
A Risk-Aware Architecture
for Resilient Spacecraft Operations

Catharine L. R. McGhan and Richard M. Murray
Department of Control and Dynamical Systems

California Institute of Technology
1200 E. California Blvd., Mail Code 107-81

Pasadena, CA 91125
626-395-6460

cmcghan@cms.caltech.edu, murray@cds.caltech.edu

Romain Serra
Université de Toulouse

LAAS-CNRS
7 avenue du Colonel Roche

31031 Toulouse cedex 4, France
+33 5 61 33 63 27

serra@laas.fr
Michel D. Ingham, Masahiro Ono, and Tara Estlin

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive, Mail Stop 301-490
Pasadena, CA 91109

818-393-6426
{Michel.D.Ingham,Masahiro.Ono,Tara.A.Estlin}@jpl.nasa.gov

Brian C. Williams
Department of Aeronautics and Astronautics

33-330, 32-227
Massachusetts Institute of Technology

77 Massachusetts Avenue
Cambridge, MA 02139

617-253-2739
williams@csail.mit.edu

Abstract—In this paper we discuss a resilient, risk-aware soft-
ware architecture for onboard, real-time autonomous opera-
tions that is intended to robustly handle uncertainty in space-
craft behavior within hazardous and unconstrained environ-
ments, without unnecessarily increasing complexity. This archi-
tecture, the Resilient Spacecraft Executive (RSE), serves three
main functions: (1) adapting to component failures to allow
graceful degradation, (2) accommodating environments, sci-
ence observations, and spacecraft capabilities that are not fully
known in advance, and (3) making risk-aware decisions without
waiting for slow ground-based reactions. This RSE is made up
of four main parts: deliberative, habitual, and reflexive layers,
and a state estimator that interfaces with all three. We use a
risk-aware goal-directed executive within the deliberative layer
to perform risk-informed planning, to satisfy the mission goals
(specified by mission control) within the specified priorities and
constraints. Other state-of-the-art algorithms to be integrated
into the RSE include correct-by-construction control synthesis
and model-based estimation and diagnosis. We demonstrate the
feasibility of the architecture in a simple implementation of the
RSE for a simulated Mars rover scenario.

TABLE OF CONTENTS

1 INTRODUCTION . 1
2 RSE ARCHITECTURE . 2
3 DELIBERATIVE LAYER . 4
4 HABITUAL LAYER . 6
5 DEMO: PLANETARY SURFACE SCENARIO 7
6 CONCLUSIONS . 9

ACKNOWLEDGMENTS . 9
REFERENCES . 9
BIOGRAPHY . 13

1. INTRODUCTION
Several distinct trends will influence space exploration mis-
sions in the next decade. Destinations are becoming more
remote and mysterious, science questions more sophisticated,
and, as mission experience accumulates, the most accessible

978-1-4799-5380-6/15/$31.00 c�2015 IEEE.

Figure 1. Future missions that could require resilient
spacecraft.

targets are visited, advancing the knowledge frontier to more
difficult, harsh, and inaccessible and harsh environments.
This leads to new challenges including: hazardous conditions
that limit mission lifetime, such as high radiation levels
surrounding interesting destinations like Europa or toxic
atmospheres of planetary bodies like Venus; unconstrained
environments with navigation hazards, such as free floating
active small asteroid and comet bodies; multi-element mis-
sions required to answer more sophisticated questions, such
as Mars Sample Return (MSR); and long-range missions,
such as Kuiper belt exploration, that must survive equipment
failures over the span of decades. Figure 1 presents some
representative missions that would require greater resilience.
These missions would need to be successful without a priori
knowledge of the most efficient data collection techniques for
optimum science return. Science objectives would have to be
revised on the fly, with new data collection and navigation
decisions on short timescales. How can we continue to
explore challenging new locations without increasing risk or
system complexity?

The required resilience to implement these missions cannot
be achieved by simply incrementally building on and ex-
trapolating from the current state of the practice; it requires
a fundamental paradigm shift in the way we conceptualize,

1

Submitted, 2015 IEEE Aerospace Conference
http://www.cds.caltech.edu/~murray/papers/mcg+15-ieeeaero.html

design, implement, validate, operate, and evolve our sys-
tems. The current paradigm relies on traditional approaches
to preserve the spacecraft in known environments and in
response to internal faultsit employs hardware redundancy,
shielding, hundreds of preprogrammed reflexes and large
technical margins. These solutions have significant costs
across multiple dimensions (e.g., power, weight, complexity)
and have limited effectiveness in addressing environmental
uncertainty. Continued reliance solely on these approaches
limits the classes of missions we are capable of pursuing,
limits the science return, and limits the level of resilience
that is achievable for the missions we fly, hence translating
to increased technical risk. There is a need for an evolution
of the traditional approaches towards a balance of both reflex-
oriented behavior and the ability to reason about the current
state of the system and environment in a comprehensive way.
The challenge is to figure out a way to effectively develop and
integrate such capabilities in order to enable the new class
of missions, to deliver an acceptable probability of returning
high-value science.

To meet the challenge, we have designed a novel architecture
called the Resilient Spacecraft Executive (RSE) that will
endow spacecraft with unprecedented levels of resilience, by:

(1) adapting to component failures to allow graceful degra-
dation,
(2) accommodating environments, science observations, and
spacecraft capabilities that are not fully known in advance,
(3) making risk-aware decisions without waiting for slow
ground-based reactions.

The RSE will autonomously run onboard the spacecraft, mak-
ing decisions in real-time that could no longer be left to the
auspices of mission control operators due to the timescales
and delay involved in conducting remote missions in uncer-
tain environments.

In this paper we describe our proof-of-concept development
of RSE that is intended to robustly handle uncertainty in
the spacecraft behavior and hazardous and unconstrained
environments, without unnecessarily increasing complexity.
We construct RSE by a judicious application of deliberative,
habitual, and reflexive behaviors, which are analogous to
human behavioral layers, and a state estimation capability
that interfaces with all three. In our design, the deliberative
behavior is provided by a risk-aware plan executive that gen-
erates a high-level action sequence to achieve mission goals
while avoiding risks. The habitual behavior is provided by
a correct-by-construction control policy synthesizer, which is
capable of automatically designing and modifying controllers
for hybrid control systems that satisfy safety and performance
specifications. The reflexive behavior is provided by existing
flight control and embedded software heritage. We also use
model-based systems engineering approaches that facilitate
development of the underlying models used in these tech-
nologies. Figure 2 shows the interaction between layers.
The deliberative layer takes in high-level data from mission
control and performs symbolic risk-informed planning to
satisfy the mission goals within the specified priorities and
constraints. It communicates a limited timescale plan with
constraints to the habitual layer, which handles normally-
seen risks and failures and decides on the behavioral mode
of the system; it, in turn, outputs local state trajectories to be
executed by the reflexive layers closed-loop controller.

In the sections that follow, we describe the RSE architecture,
a set of requirements that it is intended to satisfy, and mission

scenarios that help flesh out the RSE capabilities. We go
on to describe the core algorithms in our design, including
risk-aware plan execution for the deliberative layer, correct-
by-construction control synthesis for the habitual layer, and
model-based estimation for the state estimator. We de-
scribe an initial proof-of-concept implementation of RSE
with placeholder capabilities in the deductive and habitual
layers, and validation of the concept through small-scale
demonstrations on relevant high-fidelity simulation models
for a planetary surface scenario. We present the results
from testing conducted on both a simulated Mars rover and a
simulated Pioneer 3-DX robot to demonstrate use in scenarios
requiring replanning in the face of uncertainty, new goals
and reprioritizations, and unexpected failures. Finally, we
conclude the paper with a discussion of future work on the
RSE capability.

2. RSE ARCHITECTURE
Innovations and Contributions
There have been limited examples of truly resilient behavior
deployed onboard spacecraft to date. Perhaps the most
comprehensive demonstration of sophisticated resilience-
enabling autonomy is the Remote Agent Experiment, which
was flown on the Deep Space One mission [1], [2]. The
Remote Agent architecture integrated technologies for on-
board planning and scheduling, smart execution, and model-
based diagnosis and recovery. However, this autonomy
architecture was demonstrated onboard the spacecraft under
very controlled conditions and for only a limited experiment
lifetime. Other examples of deployed resilience include the
autonomous navigation capability used by the Deep Impact
mission’s impactor spacecraft to assure an accurate impact
with a cometary body [3], [4], and the Cassini spacecraft’s
onboard delta-energy calculations to ensure robust Saturn
Orbit Insertion, even in the presence of system reboots and
failures during this critical sequence [5]. These missions
deployed focused capabilities that target resilient execution
of very specific critical functions. The challenge, therefore,
is to generalize from these types of capabilities, to provide
resilient autonomous behaviors across the entire system and
its mission.

Layered autonomy architectures, like the Remote Agent,
CLARAty [6], [7] and the Autonomous Sciencecraft capa-
bility deployed on the Earth Observing One spacecraft [8],
have been developed and studied extensively in the past; key
distinctions and innovations in the RSE framework include:

(i) The development and use of formal architectural analysis
to perform tradeoffs and inform the appropriate allocation
of capabilities to the deliberative, habitual and reflexive lay-
ers. This will result in systems with flexibility to adapt to
their uncertain environments and potential mission changes.
This is in contrast to the informal allocation of capabilities
to layers in current architectures, which results in brittle
architectures with properties that are inappropriately tuned
to the mission context (e.g., favoring responsiveness over
flexibility, even for mission scenarios without strict time-
criticality requirements).
(ii) The architecture’s leveraging of sequencing and con-
trol policies that are ”correct by construction” in both the
habitual and deliberative layers. The use of model-based
policy synthesis will address the current challenge of assuring
correctness of the system behavior in the face of growing
complexity.
(iii) The use of onboard deliberative reasoning, which will

2

Figure 2. Resilient Spacecraft Executive Architecture.

enable the system to manage a space of possible executions
that is far too large to be completely covered by design-
time control policies, and light-time delays that preclude
effective ground-based deliberation and planning for many
future mission scenarios.
(iv) The architecture’s emphasis on risk-awareness, which
is critical to managing the unprecedented amount of uncer-
tainty in the environments to be explored in future missions.
Such uncertainty introduces significant risk and precludes any
guarantees of correct behavior, even though we are employing
formally correct-by-construction policies. Endowing our
architecture with the ability to explicitly assess risk and make
decisions based on risk fills this resilience gap.

The combination of these innovative features makes it possi-
ble for our Resilient Spacecraft Executive architecture, shown
in Figure 2, to allow spacecraft to operate with the level of
resilience required for truly autonomous space exploration
and even more ambitious and sophisticated capabilities.

Problem Overview
The current control paradigm for spacecraft is biased very
heavily towards hard-coded reflexive behavior, with some
pre-validated higher-level behaviors akin to habitual behav-
iors in humans, but little to no deliberative reasoning aside
from that performed by operators on the ground. By com-
parison, the new risk-aware paradigm that we propose in the
RSE architecture is more analogous with human behavior,
which can be categorized roughly as a combination of ”re-
flexive” behavior hardwired in the nervous system; ”habitual”
behaviors that are performed by rote once learned through
repetition and muscle-memory training; and finally, ”delib-
erative” reasoning behavior that is used to make decisions,
handle novel situations, learn from mistakes, and so forth.
In effect, the new paradigm is an attempt to make spacecraft
more ’self-aware’ of its own internal state and processes, its
environment, its evolving tasks and goals, and the relation-
ship between them, and to include state-of-the-art techniques
that allow for onboard processing of the risk-versus-reward
tradeoffs necessary for goal accomplishment to be made in
real-time as circumstances evolve. Our ultimate aim is to
develop an autonomous control architecture that can exhibit
system behavior at each of these three levels, and a rigorous
analysis framework that enables appropriate allocation of ca-

pability to each level depending on the problem at hand (i.e.,
the system onto which we are deploying our architecture, the
environment it is operating in, and the mission it is intended
to perform).

Consider the following example of the latter analysis capabil-
ity. A reasonable design choice for a rover system operating
in a particularly complex and hazardous planetary surface
environment might allocate path planning to a deliberative
layer, trajectory following control to a pre-validated behavior
layer, and low-level mobility control to a reflexive layer; this
capability allocation would enable the system to be robust in
its ability to flexibly replan its trajectory as obstacles come
into view, but the need for additional computation in the
control loop would consequently slow the overall progress of
the rover, preventing it from achieving high traverse speeds.
Conversely, a rover system operating in a much more be-
nign environment might implement path selection as a pre-
validated behavior that does not require deliberation, and
might push trajectory-following control down into the more
responsive but less flexible reflexive layer; this capability
allocation would help enable faster driving, but would come
at the expense of costly backtracking if an obstacle is ever
encountered. The use of model-based system analysis tools in
later iterations of the architecture implementation will enable
us to formalize such system tradeoffs, e.g., between flexibility
and responsiveness.

Specification Requirements
For us to consider our proposed architecture to be successful,
we require that it:

(1) be easily deployable on a heterogeneous set of platforms
and can handle a potentially exponential set of scenarios,
without an inordinate programming effort.
(2) provide solid guarantees of correctness and risk to mis-
sion, without extensive manual verification and validation.
(3) reduce operational cost while increasing mission re-
silience, not increase cost.
(4) be responsive to novel situations in which human inter-
vention is infeasible or too costly.

In our architecture, shown in Figure 2, the traditional com-
mand sequence is replaced with a set of high-level mission

3

goals (including any pertinent science objectives), so that the
system can reason about which the system can reason about
what actions to take to accomplish the goals. This approach,
which relies on onboard computation and decision-making,
enables resilience by allowing the system to rapidly react
to ”anticipated” anomalous events, like single event upsets
(SEUs) due to highly-energized particles hitting sensitive
electronics, and to perform more significant activity replan-
ning when completely unanticipated events occur. The aim is
to fly through most anomalies and non-critical failures, i.e.,
eliminate most traditional spacecraft safeing occurrences and
operator-in-the-loop interactions, limiting them to only those
cases where there is high risk that the mission goals cannot
be achieved without help from the ground.

To this end, the architecture defines layers for deductive rea-
soning, pre-validated behaviors, and reflexive mechanisms,
analogous to the three types of human behavior described
above.

Communication
The communication between and among the three layers and
the state estimator is central to the implementation of the
system. Specification of the data that needs to be shared
between each layer is essential. The type and frequency of
data transmission and data sharing, as well as the timing,
have a substantial impact on the system operations and overall
capability of the RSE. For instance, if the habitual layer is less
capable of handling risk under wide-ranging circumstances, it
will need to query the slower deliberative layer more often,
and this could result in multiple replanning episodes that
cause significant delays, decreasing general system efficiency
and ultimately the number of goals that may be able to be met.

State Estimator and Model-based estimation
The state estimation and diagnosis layer of the architecture
is responsible for providing to the other layers accurate in-
formation about the state of the system and the environment
(and associated uncertainty). The initial implementation of
this layer is based on existing state estimation and diagnosis
approaches used for current JPL spacecraft. We currently
leverage existing state estimation and monitoring/diagnosis
capabilities for the simulated rover demonstration platforms.
This includes traditional state filters (e.g., Kalman filters)
for nominal state estimation and traditional fault protection
software (e.g., autocoded state machines) for off-nominal
state diagnosis. Simulated faults in the system can be injected
into test scenarios through the state estimator for testing
purposes.

A more sophisticated estimation and diagnosis capability
based on state-of-the-art techniques developed by the re-
search team (e.g., model-based estimation and diagnosis
capabilities evolved from the Livingstone element of the
Remote Agent [9]) will be investigated for later infusion into
the RSE architecture; this infusion will leverage prior work
that explored the integration of such capabilities into a goal-
based control architecture [10].

Reflexive Layer
The reflexive layer of the architecture is based on existing
low-level control and device-level embedded software for
spacecraft. Although crucially important, this layer is not
discussed in detail in this paper, as the development of robust
system software with reflexive characteristics is compara-
tively well-understood, as compared to the development of
software for the other layers.

In the following two sections of the paper, we elaborate more
details on the deliberative and habitual layers of the RSE
architecture.

3. DELIBERATIVE LAYER
The deliberative layer performs risk-aware plan execution. A
risk-aware plan executive takes as an input a set of high-level
goals (i.e., a plan), makes risk-aware decisions, and outputs
subgoals that are executed by the habitual layer. Risk-aware
plan execution is distinct from conventional planning in two
ways:

1. A risk-aware plan executive adapts its decisions to the
acceptable level of risk specified by users.
2. A risk-aware plan executive allocates risk to the subgoals
it generates.

The first capability essentially addresses the trade-off be-
tween risk and utility. The illustrative example in Figure
3 intuitively shows the trade-off. In the example, a rover
exploring near the rim of a crater is faced to make a decision
of whether it should stay away from the rim to reduce a risk by
giving up potential discoveries at the bottom of the crater. In
(a), if the ground operation specifies that the acceptable level
of risk is low, the risk-aware plan executive would make a
decision to go away from the rim to meet the risk requirement.
On the other hand, if the ground operation allows the rover
to take on more risk, the risk-aware plan executive would
make a decision to go close to the rim to make scientific
discoveries. In general, a risk-aware plan executive accepts
thresholds on various types of risks, and performs constrained
optimal decision making to satisfy the risk thresholds while
maximizing utility.

The second capability scales the first capability when there is
more than one subgoal. The illustrated example in Figure 4
shows this capability. In the example, a rover is commanded
to visit two science targets. It can expect greater science
return by roving closer to them, but with additional risk.
Assume that the expected level of risk is approximately the
same for the two targets, but the expected science return is
higher for the second target. Then, the optimal decision is to
take a lesser risk by keeping a safe distance away from the
first target, while taking a greater risk at the second target by
roving closer to it. This decision can be intuitively understood
by an analogy to resource allocation. One can think of the
rover as having a limited amount of risk (resource) that it can
take (or expend) to achieve a goal, and thus allocates the risk
(resource) optimally across subgoals to maximize the overall
utility. Thus we call this capability risk allocation [11].

MIT’s Model-based Embedded and Robotic Systems Group
has been the pioneer in risk-aware plan execution. Various
algorithms and plan executives have been developed. Most
notably, the iterative risk allocation (IRA) algorithm [11] pro-
vides the optimal risk allocation capability for a wide range
of problems, and has become the basis for our risk-aware
plan executives. The first fully-implemented plan executive
is called p-Sulu [12]; it takes a plan representation called
chance-constrained qualitative state plan (CCQSP) [13] as
an input and outputs an optimal sequence of actions as a
schedule. p-Sulu works on a continuous state space, and
two of its current applications are vehicle path planning [14],
[11], [15] and building control [16]. Algorithmically, p-Sulu
is built upon chance-constrained model predictive control
(CCMPC) methods [17], [18], [19]. It has been demonstrated

4

Figure 3. An illustrative example showing a risk-aware plan
executive’s capability to adapt its decisions to the acceptable
level of risk specified by users.

Figure 4. An illustrative example showing a risk-aware plan
executive’s risk allocation capability.

on simulations [12] as well as hardware[15]. A distributed
extension of p-Sulu has also been developed, which is called
dp-Sulu [12].

A risk-aware plan executive that handles temporal and state
uncertainty is also being developed. For that purpose, the
MERS group at MIT has defined probabilistic extensions of
temporal plan networks (pTPN) and simple temporal net-
works (pSTN), with corresponding chance-constrained plan-
ning algorithms [20], [21]. These results are currently being
incorporated into t-Burton [22], a hierarchical temporal plan-
ner capable of handling set-bounded temporal uncertainty.
Dealing with pTPN’s allows t-Burton to reason over the
uncertain, discrete outcomes of activities and sensing actions,
while pSTN’s endow it with sensitivity to the risk related to
probabilistic activity durations.

The RSE deliberative layer is built upon these risk-aware plan
executives. In the demonstration presented in section 5 of this
paper, the deliberative layer is implemented by a simplified
form of p-Sulu, as the initial step to build the full capability
of the deliberative layer. The simplified p-Sulu planner we
use is described in detail in the next subsection.

Simplified p-Sulu—The demonstration version of the RSE’s
deliberative layer is described in this subsection. It is ba-
sically a probabilistic path-planner in 2-dimensional space
on a discretized time horizon. The state vector is a 2-D
projection of the 3-D position on the terrain. The plant
is a simple integrator, meaning that the control law is the
velocity command. Initial position and noise are random
variables assumed to follow multivariate normal probability
distribution laws. Since the system is linear, uncertainty
remains Gaussian-distributed at each time step. The goal is to
minimize the 2-norm of the control vector under constraints
on the final mean position and probabilistic constraints on

Figure 5. Example of convex polygon

obstacle avoidance.

In order to use the risk selection method [23], obstacles are
assumed to be convex polygons. Polygons are 2-dimensional
polytopes. A convex polytope is the intersection of a finite
number of half-spaces each defined by a single linear inequal-
ity. A pentagon can be visualized in this manner as shown in
Figure 5.

Obstacle avoidance is handled via risk selection [24]. Let us
explain this method for a single obstacle Oi. As a convex
polygon, this set can be written as:

O = {r : aTj r  bj , j = 1, . . . ,m}. (1)

At each time step, the original chance constraint (2) enforces
the position vector to lie outside the forbidden zone within
some risk margin � 2 (0, 1).

P{rk 2 O}  �. (2)

Equation 2 is a joint chance constraint because the collision
set is defined by a set of inequalities. Risk selection conser-
vatively replaces this original condition with a disjunctive set
of individual constraints. Indeed, it constrains solutions to lie
in one of the safe half-spaces contained in the complement of
the obstacle. These sets exist thanks to the convexity hypoth-
esis. An illustration is provided for a triangular case in Figure
6. One can see that lying in one of these half-spaces ensures
that we avoid the obstacle. The mathematical advantage of a
half-space is that it is defined by one single linear inequality.
Thus the corresponding chance constraint is simply expressed
as the disjunction of the individual constraints:

m_

j=1

�P{aTj rk  bj}  �

�
(3)

Although now disjoint, the new and conservative individual
constraints (3) are still formulated in a probabilistic way.

5

Figure 6. Triangular obstacle and associated safe half-
spaces.

Figure 7. Safe and unsafe roving areas

In order to obtain a deterministic form, we take advantage
of a lemma dealing with one-dimensional Gaussian random
variables. It basically states that, for such a random variable
X , there is an equivalent and deterministic formulation for
bounding the probability of the event X � 0, using the mean
value and standard deviation of X .

To handle multiple obstacles p, one just needs to allocate a
risk threshold �i to each convex polygon Oi where:

pX

i=1

�i  �. (4)

This technique, known as risk allocation [24], could be part
of the optimization process. However, in order to reduce the
complexity of the algorithm, we fix it in advance, and for all
i = 1, . . . , p we set �i = �/p.

The actual obstacles for the demonstration are retrieved from
information about the topography of an example terrain. They
cover the slopes forbidden for roving (see Figure 7).

Examples of waypoints computed by the deliberative layer
are provided. Figure 8 shows a high-risk plan (� = 10�2)
meaning that, as the �-threshold is low, the optimization

Figure 8. Example of high-risk plan

Figure 9. Example of low-risk plan

allows for a trajectory passing very close by the obstacles
while going to the target, similar to coming close to the
cliff face of a crater, as discussed above. Alternately, Figure
9 shows a low-risk plan (� = 10�6), similar to roving
away from the rim of a crater. In order to meet the much
stronger risk requirement, the planner increases the margin
with respect to the forbidden areas.

4. HABITUAL LAYER
The habitual layer is responsible for achievement of the con-
trol goals dispatched by the deliberative layer, by executing
actions determined by a set of pre-compiled robust control
policies that are computed offline and loaded onboard the
spacecraft. Thus, these behavioral policies are similar to
tasks that humans do by rote, having ”pre-validated” the
resulting behavior through repetition and muscle-memory
training. Each behavioral policy takes as an input the limited
timescale plan with constraints from the deliberative layer,
handles ’normally-seen’ risks and failures and decides on
the behavioral mode of the system, and outputs waypoint
sequences or reference trajectories that are then tracked by
the reflexive layer.

Theoretically, the behavioral policies performed at the ha-

6

Figure 10. Verification and synthesis framework.

bitual layer could be executed in part or in whole by the
deliberative layer. This would be fairly inefficient to do,
however, because of the extended timelines the deliberative
layer is meant to plan over for global optimality. It is
generally more efficient to chunk the problem into smaller,
limited timescales for hard real-time execution, performing
plan repair when necessary.

Over time, however, the deliberative layer may be found to
repeat certain plan outcomes with little deviation under a
bounded set of circumstances - a known, detectable pattern
of behavior. If this occurs, that set of responses could be
”learned” as a new, generalized behavior. The habitual layer
can then use that behavior without having to ’fail up’ to
the deliberative layer under those circumstances, avoiding
much longer computation times and suboptimal response
times. This is one method of allowing the onboard ’cognitive’
processes to become faster and more efficient overall, though
these are usually analyzed, identified and created offline.

The traditional approach to this hybrid control problem -
one of both discrete and continuous parts - also involves
manual design of control protocols and verification against
the specification via either model-checking techniques (for
simple systems) or Monte Carlo simulations (for more com-
plex ones). Over the past decade, the robotics, controls, and
AI technical communities have developed a variety of new
tools and techniques for specification, design, and verification
of embedded control systems, (see [25] for an overview and
additional references). These approaches make use of models
of the dynamics of the system, descriptions of the external
environment, and formal specifications to either verify that
a given design satisfies the specification or synthesize a
controller that satisfies the specification, as summarized in
Figure 10.

One of these approaches to constructing behavioral policies
is the use of a correct-by-construction synthesizer, which is
capable of automatically designing and modifying controllers
for hybrid control systems that satisfy safety and performance
specifications. While this approach does not work in all situ-
ations, for the types of missions envisioned here, we believe
it can be used as an effective tool to enable model-based
design and qualification of complex systems. However, a key
distinction is that the validation of the correct-by-construction
control protocols is done through synthesis/analysis, rather
than by ”learning”, making this approach a very attractive
solution for RSE use.

In our first-cut implementation below, we use a scaled-down
version of this functionality, creating the behavioral policy
offline by hand and using that static policy online in real-time.
In particular, we use an RRT* planning algorithm to perform
local map-based search for trajectory generation for the finer
local map that may include more sensed information than the
coarser global map used by the deliberative layer.

RRT* algorithm
There are many types of sample-based motion planning
algorithms, the most common of which are Probabilistic
RoadMaps (PRM) and Rapidly-exploring Random Trees
(RRT). Both these algorithms have theoretical guarantees of
probabilistic completeness. The RRT* algorithm, a graph-
based search version of the RRG algorithm that incrementally
builds a tree instead of a connected roadmap, is provably
asymptotically optimal [26]. RRT* has linear complexity in
query time and space, and O(nlogn) complexity in process-
ing time; it also has monotonic convergence [26].

Information on the algorithm and proof of its optimality can
be found in [26]. We use a k-nearest variant version of the
RRT* algorithm that was implemented in an open-source
package (see the implementation details section below).

5. DEMO: PLANETARY SURFACE SCENARIO
Scenario
We tested our first-cut RSE implementation using a planetary
rover scenario, with constraints on traversal-distance and
power. The rover scenario included the following faults, in
order of occurrence:

• unexpected obstacle (seen locally, not on global map)
• motor degradation
• motor failure

This would be consistent with the deliberative layer having
access to a low-resolution map derived from orbital imagery,
and the habitual layer having access to a higher-resolution
map derived from surface exploration. The habitual layer
must respond to the obstacle locally if possible, only request-
ing replanning at the deliberative layer level if any required
obstacle avoidance would result in violation of a constraint
associated with the goal that is currently being executed. The
motor degradation causes more power to be consumed by the
rover as it moves, and may require the habitual layer to aban-
don the current goal and inform the deliberative layer so it
can replan, if the power constraints on the current goal cannot
be met. The motor failure case should be recognized by the
habitual and deliberative layers, and should prompt a ’call
home’ to the mission operator as an unforeseen failure that
the RSE cannot recover from without human intervention.

The behavioral policy used by the habitual layer is:

(1) receive waypoint(s) and constraint(s) from deliberative
layer
(2) compute local trajectories to reach waypoint(s)
(3) determine whether the specified constraints are expected
to be violated
(4a) if no constraint will be violated, send the computed
trajectory to the reflexive layer
(4b) if a constraint is expected to be violated, attempt to per-
form plan repair/conflict resolution, to compute a trajectory
that will not violate the constraints; if a trajectory is found that
will not violate the specified constraints, send the trajectory

7

to the reflexive layer
(4c) if a constraint is expected to be violated and plan repair
fails, signal deliberative layer with failure of current waypoint
goal, safe rover, and wait for deliberative layer response
(5) wait for reflexive layer to execute the trajectory (or signal
that it was not successful in executing it)
(6) if reflexive layer signals that it has completed executing
the trajectory, signal deliberative layer with success of way-
point goal, and wait for next waypoint goal from deliberative
layer.

Thus, for instance, in the case of an unexpected obstacle
being sensed locally, if the habitual layer can plan a path
locally that allows traversal around the obstacle without vi-
olating path-distance and power constraints, then the habitual
layer executes it. In that case, the deliberative layer does
not need to know about local replans as long as they are
handled within the specified constraints - those assumptions
the deliberative layer made for that piece of the path. If the
habitual layer cannot compute a trajectory that meets those
constraints, however, it must fail up to the deliberative layer.
The deliberative layer can then relax the violated constraint
or recompute a new waypoint plan.

An example of the timeline of onboard rover operations and
communications expected to occur between the two upper-
most layers, for the scenario we tested, is:

(1) The rover receives high-level direction from the ground
operator to look for potential Mars surface samples in a
specified area, with a specified level of acceptable risk.
(2) Using a coarse map derived from orbital imagery, the
Deliberative Layer (DL) plans a path (set of waypoints) that
meets the high-level goal within the risk bound, and computes
a power bound associated with each waypoint, consistent
with the specified risk level.
(3) The DL sends the first waypoint along with the associated
’not-to-exceed’ power constraint to the Habitual Layer (HL),
which uses a more detailed map to control the rover to achieve
the waypoint goal within the acceptable power limit.
(4) When the waypoint is reached, the HL informs the DL of
the successful accomplishment of goal. The DL then issues
the next waypoint goal, etc...
(5) After a few successful waypoints have been achieved, the
HL discovers an unanticipated obstacle but determines that
the constraints will not be violated by circumnavigating it.
It logs the minor anomaly, but keeps on executing without
signaling a problem to the DL.
(6) After a few more successful waypoints have been
achieved, the HL gets a waypoint that it discovers it can’t
achieve within the specified power bounds, due to a sudden
motor degradation. The HL informs the DL of the HL’s in-
ability to achieve the goal under the current power constraint.
(7) The DL replans a more conservative path to the goal with
relaxed power constraints, and issues the first waypoint in the
new plan to the HL.
(8) After a few more successful waypoints have been
achieved, the HL gets a waypoint that it discovers it can’t
achieve within the specified power bounds, due to a complete
motor failure.
(9) The HL informs the DL of the HL’s inability to achieve
the goal under the current power constraint, and the DL sees
loss of motor in its latest state estimate.
(10) The DL determines that it can’t drive the rover any more
without violating the top-level risk bound originally received
from the ground operators, so it stops/safes the rover and
communicates the current situation to the ground operators.

Implementation
In order to demonstrate the viability of the architecture in the
presence of faults, we coded a preliminary implementation of
the RSE as a proof-of-concept.

For communications support, we decided to adopt the Robot
Operating System (ROS) messaging system (and rosbridge)
for our proof-of-concept architecture [27]. rosbridge is an
extension of the roscore server used for native ROS message
passing and allows for more arbitrary network interfaces to
be written between program components in any language
that supports properly-formatted JSON objects [28]. The
publisher-subscriber model is fairly robust, and there exist
a wide range of robots and simulated robots that have pre-
existing interfaces to the software package, which will allow
us to easily test our architecture across a wide range of use
cases. In the planetary roving case, for simplicity we have
built off of the ROSARIA API used for communicating with
Pioneer robots (command velocities in the body frame and
raw sensor data return), extending it to include messaging
support for waypoint-following and status queries and other
requests between layers for both the simulated ROAMS rover
and the simulated Pioneer 3-DX rover [29]. Waypoints are
defined as x-y coordinates in the plane.

The deliberative layer was written in Matlab using the yalmip
[30] and cplex [31]/gurobi [32] optimization solver libraries.
The Matlab-Ros-Interface code project available on github
was used to support ROS-formatted JSON message passing
inside Matlab [33]. This allowed us to isntantiate a real-
time connection to the ROS server for the deliberative layer
implementation running within Matlab.

The habitual layer was written in python using the Open
Motion Planning Library (OMPL) trajectory planning algo-
rithms [34]. The ws4py library open-source implementation
of JSON messages in python was used to support ROS-
formatted JSON message passing [35]. This allowed us to
code rosbridge server communication support for the habitual
layer code in python, such that the habitual layer was able
to run on non-Ubuntu systems with OMPL that might not
support ROS natively (such as Fedora). We did not use
correct-by-construction techniques in our initial implementa-
tion; instead, we focused on the interaction between the layers
and the division of responsibility.

The deliberative layer did trajectory planning on a lower-
resolution global scale, while the habitual layer performed
more refined local trajectory planning between waypoints.
The reflexive layer was embedded in the simulation envi-
ronment used, as were the state estimation capabilities. The
rovers used had interfaces that allowed for a choice between
waypoint following or velocity commands; we chose to con-
centrate on waypoint following.

Each status message from the deliberative layer to the ha-
bitual layer includes the next waypoint(s) to achieve and
the power constraints that operations must satisfy for the
duration; status messages from the habitual layer to the
deliberative layer either alert the deliberative layer that a way-
point goal cannot be achieved within the specified constraints
(time, energy, risk, etc.), or they notify the deliberative layer
that a waypoint has been achieved. Reflexive layer messages
are raw sensor data used for state estimation, and in the case
of trajectory following, a notification to the habitual layer if
and when a waypoint has been reached.

8

Simplified p-Sulu planner

RRT* planning algorithm

Coarse
map

Fine
map

Goal,
General power constraints

Vehicle simulation
(ROAMS, MobileSim

with ROSARIA)

Message (waypoint achievement)

Message (waypoint achievement or failure,
type of failure if failure in planning occurred)

Local waypoint list

Intermediate waypoint,
Path constraintsROS

Message
Server

(roscore,
rosbridge)

Vehicle state,
Vehicle status

Vehicle state,
Vehicle status

Vehicle state,
Vehicle status

Figure 11. The first-cut implementation of the RSE archi-
tecture. Note: all communicated data is sent through the
ROS Message Server; the arrows between layers nominally
indicate the originating modules and end-receipt modules.

Figure 12. The Rocky 8 rover (conceptual design).

Results
We tested the RSE using two different rover simulators in two
similar obstacle environments.

The first rover test scenario was performed using the NASA
JPL Darts lab software ROAMS (Rover Analysis, Modeling
and Simulation), a high-fidelity rover simulation environ-
ment [36], as the simulator and reflexive layer component.
ROAMS (shown in Figure 12) models rover kinematics and
dynamics algorithms, as well as other relevant subsystems
such as instruments, sensors, and onboard control algorithms.
ROAMS also models various planetary terrain features upon
which the simulated vehicles move. ROAMS can be used in
stand-alone mode, for closed-loop simulation with onboard
software, or for operator-in-the-loop simulations. We used
the ’Rocky 8’ rover in a simulated Mars environment with
local terrain features, such as inclines and slopes.

When tested under the above circumstances, our RSE imple-
mentation was able to respond promptly and effectively as
required to the evolving circumstances of the demonstration.

The second rover test scenario was performed using the
MobileSim simulator with a simulated Pioneer 3-DX rover
and reflexive layer component [37]. The obstacle maps that
were used in the ROAMS scenario were then converted to
ArMap format and given as input to MobileSim as the 2D

environment model; a flat ground plane is assumed. Our
RSE was able to perform just as well within this simulator.
An objective for the near future is to deploy the RSE to
a hardware robot platform, by connecting the ROSARIA
interface to a real Pioneer 3-DX.

6. CONCLUSIONS
We have described a Resilient Spacecraft Executive that will
provide future spacecraft with a capability for risk-aware
autonomy. We have developed an initial small-scale demon-
stration on relevant high-fidelity simulation rover models for
a planetary surface scenario. The scenarios tested replanning
in the face of uncertainty, rescheduling in the face of new
goals or reprioritizations, and reconfiguration prompted by
unexpected failures. Future work on this project will de-
ploy the RSE onto a hardware robot platform (Pioneer 3-
DX, initially), and will investigate additional planetary rover
scenarios. We will also apply the RSE to an autonomous
underwater vehicle platform and a small satellite/CubeSat,
to demonstrate the versatility of the autonomy architecture.
We also plan to replace the initial placeholder algorithms
in the deliberative and habitual layers with the full risk-
aware planning and execution capability, and a correct-by-
construction synthesized hybrid controller, respectively.

ACKNOWLEDGMENTS
The authors would like to thank Ioannis Filippidis and Kit
Kennedy for their help and efforts on the RSE project over
the summer, and the Model-based Embedded Robotic Sys-
tems Group at MIT for their input and feedback throughout
the development process, especially Erez Karpas and Pedro
Santana for all their help in answering our questions. The
authors would also like to thank Abhi Jain and the DARTS lab
at NASA JPL for their help and support in use of the ROAMS
software.

The research described in this paper was carried out at the
Jet Propulsion Laboratory under a contract with the National
Aeronautics and Space Administration, and at the California
Institute of Technology under a grant from the Keck Institute
for Space Studies.

REFERENCES
[1] P. P. Nayak, D. E. Bernard, G. Dorais, E. B. G.

J. B. Kanefsky, E. B. Gamble, B. Kanefsky, J. Kurien,
W. Millar, N. Muscettola, K. Rajan, N. Rouquette,
Y. wen Tung, B. D. Smith, and W. Taylor, “Validating
the ds1 remote agent experiment,” 1999.

[2] N. Muscettola, P. P. Nayak, B. Pell, and B. C. Williams,
“Remote agent: To boldly go where no ai system has
gone before,” 1998.

[3] D. Brown, “NASA’s deep impact produced deep re-
sults,” http://www.nasa.gov/mission pages/deepimpact/
media/deepimpact20130920f.html, 2013.

[4] NASA Jet Propulsion Laboratory, “JPL — Missions
— Deep Impact – EPOXI,” http://www.jpl.nasa.gov/
missions/deep-impact-epoxi, 2014.

[5] Wikipedia, “Huygens (spacecraft) – wikipedia, the free
encyclopedia,” http://en.wikipedia.org/wiki/Huygens
(spacecraft), 2014.

9

Figure 13. ROAMS: Habitual layer plans path around unexpected obstacle.

Figure 14. ROAMS: Habitual layer reports to deliberative layer that power constraint cannot be met.

Figure 15. ROAMS: After motor failure, deliberative layer fails up to human.

10

Figure 16. Pioneer 3-DX: Habitual layer plans path around unexpected obstacle.

Figure 17. Pioneer 3-DX: Habitual layer reports to deliberative layer that power constraint cannot be met.

Figure 18. Pioneer 3-DX: After motor failure, deliberative layer fails up to human.

11

[6] I. Nesnas, A. Wright, M. Bajracharya, R. Simmons,
T. Estlin, and W. S. Kim, “Claraty: An architec-
ture for reusable robotic software,” in SPIE Aerosense
Conference, 2003.

[7] I. A. Nesnas, “Claraty: A collaborative software for ad-
vancing robotic technologies,” in Proceedings of NASA
Science and Technology Conference, vol. 2, 2007.

[8] S. Chien, R. Sherwood, D. Tran, B. Cichy, G. Ra-
bideau, R. Castano, A. Davis, D. Mandl, B. Trout,
S. Shulman, and D. Boyer, “Using autonomy flight
software to improve science return on earth observing
one,” Journal of Aerospace Computing, Information,
and Communication, vol. 2, no. 4, pp. 196–216, 2005.

[9] B. C. Williams, M. D. Ingham, S. H. Chung, and
P. H. Elliott, “Model-based programming of intelligent
embedded systems and robotic space explorers,” in
Proceedings of the IEEE Special Issue on Modeling and
Design of Embedded Software, vol. 91, no. 1, 2003, pp.
212–237.

[10] G. A. Horvath, M. D. Ingham, S. H. Chung, O. B.
Martin, and B. Williams, “Practical application of
model-based programming and state-based architec-
ture to space missions,” in Proceedings of the IEEE
International Conference on Space Mission Challenges
for Information Technology, 2006.

[11] M. Ono and B. C. Williams, “An efficient motion
planning algorithm for stochastic dynamic systems with
constraints on probability of failure,” in Proceedings
of the Twenty-Third AAAI Conference on Artificial
Intelligence (AAAI-08), 2008.

[12] M. Ono, “Robust, goal-directed plan execution with
bounded risk,” Ph.D. dissertation, Massachusetts Insti-
tute of Technology, 2012.

[13] L. Blackmore, “Robust execution for stochastic hybrid
systems,” Ph.D. dissertation, Massachusetts Institute of
Technology, 2007.

[14] M. Ono, B. Williams, and L. Blackmore, “Probabilistic
planning for continuous dynamic systems,” Journal of
Artificial Intelligence Research, vol. 46, pp. 449–515,
2013.

[15] C. Jewison, B. BcCarthy, D. Sternberg, C. Fang, and
D. Strawser, “Resource aggregated reconfigurable con-
trol and risk-allocativepath planning for on-orbit assem-
bly and servicing of satellites,” in Proceedings of the
AIAA Guidance, Navigation, and Control Conference.
AAAI, 2014.

[16] M. Ono, W. Graybill, and B. C. Williams, “Risk-
sensitive plan execution for connected sustainable
home:,” in Proceedings of the 4th ACM Workshop On
Embedded Systems (BuildSys), 2012.

[17] L. Blackmore, H. Li, and B. Williams, “A probabilistic
approach to optimal robust path planning with obsta-
cles,” in American Control Conference, 2006. IEEE,
2006, pp. 7–pp.

[18] M. Ono and B. C. Williams, “Iterative risk allocation:
A new approach to robust model predictive control with
a joint chance constraint,” in Proceedings of 47th IEEE
Conference on Decision and Control, 2008.

[19] M. Ono, “Joint chance-constrained model predictive
control with probabilistic resolvability,” in Proceedings
of American Control Conference, 2012.

[20] P. H. R. Q. e Assis Santana and B. C. Williams,
“Chance-constrained consistency for probabilistic

temporal plan networks,” in Proceedings of the
Twenty-Fourth International Conference on Automated
Planning and Scheduling (ICAPS). AAAI, 2014.

[21] C. Fang, P. Yu, and B. C. Williams, “Chance-
constrained probabilistic simple temporal problems,” in
Proceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence. AAAI, 2014.

[22] D. Wang and B. C. Williams, “tburton: A divide and
conquer temporal planner,” Submitted to AAAI-15.

[23] M. Ono, L. Blackmore, and B. C. Williams, “Chance
constrained finite horizon optimal control with noncon-
vex constraints,” in Proceedings of American Control
Conference, 2010, pp. 1145–1152.

[24] L. Blackmore, M. Ono, and B. C. Williams, “Chance-
constrained optimal path planning with obstacles,”
IEEE Transactions on Robotics, vol. 27, no. 6, pp.
1080–1094, 2011.

[25] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Syn-
thesis of control protocols for autonomous systems,”
vol. 1, no. 1, 2013, pp. 21–39.

[26] S. Karaman and E. Frazzoli, “Sampling-based al-
gorithms for optimal motion planning,” CoRR, vol.
abs/1105.1186, 2011.

[27] M. Quigley, K. Conley, B. P. Gerkey, J. Faust,
T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng,
“ROS: an open-source robot operating system,”
in ICRA Workshop on Open Source Software, 2009,
http://www.willowgarage.com/sites/default/files/icraoss09-
ROS.pdf.

[28] C. Crick, G. Jay, S. Osentoski, and O. C. Jenkins,
“Ros and rosbridge: Roboticists out of the loop,”
in Proceedings of the Seventh Annual ACM/IEEE
International Conference on Human-Robot Interaction,
ser. HRI ’12. Boston, Massachusetts, USA: ACM,
2012, pp. 493–494, iSBN: 978-1-4503-1063-5.

[29] S. Jurić-Kavelj, “ROSARIA - ROS Wiki,” http://wiki.
ros.org/ROSARIA, 2014.

[30] J. Löfberg, “YALMIP : A toolbox for modeling and op-
timization in MATLAB,” in Proceedings of the CACSD
Conference, Taipei, Taiwan, 2004.

[31] IBM Corporation, “IBM ILOG CPLEX Optimizer,”
http://www-01.ibm.com/software/commerce/
optimization/cplex-optimizer, 2014.

[32] Gurobi Optimization, Inc., “Gurobi optimizer reference
manual,” http://www.gurobi.com, 2014.

[33] M. Ozcelikors, “Matlab-ros-interface ”a graphical inter-
face that talks between matlab and ros”,” https://github.
com/mozcelikors/Matlab-Ros-Interface, 2014.

[34] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Mo-
tion Planning Library,” IEEE Robotics & Automation
Magazine, vol. 19, no. 4, pp. 72–82, December 2012,
http://ompl.kavrakilab.org.

[35] S. Hellegouarch, “ws4py - A WebSocket package for
Python (release 0.3.5),” https://ws4py.readthedocs.org/
en/latest, 2014.

[36] A. Jain, J. Balaram, J. Cameron, J. Guineau, C. Lim,
M. Pomerantz, and G. Sohl, “Recent developments in
the roams planetary rover simulation environment,” in
Aerospace Conference, 2004. IEEE, 2004.

[37] Adept MobileRobots, “MobileSim - MobileRobots
Research and Academic Customer Support (release

12

0.7.3),” http://robots.mobilerobots.com/wiki/
MobileSim, 2014.

BIOGRAPHY[

Catharine L. R. McGhan is cur-
rently a postdoctoral scholar at the Cal-
ifornia Institute of Technology. Her
research interests include intelligent
systems, human-robot interaction, and
space robotics. Dr. McGhan received
her B.S. and M.S. degrees in Aerospace
Engineering in 2004 and 2006, respec-
tively, from the University of Mary-
land at College Park, and a Ph.D. in

Aerospace Engineering from the University of Michigan in
Ann Arbor in 2014.

Romain Serra is a doctoral scholar
under Dr. Arzelier and Dr. Rondepierre
at the Université de Toulouse where
he performs research and development
on orbital collision avoidance for the
Laboratoire d’Analyse et d’Architecture
des Systèmes at the Centre National de
la Recherche Scientifique (LAAS-CNRS).
His research interests include optimal
control, chance-constrained optimiza-

tion, and spaceflight dynamics. Romain received a B.S. in
Pure Mathematics in 2010 from the Université de Toulouse,
and an M.S. in Aerospace Engineering in 2012 from the
University of Michigan in Ann Arbor. He also earns a
Diplôme d’ingénieur from the ISAE-Supaéro Graduate Pro-
gram obtained in 2012 in Toulouse.

Michel D. Ingham is the supervisor of
the System Architectures and Behaviors
group, in the Flight Systems Engineering
section at the NASA Jet Propulsion Lab-
oratory. Since he joined JPL in 2003,
he has worked as a software systems
engineer and architect on a variety of
projects, including the proposed Moon-
Rise robotic lunar sample return mis-
sion, the Mars Science Laboratory rover

mission, and the Altair lunar lander. His research interests
include model-based methods for systems and software en-
gineering, software architectures, and spacecraft autonomy.
Dr. Ingham received his Sc.D. and S.M. degrees from MIT’s
Department of Aeronautics and Astronautics, and his B.Eng.
in Honours Mechanical Engineering from McGill University.

Masahiro Ono is a Research Technol-
ogist in the Robotic Controls and Esti-
mation Group. He is particularly inter-
ested in risk-sensitive planning/control
that enables unmanned probes to reli-
ably operate in highly uncertain environ-
ments. His technical expertise includes
optimization, path planning, robust and
optimal control, state estimation, and
automated planning and scheduling. He

earned Ph.D. and S.M. degrees in Aeronautics and Astronau-
tics as well as an S.M. degree in Technology and Policy from
MIT, and a B.S. degree in Aeronautics and Astronautics from
the University of Tokyo.

Tara Estlin is currently the Technical
Group Supervisor of the Machine Learn-
ing and Instrument Autonomy group.
She has over 15 years of experience in
developing robotic autonomy software.
A primary goal of her technology efforts
is to apply data analysis, machine learn-
ing and automated planning techniques
to support autonomous spacecraft op-
erations. Tara is currently leading the

AEGIS Project, which is providing intelligent targeting tech-
nology for remote sensing instruments on the Mars Explo-
ration Rover (MER) mission Opportunity rover and the Mars
Science Laboratory (MSL) mission Curiosity rover. AEGIS
was awarded the 2011 NASA Software of the Year award.
For the past ten years, she also has been a rover driver for
the MER Mission operations team. Tara received her B.S. in
Computer Science from the Tulane University and her M.S.
and Ph.D. in Computer Science from the University of Texas
at Austin.

Richard M. Murray (F’04) received
the B.S. degree in Electrical Engineering
from California Institute of Technology
in 1985 and the M.S. and Ph.D. degrees
in Electrical Engineering and Computer
Sciences from the University of Califor-
nia, Berkeley, in 1988 and 1991, respec-
tively. He is currently the Thomas E. and
Doris Everhart Professor of Control and
Dynamical Systems and Bioengineering

at Caltech. Murray’s research is in the application of feed-
back and control to networked systems, with applications in
biology and autonomy. Current projects include analysis and
design biomolecular feedback circuits; specification, design
and synthesis of networked control systems; and novel archi-
tectures for control using slow computing.

Brian C. Williams received his S.B.,
S.M and Ph.D. from MIT in Com-
puter Science and Electrical Engineer-
ing in 1989. He pioneered multiple
fault, model-based diagnosis in the 80’s
through the GDE and Sherlock sys-
tems at the Xerox Palo Alto Research
Center, and model-based autonomy in
the 90’s through the Livingstone model-
based health management and the Bur-

ton model-based execution systems. At the NASA Ames
Research Center from 1994 to 99 he formed the Autonomous
Systems Area, and co-invented the Remote Agent model-
based autonomous control system, which received a NASA
Space Act Award in 1999. He was a member of the NASA
Deep Space One probe flight team, which used remote agent
to create the first fully autonomous, self-repairing explorer,
demonstrated in flight in 1999. Prof. Williams’ research
concentrates on model-based autonomy – the creation of
long-lived autonomous systems that are able to explore, com-
mand, diagnose and repair themselves using fast, common-
sense reasoning. Current research focuses on model-based
programming and cooperative robotics.

13

