission, condition, and environment. Because the
controller is solving the optimization problem online,
updates can be made to the cost function, to change
the desired operation of the system; to the model,
to reflect changes in parameter values or damage to
sensors and actuators; and to the constraints, to re-
flect new regions of the state space that must be
avoided due to external influences. Thus, many of
the challenges of designing controllers that are ro-

bust to a large set of possible uncertainties become
embedded in the online optimization.

Development and application of receding hori-
zon control (also called model predictive control, or
MPC) originated in process control industries where
plants being controlled are sufficiently slow to permit
its implementation. An overview of the evolution
of commercially available MPC technology is given
by Qin and Badgwell14 and a survey of the current
state of stability theory of MPC is given by Mayne
et al.6 Closely related to the work in this paper,
Singh and Fuller16 have used MPC to stabilize a lin-
earized simplified UAV helicopter model around an
open-loop trajectory, while respecting state and in-
put constraints.

A number of approaches in receding horizon con-
trol employ the use of terminal state equality or
inequality constraints, often together with a termi-
nal cost, to ensure closed loop stability. In Primbs
et al.,13 aspects of a stability-guaranteeing, global
control Lyapunov function were used, via state and
control constraints, to develop a stabilizing receding
horizon scheme. Many of the nice characteristics of
the CLF controller together with better cost perfor-
mance were realized. Unfortunately, a global control
Lyapunov function is rarely available and often not
possible.

Motivated by the difficulties in solving constrained
optimal control problems, we have developed an al-
ternative receding horizon control strategy for the
stabilization of nonlinear systems.3 In this ap-
proach, closed loop stability is ensured through the
use of a terminal cost consisting of a control Lya-
punov function that is an incremental upper bound
on the optimal cost to go. This terminal cost elim-
inates the need for terminal constraints in the opti-
mization and gives a dramatic speed-up in compu-
tation. Also, questions of existence and regularity
of optimal solutions (very important for online opti-
mization) can be dealt with in a rather straightfor-
ward manner.

Linear quadratic regulators

The philosophy presented here relies on the syn-
thesis of an optimal control problem from specifica-
tions that are embedded in an externally generated
controller design. This controller is typically de-
signed by standard classical control techniques for
a nominal plant, absent constraints. In this frame-
work, the controller’s performance, stability and ro-
bustness specifications are translated into an equiv-
alent optimal control problem and implemented in a
receding horizon fashion.

One central question that must be addressed when
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considering the usefulness of this philosophy is:
Given a control law, how does one find an equiva-
lent optimal control formulation? The seminal pa-
per by R. E. Kalman5 lays a solid foundation for
this class of problems, known as inverse optimality.
In this paper, Kalman considers the class of linear
time-invariant (LTI) plants with full-state feedback
and a single input variable, with an associated cost
function that is quadratic in the input and state
variables. These assumptions set up the well-known
linear quadratic regulator (LQR) problem, by now a
staple of optimal control theory.

In Kalman’s paper, the mathematical framework
behind the LQR problem is laid out, and necessary
and sufficient algebraic criteria for optimality are
presented in terms of the algebraic Riccati equation,
as well as in terms of a condition on the return dif-
ference of the feedback loop. In terms of the LQR
problem, the task of synthesizing the optimal con-
trol problem comes down to finding the integrated
cost weights Q and R given only the dynamical de-
scription of the plant represented by matrices A
and B and of the feedback controller represented by
K. Kalman delivers a particularly elegant frequency
characterization of this map.5

There are two natural extensions of these results:
extension to more general dynamical systems and
extension to more general optimal control formula-
tions. The contribution of this paper is the simul-
taneous extension of this approach to systems with
constraints along with the extension to the more gen-
eral receding horizon control framework. A first step
in this approach is extension of inverse optimal re-
sults to the finite horizon case.

It is important to note that Kalman’s results are
restricted to the infinite horizon case (T → ∞)
in addition to the assumptions of linearity, time-
invariance and quadratic costs. This additional as-
sumption is necessary to derive the results associated
with the algebraic Riccati equation (Ṗ = 0). How-
ever, we will show that through proper application of
terminal costs, the same inverse optimality problem
can be soundly addressed in the case of finite horizon
length. This problem is addressed by the authors in
this paper in the context of Kalman’s work; the re-
view of these results will be made mathematically
explicit in the next section.

Inverse optimality for nonlinear systems

The above results can be generalized to nonlin-
ear systems, in which one takes a nonlinear control
system and attempts to find a cost function such
that the given controller is the optimal control with
respect to that cost.

The history of inverse optimal control for nonlin-
ear systems goes back to the early work of Moylan
and Anderson.9 More recently, Sepulchre et al.15

showed that a nonlinear state feedback obtained by
Sontag’s formula from a control Lyapunov function
(CLF) is inverse optimal. The connections of this
inverse optimality result to passivity and robust-
ness properties of the optimal state feedback are
discussed in Jankovic et al.4 The past research
on inverse optimality does not consider the con-
straints on control or state. However, the results
on the unconstrained inverse optimality justify the
use of a more general nonlinear loss function in the
integrated cost of a finite horizon performance in-
dex combined with a real-time optimization-based
control approach that takes the constraints into ac-
count.

Preliminary results
In this section we describe some preliminary re-

sults that determine the applicability of the control
design methodology described in the introduction.

State feedback and LQR

We begin by considering the question of when a
given state feedback control law can be realized as
an optimal controller for a given cost function. This
is the problem that Kalman considered5 and our
results are a variation on that work, focused on a
receding horizon formulation.

We consider a linear system

ẋ = Ax + Bu x ∈ R
m, u ∈ R

m (1)

with state x and input u. We consider only the single
input, single output case for now (m = 1). Given a
control law

u = Kx

we wish to find a cost functional of the form

J =
∫ T

0

xT Qx + uT Rudt + xT (T )PT x(T ) (2)

where Q ∈ R
n×n and R ∈ R

m×m define the inte-
grated cost, PT ∈ R

n×n is the terminal cost, and
T is the time horizon. Our goal is to find PT > 0,
Q > 0, R > 0, and T > 0 such that the resulting
optimal control law is equivalent to u = Kx.

The optimal control law for the quadratic cost
function (2) is given by

u = −R−1BT P (t),

where P (t) is the solution to the Riccati ordinary
differential equation

−Ṗ = AT P + PA − PBR−1BT P + Q (3)
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with terminal condition P (T ) = PT . In order for
this to give a control law of the form u = Kx for a
constant matrix K, we must find PT , Q, and R that
give a constant solution to the Riccati equation (3)
and satisfy −R−1BT P = K. It follows that PT , Q
and R should satisfy

AT PT + PT A − PT BR−1BT PT + Q = 0

−R−1BT PT = K.
(4)

We note that the first equation is simply the normal
algebraic Riccati equation of optimal control, but
with PT , Q, and R yet to be chosen. The second
equation places additional constraints on R and PT .

Equation (4) is exactly the same equation that
one would obtain if we had considered an infinite
time horizon problem, since the given control was
constant and hence P (t) was forced to be constant.
This infinite horizon problem is precisely the one
that Kalman considered in 1964, and hence his re-
sults apply directly. Namely, in the single-input
single-output case, we can always find a solution to
the coupled equations (4) under standard conditions
on controllability and observability.5 The equations
can be simplified by substituting the second relation
into the first to obtain

AT PT + PT A − KT RK + Q = 0.

This equation is linear in the unknowns and can be
solved directly (remembering that PT , Q and R are
required to be positive definite).

The implication of these results is that any state
feedback control law satisfying these assumptions
can be realized as the solution to an appropriately
defined receding horizon control law. Thus, we can
implement the design framework summarized in Fig-
ure 1 for the case where our (linear) control design
results in a state feedback controller.

The static state feedback that corresponds to
the finite horizon optimal control problem in equa-
tion (2) is implemented in a receding horizon (RH)
fashion by applying the control for any δ seconds,
where 0 < δ < T . Since we have started with a
feedback gain K that is known to be stabilizing, the
receding horizon application of the feedback is triv-
ially stabilizing. On the other hand, if one is solving
the standard finite horizon LQ problem, i.e., given
Q,R and PT , find K(t), the RH application of the
time-varying feedback is not necessarily stabilizing,
a result known for some time.10 In particular, in the
limit as δ → 0, and one considers the receding hori-
zon feedback u(t) = −R−1BT P (0)x(t), a sufficient
condition for stability is in terms of the terminal

cost weighting PT , given an adjustment on the state
weighting Q. The adjustment results in the “Fake
Algebraic Riccati Equation”.10

Finite horizon and CLF

We now consider the more general case of the non-
linear plants. In an inverse optimal control problem
for a nonlinear system

ẋ = f(x) + g(x)u, (5)

the objective is to demonstrate that a given state
feedback u = k(x) is optimal for a cost functional

J =
∫ T

0

L(x, u) dt =
∫ T

0

W (x) + uT R(x)u dt (6)

where W (x) is a positive definite loss function and
R(x) > 0 is a positive definite weight. The terms of
the integrated cost L(x, u) need to be determined
from the feedback k(x) and a Lyapunov function
V (x) associated with the closed-loop system in (5).

Let us denote the directional derivative of smooth
function V (x) along f : R

n → R
m by the column

vector
LfV (x) = [∇V (x)f(x)]T .

A smooth positive definite and radially unbounded
function V (x) is called a control Lyapunov function
(CLF) for the nonlinear system in (5) if it satisfies
the following property

LgV (x) = 0 =⇒ LfV (x) < 0, ∀x �= 0. (7)

Sontag17 provided an explicit formula for a stabiliz-
ing state feedback u = −s(x)LgV (x) with s(x) > 0
given that V (x) is a CLF for (5).

In the following, we demonstrate that the con-
troller from Sontag’s formula is optimal for a finite
horizon optimal control problem with integrated cost
L(x, u) in the form given in (6) and a terminal cost
that is a CLF function.

Theorem 1. Let s(x) be a function defined as

s(x) =

{
1 + a(x)+

√
a(x)2+(b(x)T b(x))2

b(x)T b(x)
b(x) �= 0

1 b(x) = 0,
(8)

with a(x) = LfV (x) and b(x) = LgV (x).17 Then,
for all γ ≥ 1/2, V (x) is a Lyapunov function for the
closed loop system with the state feedback

u = kγ(x) := −γs(x)LgV (x). (9)

Moreover, for all γ ≥ 1, u = kγ(x) is inverse optimal
for a finite horizon cost functional with a positive
definite integrated cost that is quadratic in u and a
terminal cost V (x(T )).
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Proof. Given the controller u = kγ(x), after calcu-
lating V̇ along the solutions of (5) with x ∈ R

n and
u ∈ R

m, we get

V̇ (x) = LfV (x) + uT LgV (x)

= a(x) − γs(x)b(x)T b(x).

By definition of the CLF V (x) and the function s(x),
if b(x) = 0 then V̇ = a(x) = LfV (x) < 0, for all
x �= 0. Suppose b(x) �= 0 and a(x) ≥ 0 (otherwise,
trivially V̇ < 0 for all x �= 0). Then for all γ ≥ 1

2 ,
we have

V̇ = (1 − γ)a(x) − γ
√

a(x)2 + (b(x)T b(x))2

− γ(b(x)T b(x))

V̇ =
(1 − 2γ)a(x)2 − γ2(b(x)T b(x))2

(1 − γ)a(x) + γ
√

a(x)2 + (b(x)T b(x))2

− γ(b(x)T b(x)) < 0, ∀x �= 0.

In other words, setting W (x, γ) := −V̇ (x), one gets
W (x, γ) > 0, for all x �= 0. Furthermore, V (x) is a
Lyapunov function for the closed loop system with
u = kγ(x) for γ ≥ 1

2 . To show that u = kγ(x) is an
inverse optimal control, let us consider an interme-
diate cost functional given by

J0 =
∫ T

0

(u + γs(x)LgV (x))T R(x)·
(u + γs(x)LgV (x)) dt, γ ≥ 1 (10)

with an obvious optimal control u∗ =
−γs(x)LgV (x) that minimizes J0. The optimal
value for u∗ is J∗

0 = 0. Following Jankovic,4 assume
2s(x)R(x) = In and let Φ(x, u) denote the integrand
of J0. Due to uT LgV (x) = V̇ (x) − LfV (x), we get

Φ(x, u) = uT R(x)u + γ2s(x)2(LgV (x))T R(x)·
(LgV (x)) + 2γs(x)uT R(x)LgV (x),

= uT R(x)u +
γ2

4
(LgV (x))T R(x)−1·

(LgV (x)) + γ(V̇ (x) − LfV (x))

= uT R(x)u − γ[LfV (x)+

(
γ

2
s(x)LgV (x))T LgV (x)] + γV̇ (x)

= γW (x,
γ

2
) + uT R(x)u + γV̇ (x).

Since
∫ T

0
V̇ (x) dt = V (x(T )) − V (x(0)) and the op-

timal value function J∗
0 is equal to zero, we get

V (x(0)) =
1
γ

∫ T

0

L(x, u) dt + V (x(T )),

where L(x, u) = γW (x, γ
2 ) + uT R(x)u. Thus, u∗ =

kγ(x) is an optimal control for the following cost
functional

J =
∫ T

0

W (x,
γ

2
)+

1
γ

uT R(x)u dt+V (x(T )), γ ≥ 1

(11)
with an optimal value function J∗ = V (x(0)).

Remark 1. Relatively large values of γ 
 1 corre-
spond to relatively small weights 1/γ on the control.
This is consistent with the intuition for the so-called
“cheap control” case in a standard LQR problem.

Remark 2. The aforementioned analysis of inverse
optimality of Sontag’s CLF-based controller is some-
what similar to the proof given in Jankovic4 for
an infinite horizon inverse optimality of kγ(x) with
γ = 1. Here, we have generalized the result to a
finite horizon inverse optimality of u = kγ(x) for all
γ ≥ 1.

The existence of a CLF for the nonlinear system
in (5) allows us to formulate an unconstrained finite
horizon optimal control problem. This motivates us
to attempt solving a constrained finite horizon op-
timal control problem with an integrated cost that
is obtained from analysis of the unconstrained prob-
lem with a loss function W (x) = −V̇ (x) > 0 for all
x �= 0 and a quadratic penalty on control u.

Attitude alignment for multiple vehicles

We illustrate how these results can be used by con-
sidering the problem of aligning a group of robots in
a common direction using a decentralized controller.
Consider a group of n robots where θi denotes the
heading angle of the ith robot. Let θ̇i = ωi for
i = 1, . . . , n be the attitude kinematics of each robot
with the angular velocity as the control input. As-
sume that each robot can only use its own attitude
and the attitude of its neighboring robots on a graph
G. Let A = [aij ] be a nonnegative adjacency matrix
of the graph with the property AT = A. If robots
i and j are neighbors (or adjacent) then aij > 0.
Otherwise, aij = 0. The set of neighbors of i are
denoted by Ni = {j : aij > 0}. The objective in the
alignment problem is to design a controller ω = k(θ)
for the system θ̇ = ω (where θ = (θ1, . . . , θn)T ) such
that the closed loop system θ̇ = k(θ) has a glob-
ally asymptotically stable equilibrium point θ∗ with
identical elements, i.e. θ∗i = θ∗j for all i, j. Based
on previous work by the authors,11,12 the following
linear and distributed feedback

ωi =
∑
j∈Ni

aij(θj − θi) (12)
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solves the alignment problem. This linear feedback
can be rewritten as

ω = −Lθ (13)

where the matrix L = [lij ] is called graph Laplacian
and its elements are defined by

lij =
{ ∑n

j=1 aij , i = j;
−aij , i �= j.

(14)

The Laplacian L has a simple eigenvalue at zero as-
sociated with e = (1. . . . , 1)T . All other eigenvalues
of L are positive. It turns out that V (θ) = θT Lθ
satisfies the following property

V (θ) =
∑
i<j

aij(θj − θi)2

and is a (weak) CLF for θ̇ = ω. Defining the loss
function W (θ) = −V̇ (θ) = θT L2θ, one can show
that the alignment rule in equation (12) is inverse
optimal for the following linear-quadratic finite hori-
zon cost functional

J =
∫ T

0

θT L2θ + ωT ω dt + θT
f Lθf , θf = θ(T ).

(15)
Now, consider the same attitude alignment problem
under the constraint of bounded control inputs. It
can be shown that the following positive definite and
radially unbounded function

Vb(θ) =
∑
i<j

aijψ(θj − θi) (16)

with ψ(z) =
√

1 + z2 − 1 ≥ 0 is a CLF for θ̇ = ω
and ω = −(∇Vb(θ))T is a uniformly bounded inverse
optimal distributed control for an integrated cost in
the form L(θ, ω) = ‖∇Vb(θ)‖2 +

∑
i ω2

i . This is be-
cause W (θ) = −V̇b = −∇Vb · (−∇Vb)T = ‖∇Vb‖2.

Simulation Study for Planar Flight
Vehicle

In this section, we shall consider the dynamics of
a simple planar flight vehicle that is propelled by
two independently controlled ducted fan engines, as
shown in Figure 2. The vehicle is nonlinear and un-
deractuated, with control constraints. Denoting the
configuration (x, y, θ) ∈ SE(2) and assuming viscous
friction, the equations of motion of the vehicle are

mẍ = −ηẋ + (Fs + Fp) cos θ
mÿ = −ηẏ + (Fs + Fp) sin θ

Jθ̈ = −ψθ̇ + (Fs − Fp)rJ .

Fig. 2 The Caltech Multi-Vehicle Wireless
Testbed (MVWT).

The starboard and port fan forces are denoted Fs

and Fp, respectively, with Fs, Fp ∈ [0, Fmax], and rJ

denotes the (common) moment arm of the forces.
The physical parameter values are m = 5.0 kg, J =
0.05 kg-m2, η = 4.5 kg/s, ψ = 0.084 kg-m2/s, rJ =
0.123 m, and the maximum force is Fmax = 5.0 N.
For the example we consider, the polar coordinate
form of the dynamics will be easier to handle, given
as

m(rβ̈ + 2ṙβ̇) = −ηrβ̇ + (Fs + Fp) sin(θ − β)
m(r̈ − rβ̇2) = −ηṙ + (Fs + Fp) cos(θ − β)

Jθ̈ = −ψθ̇ + (Fs − Fp)rJ .

(17)

The polar coordinate state is denoted Z =
(r, β, θ, ṙ, β̇, θ̇). The testbed floor on which the ve-
hicle operates is bounded and has an obstacle in
the center, requiring that the radius satisfy the con-
straint

Rmin ≤ r ≤ Rmax

Rmin = 0.8 m Rmax = 3.0 m.
(18)

An equilibrium point for (17) is any constant po-
sition with zero velocity; however, these dynamics
are not linearly controllable around any such equi-
librium point. To recover linear controllability, we
consider the dynamics linearized around a reference
trajectory Zr = (rr, βr, θr, ṙr, β̇r, θ̇r) that is a circu-
lar path with constant radius and angular velocity,
parameterized as

(rr, βr, θr, ṙr, β̇r, θ̇r) =
(ρ, ξt + βr0, ξt + θr0, 0, ξ, ξ) ρ > 0, ξ �= 0. (19)

The values for βr0 and θr0 must satisfy the equation

θr0 = βr0 + α0 + πsign(ξ)/2, α0 = arctan(mξ/η),
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for the reference to be compatible with the dynamics
of the vehicle. The parameter α0 is the constant
angle of attack required for tracking the reference.
The constant values for the forces to maintain this
path, denoted Fsr and Fpr, are given by

Fsr =
1
2

{
ψξ

rJ
+ ρξ

√
η2 + (mξ)2

}

Fpr = Fsr − ψξ

rJ
.

In the following, we shall compare a linear feed-
back control law, based on the linearization of (17)
around Zr, with a receding horizon control (RHC)
law. The controllers are comparable when the vehi-
cle is operating in the linear regime. As expected,
when sufficient nonlinear behavior is present, the lin-
ear controller cannot satisfy the objective without
violating the state constraint in equation (18).

LQR Derivation

The linearization of (17) around Zr is defined in
terms of the error state Ze = Z − Zr and control
Ue = (Fs − Fsr, Fp − Fpr) is given as

Że = AZe + BUe, (20)

where

A =




0 1
0 1

0 1
ξ2 ηρξ/m −ηρξ/m η/m 2ρξ 0

0 ξ2 −ξ2 −2ξ/ρ −η/m 0
0 0 0 0 0 −ψ/J




B =




0 0
0 0
0 0

− sign(ξ) sin(α0)
m − sign(ξ) sin(α0)

m
sign(ξ) cos(α0)

mρ
sign(ξ) cos(α0)

mρ

rJ/J −rJ/J


 .

The control objective is thus to stabilize the error
state to the origin, an equilibrium point of (20).
Equivalently, we have a tracking objective for the
vehicle. The feedback Ue = KZe is designed as a
linear quadratic regulator. Recall that the problem
of minimizing the quadratic performance index

J∞(x0, u(·)) =
∫ ∞

0

{
x(t)T Qx(t) + u(t)T Ru(t)

}
dt

(21)

subject to ẋ(t) = Ax(t) + Bu(t), x(0) = x0,

has the stationary optimal control solution u(t) =
−R−1BT Px(t), where P is the positive definite,
symmetric solution of the Riccati equation

AT P + PA − PBR−1BT P + Q = 0.

The optimal cost is J∗
∞(x0) = x(0)T Px(0) =

||x0||P . For the simulation examples here, the
state and control error weighting are equal to Q =
diag(1, 1, 1, 10, 10, 1) and R = diag(1, 1), respec-
tively.

For the finite horizon optimal control problem
that we implement in a receding horizon fashion, we
minimize equation (2), with the weights Q, R and P
above, subject to the nonlinear dynamics in equation
(17) and constraints in equation (18) and on the con-
trol inputs. For a horizon of T seconds, we update
the RHC every δ seconds, 0 < δ < T . The optimal
control problem is solved using the Nonlinear Trajec-
tory Generation (NTG) software package, developed
at Caltech. A detailed description of NTG as a real-
time trajectory generation package for constrained
mechanical systems is given by Milam and Murray.7

The package is based on finding trajectory curves
in a lower dimensional space and parameterizing
these curves by piece-wise polynomials, specifically
B-splines. Sequential quadratic programming (SQP)
is used to solve for the B-spline coefficients that op-
timize the performance objective, while respecting
dynamics and constraints. The package NPSOL2 is
used to solve the SQP problem.

LQR vs. RHC: Example 1 (Linear Regime)

Consider now a simulation example, where the ve-
hicle is confined to the dimensions of the MVWT
platform. In the example, ρ = 2.0 m, ξ = 0.7 rad/s
and βr0 = 0 rad. The initial condition of the vehicle
is given by Z(0) = (ρ + 1, βr0, θr0, 0, 0, 0).

The LQR tracking performance is shown by the
Cartesian state and control input responses in Fig-
ure 3. In both plots, the reference curves are plotted
as a dashed line and the vehicle response is a solid
line. Since periodic motions (e.g. circular or ellipti-
cal paths) are bounded in Cartesian coordinates, we
use such coordinates for plotting the results. Also,
the θ plot is generated with a mod of 2π. The LQR
feedback is observed to perform well, as expected
since the vehicle is not operating near the constraints
and is close to the trajectory where the linearization
is valid, i.e., the dynamics are in the linear regime.
A plot of the tracking vehicle and a reference ve-
hicle is shown in x, y space in Figure 4. The plot
shows the dimensions of the testbed floor on which
the vehicles are permitted to move; the outer line
denotes the floor boundary and the inner box de-
notes an obstacle that the vehicle is not permitted
to pass through. The outer boundary and obstacle
are approximated by the radial constraints in equa-
tion (18). The dark vehicle represents the tracking
vehicle and the white vehicle represents the refer-
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Fig. 3 LQR: Cartesian state and control input
responses to tracking a circular path. The dashed
line is the reference trajectory and the solid line
is the closed loop response.
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Fig. 4 LQR tracking and reference vehicle in po-
sition space on the multi-vehicle wireless testbed
floor. The dark vehicle represents the tracking
vehicle and the white vehicle the reference.
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Fig. 5 RHC: Cartesian state and control input
responses to tracking a circular path.

ence. The cone lengths are proportional to the fan
forces. The vehicles are shown at time snapshots of
0, 5 and 20 seconds. At 20 seconds, the vehicles are
on top of one another, meaning the tracking vehicle
has met its objective.

We now compare the LQR controller with a RHC
law, from the same initial condition. The horizon
and update times are chosen to be T = 3.0 and
δ = 1.0 seconds. The RHC tracking performance is
shown by the Cartesian state and control input re-
sponses in Figure 5. The response is quite similar
to the LQR performance. An advantage of the RHC
approach is that the initial values of the forces can
be set as an initial constraint in the optimal control
problem. For comparison, we set the initial force
values in the first optimization to be approximately
equal to the initial values of the LQR forces. Subse-
quent updates enforce the initial forces to be equal
to the previous forces applied at the update time.
The forces are thus continuous in time, although
not differentiable at the receding horizon updates,
as indicated by the figure.

The tracking vehicle and reference vehicle are
shown in x, y space in Figure 6.
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Fig. 6 RHC tracking and reference vehicle in po-
sition space on the multi-vehicle wireless testbed
floor.

LQR vs. RHC: Example 2 (Nonlinear Regime)

Consider a second simulation example using the
same reference trajectory. The initial condition of
the vehicle is now given by Z(0) = (ρ − 1, βr0 −
3π/4, θr0, 0, 0, 0). The LQR tracking performance
is shown by the Cartesian state and control input
responses in Figure 3. The linear controller vio-
lates the state constraints in (18) and saturates the
controls for at least 1 second. The violation of the
state constraint is observable by the position trajec-
tory in Figure 8. Although the simulation permits
the vehicle to pass through the obstacle, the ac-
tual vehicle in the testbed environment would likely
get stuck. Since the obstacle has flat edges and
the fans are unidirectional, on several occasions we
have observed that once a vehicle hits the obstacle,
it remains there, only able to thrust into the fixed
boundary. The LQR feedback substantially violates
the input constraints, but the simulation enforces
the saturation, as would the actual vehicle fans.

For the same horizon and update time as in the
previous example, the RHC tracking performance is
shown by the Cartesian state and control input re-
sponses in Figure 5 and the position trajectory in
Figure 10. The latter figure shows that the state
constraints are satisfied throughout the entire tran-
sient response, where the vehicle meets the tracking
objective after roughly 15 seconds according to the
state responses. Moreover, the RHC force inputs
satisfy the thrust constraints. In Figure 10, the
time snapshots of 0, 5 and 20 seconds are printed
on the top of each vehicle, to clarify the location of
the actual vehicle with respect to the reference ve-
hicle. For the first 10 seconds, the actual vehicle is
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Fig. 7 LQR: Cartesian state and control input
responses to tracking a circular path.
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Fig. 8 LQR tracking and reference vehicle in po-
sition space on the multi-vehicle wireless testbed
floor.
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Fig. 9 RHC: Cartesian state and control input
responses to tracking a circular path.
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Fig. 10 RHC tracking and reference vehicle
in position space on the multi-vehicle wireless
testbed floor.

operating on the lower boundary of the constraint
in equation (18).

By the simulation examples we have shown that
the chosen RHC policy performs similarly to the
LQR controller when the dynamics are in the linear
regime. Further, the RHC policy is able to handle
the state and control constraints directly, while such
nonlinearities disrupt the LQR performance, and on
the real testbed, generally lead to instability.

Summary and Future Work

In this paper we have presented a framework for
control design that combines the advantages of mod-
ern linear and nonlinear control techniques with
the computational power now available for use in
optimization-based control. By using linear and
nonlinear tools to generate a controller around a
representative operating point, we can generate a
specification for a receding horizon optimal control
problem. This specification can then be used to
generate optimization-based controllers capable of
taking into account additional nonlinearities and in-
put/state constraints.

We have focused in this paper on state space
controller formulations, building on early work by
Kalman on inverse optimal control. To be truly
useful, the techniques must be extended to cover dy-
namic compensators, of the sort that modern control
methods generate. One approach to doing this is to
realize the controller as a generalized observer fol-
lowed by state feedback. We can then extend the
observer to the constrained nonlinear system and
use the state space control gains to generate the cost
function for optimization-based control. The viabil-
ity of this approach is the subject of future work.
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