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Abstract

Noise is indispensible to key cellular activities, including gene expression coordination
and probabilistic differentiation. Stochastic models, such as the chemical master equation
(CME), are essential to model noise in the levels of cellular components. In the CME
framework, each state is associated with the molecular counts of all component species,
and specifies the probability for the system to have that set of molecular counts. Ana-
lytic solutions to the CME are rarely known but can bring exciting benefits. For instance,
simulations of biochemical reaction networks that are multiscale in time can be sped up
tremendously by incorporating analytic solutions of the slow time-scale dynamics. Ana-
lytic solutions also enable the design of stationary distributions with properties such as
the modality of the distribution, the mean expression level, and the level of noise. One
way to derive the analytic steady state response of a biochemical reaction network was re-
cently proposed by (Mélykuti et al. 2014). The paper recursively glues simple state spaces
together, for which we have analytic solutions, at one or two states.

In this work, we explore the benefits and limitations of the gluing technique proposed
by Meélykuti et al., and introduce recursive algorithms that use the technique to solve for
the analytic steady state response of stochastic biochemical reaction networks. We give
formal characterizations of the set of reaction networks whose state spaces can be obtained
by carrying out single-point gluing of paths, cycles or both sequentially. We find that the
dimension of the state space of a reaction network equals the maximum number of linearly
independent reactions in the system. We then characterize the complete set of stochastic
biochemical reaction networks that have elementary reactions and two-dimensional state
spaces. As an example, we propose a recursive algorithm that uses the gluing technique
to solve for the steady state response of a mass-conserving system with two connected
monomolecular reversible reactions. Even though the gluing technique can only construct
finite state spaces, we find that, by taking the size of a finite state space to infinity, the steady
state response can converge to the analytic solution on the resulting infinite state space.
Finally, we illustrate the aforementioned ideas with the example of two interconnected
transcriptional components, which was first studied by (Ghaemi and Del Vecchio 2012).

1 Introduction

There are two approaches to modeling the time evolution of a spatially homogeneous mixture of
molecular species that interact through a set of known chemical reactions [1]. The deterministic
formulation specifies the time-rates-of-change of the molecular concentrations of component
species with a set of coupled ordinary differential equations and assumes continuous variations
in the molecular concentrations [2]. The stochastic formulation considers the time evolution as
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a Markovian random walk in the state space of molecular populations, which is governed by
a set of differential-difference equations [2|. Although the deterministic approach is adequate
in many cases, its assumption that a chemical reaction system evolves deterministically and
continuously is invalid because the process is unpredictable in nature and molecular populations
are integers [3]. There are a number of biochemical processes for which stochastic models must
be used [4]. For instance, many cellular constituents are present in small numbers and stochastic
fluctuations in their copy numbers are significant [5, 6]. In addition, stochastic fluctuations in
the levels of cellular components are essential to some biological processes, including a variety
of probabilistic differentiation strategies [7, 8].

The chemical master equation (CME) is a stochastic model that describes how the probabil-
ity distribution of the molecular population of a chemically reacting system varies as a function
of time and does not require the assumption of large molecular counts [3, 9]. The CME depicts
a continuous-time Markov jump process whose state space comprises possible combinations of
molecular counts of each component species [10]. However, finding transient and stationary
solutions to the CME for general reaction network topologies is still an open question mainly
because the number of states increases exponentially with the number of component species
[12, 13]. Most commonly, we use Monte Carlo algorithms such as stochastic simulation algo-
rithm (SSA) to approximate the solution to the CME [1, 2]. However, the computational cost
of SSA can become enormous when there are numerous reactions present in the system, and the
method does not guarantee error bounds on the approximate solution [12]. Analytic solutions
to the CME are generally unknown but can bring exciting benefits. For example, simulations
of biochemical reaction networks that are multiscale in time can be sped up tremendously by
incorporating analytic solutions of the slow time-scale dynamics [11]. Exact stationary solutions
also enable accurate analysis of the effect of parameter values on the stationary behavior of a
reaction system [11].

The analytic solutions of the stationary distributions of the CME are difficult to find, except
for the simplest biochemical reaction networks with particular initial conditions [13]. Examples
of biochemical systems with known stationary distributions include closed (i.e. mass-conserving,
[14]) linear reaction systems with multinomial initial distributions (|15, 16]) and open linear
reaction systems with Poisson initial distributions ([17]).

Mélykuti et al. ([11, 19]) recently proposed a technique to determine stationary distributions
of stochastic biochemical reaction networks whose state spaces can be obtained by gluing two
finite, irreducible (i.e. any state can be reached from any other state [25]) state spaces at one or
two vertices. Given two continuous-time Markov jump processes with finite, irreducible state
spaces and known stationary distributions, if exactly one state from each state space is the
same, then the resulting state space obtained by gluing the two state spaces at the identical
state naturally gives a continuous-time Markov jump process. Reference [11] finds that the
stationary distribution on the combined state space is a constant multiple of the equilibria of
the single Markov jump processes. When gluing at two vertices, the stationary distribution
on the combined state space is hard to obtain in general, but there is a special case when the
resulting stationary distribution is a constant multiple of the equilibria of the single Markov
jump processes [19].

In principle, the stationary distribution of a continuous-time Markov jump process on a
finite, irreducible state space is the left null vector of the transition rate matrix [10]. How-
ever, the gluing technique provides an alternative method that solves stationary distributions
analytically by constructing more complex state spaces from simple ones [11]. In systems and
synthetic biology, it is a central yet generally unsolved problem to predict the dynamic behavior
of a biological network from that of its constituent modules [20, 21, 22, 23]. The development
of the gluing technique can potentially contribute to solving this problem [19]. In addition, the
gluing technique makes it possible to design recursive algorithms that computes the stationary
distribution of a continuous-time Markov jump process from the stationary distributions of
small components of the state space, which is potentially quicker than pure algebraic manipu-
lations that find the left null vector of the transition rate matrix. To the best of our knowledge,
gluing state spaces of Markov processes together is an unusual idea that has been rarely studied



in probability theory.

In this paper, we explore the benefits and limitations of the gluing technique proposed
by Meélykuti et al., and introduce recursive algorithms that use the technique to solve for the
analytic stationary solution of stochastic biochemical reaction networks. Specifically, we give
formal characterizations of the set of reaction networks whose state spaces can be obtained by
carrying out single-point gluing of paths, cycles or both sequentially. We find that the dimension
of the state space of a reaction network equals the maximum number of linearly independent
reactions in the system. We then characterize the complete set of stochastic biochemical reaction
networks that have elementary reactions and two-dimensional state spaces. As an example, we
propose a recursive algorithm that uses the gluing technique to solve for the stationary solution
of a mass-conserving system with two connected monomolecular reversible reactions. Even
though the gluing technique can only construct finite state spaces, we find that, by taking the
size of a finite state space to infinity, the steady state response can converge to the analytic
solution on the resulting infinite state space. Finally, we illustrate the aforementioned ideas
with the example of two interconnected transcriptional components, which was first studied by
(Ghaemi and Del Vecchio 2012).

The remainder of this paper is organized as follows. In Section 2, we first introduce the
CME, the relationship between continuous-time Markov jump processes and graph theory, the
gluing techniques proposed in references [11, 19], and relevant notations and definitions in
graph theory. Then Section 3 presents three propositions and proofs that characterize graphs
which can be obtained by gluing paths, cycles, or both, at one vertex sequentially. In Section
4, we first classify reversible, elementary reactions whose state spaces are in 2-dimensional
space and demonstrate the gluing technique with simple chemical reaction systems. We then
propose a recursive algorithm that uses the gluing technique to solve the stationary distribution
of two interconnected transcriptional components and provide a method that truncates the
infinite state space with a certificate of accuracy for an approximate solution. Finally, Section
5 summarizes the main contributions of the paper and points to future work.

2 Background

2.1 The chemical master equation

The CME describes the time evolution of a chemically reacting system as a Markovian random
walk in the space of the molecular populations, where each state gives the current number
of molecules of every component species [2, 9]. The CME is essentially a set of differential-
difference equations which govern how the probability distribution of the molecular population
evolves as a function of time in the system [3, 9]. There is one ordinary differential equation
per state of the system, which specifies the rate of change of the probability of the state at each
instant of time to be equal to the difference between a sum comprising inflow states and a sum
comprising outflow states [13].

Consider a system with n chemical species Sy, -+ ,Sy,, which undergo m possible chemical
reactions Ry, -, Ry, in a well-stirred solution of fixed volume and temperature. Let Pr(X, ¢ |
Xo,to) be the probability of the Markov jump process being in state X € Z% at time ¢ given
that it was in state Xo € ZZ at some time to < ¢. The state X gives the number of molecules
of each species. For each reaction R;, denote the propensity function by a;(X), and the change-
of-state vector by v;. Then the CME (]9]) is given by

a m m
57 DYt [ Xo, 1) = D ai(X =) Pr(X — v, t | Xo.to) — Y a;(X) Pr(X,t| Xo,to).
j=1 j=1



2.2 Relationship between continuous-time Markov jump processes and graph
theory

We consider reversible chemical reactions in the rest of the paper. The state space of the
continuous-time Markov jump process described by the CME naturally gives an undirected
graph: vertices are states, and an edge exists between a pair of vertices if and only if there
exists a reversible reaction that allows transition between the two corresponding states.
For instance, a closed system with reaction
Ry
X+ &y == &y, (1)

Ry
obeys the conservation relation X; + X9 + 2X3 = C, where C' is a constant that is determined
by the number of molecules of each species at the initial time [14]. If the initial condition is
(X1, X2, X3)T = (1,1,2)T at time tg, then the state space is

YKy 4Ky Kb
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and the corresponding graph is a path of length 3 (Figure 1).
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Figure 1: A path of length 3.

If the initial condition is (X7, Xo, X3)* = (4,2,0)T, then the state space is
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and the corresponding graph is a path of length 2.

2.3 The stationary distribution of a continuous-time Markov jump process
glued together from two state spaces at one or two vertices

Reference [11] introduces a technique for solving the stationary distribution of a continuous-
time Markov jump process by gluing the state spaces of two finite, irreducible, continuous-time
Markov jump processes at exactly one vertex. Reference [19] studies the technique in the case
of gluing two such Markov processes at two vertices simultaneously. In both papers, vertices
are glued together if and only if they correspond to the same state. No existing literature has
studied gluing at more than 2 vertices.

Reference [11] glues the state spaces of two finite, irreducible, continuous-time Markov jump
processes at one vertex, while keeping all the other vertices distinct. Without introducing any
new jumps or losing any jumps in either Markov process, a new Markov process is naturally
identified on the combined state space. Consider two finite, irreducible, continuous-time Markov
jump processes A and B. Suppose that process A has known equilibrium &4 on states indexed
by {1,2,---,r}, and process B has known equilibrium distribution ¢B on states indexed by
{1,2,---,s}. Without loss of generality, we glue the state spaces of processes A and B at
state r of process A and state 1 of process B. Keeping the indices of process A the same and
increasing the indices of process B by r — 1, reference [11] derives the equilibrium distribution
of the new Markov process

Cefed, ifie{1,2,---,r—1},
&= C&lel,  ifi=r, (2)
ceA ETH, ifee{r+1,r+2,---,r+s—1},
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where C' = (¢4 + ¢B — ¢4¢P)~1 is a normalizing constant.

Reference [19] studies the gluing technique in the case of gluing two finite, irreducible,
continuous-time Markov jump processes at two vertices simultaneously. With the same setting
as gluing at one vertex, we now glue state r — 1 of process A and state 1 of process B together,
and state r of process A and state 2 of process B together. All the other states in processes A
and B are distinct. The labeling of the states does not affect the result, and the glued vertices
are not necessarily consecutive in label. In general, deriving the equilibrium distribution of the
new Markov process is complicated. However, keeping the indices of process A the same and
increasing the indices of process B by r — 2, reference [19] proves that if the proportionality
condition

A B
r—1 _ 571

&

is satisfied, then the stationary distribution on the combined state space is

(3)

Cﬁff?a ifie{l,Q’...’T_Q},
é‘. — O§f71§137 le =7r — 1’ (4)
") ogrP =gt e, iti=m,

CELLER 1o, ific{r+1,r4+2--,r+s—2},

where C' = [, + &P — ¢ (&P +§QB)]_1 = [, +eP Pt + 5;4)}_1 is a normalizing
constant.

2.4 Relevant notations and definitions in graph theory

We introduce some notational conventions and definitions in graph theory based on [26], which
will be useful in Section 3. We write [n] to represent the set {1,2,---,n}. Let X¥) = {A C
X : |A| = k} be the set of k-element subsets of X. For vertices u # v, let uv = {u,v} = vu. In
other words, we consider undirected graphs. The endvertices of an edge uv are u and v.

Definition 1. A graph is an ordered pair (V, E) where V # () is a finite set and E C V(2.

Definition 2. In a graph G = (V, E), the vertex set is V(G) and the edge set is E(G). Vertices
u and v are adjacent if uwv € E(G). A vertex v and an edge e are incident if v is an endvertex
of e. The degree of v, dg(v), is the number of distinct vertices that are adjacent to v. Vertex v
is isolated if dg(v) = 0.

Definition 3. A graph H is a subgraph of a graph G, written H C G, if V(H) C V(G) and
E(H) C E(G).

Definition 4. A path of length n, called an n-path, is a graph with vertex set {v; : i € [n + 1]}
and edge set {v;vi41 : @ € [n]}. By convention, a 0-path is a vertex.

Definition 5. A cycle of length n, called an n-cycle, is a graph with vertex set {v; : i € [n]}
and edge set {v;v;41 : i € [n]} with v,vn11 = Vyv1.

Definition 6. A walk of length n in a graph G is a sequence vy, ve, - -+ , Vp+1 of (not necessarily
distinct) vertices such that v;v;,41 € E(G) for each i € [n]. The walk is closed if v,41 = v1.

3 Characterizing graphs that can be obtained by gluing paths,
cycles, or both, at one vertex sequentially

In this section, we use graph theory to characterize the set of state spaces that can be obtained
by gluing paths, cycles, or both, at one vertex sequentially. There are two main reasons why
the results are interesting. First, the stationary distribution of a continuous-time Markov jump
process on a state space that is obtained by gluing two finite, irreducible state spaces at one
state can be easily determined by taking a ratio of the equilibria of the individual Markov



processes. Second, analytic solutions are known for the stationary distributions on path-like
and circular state spaces [10, 27, 28].

We find that (i) graphs obtained by gluing paths at one vertex sequentially are trees, (ii)
graphs obtained by gluing cycles at one vertex sequentially are “trees of cycles”, and (iii) graphs
obtained by gluing paths and cycles at one vertex sequentially are “trees of trees and cycles”.
We give formal propositions and proofs in this section.

We only consider graphs that are undirected and are in 2-dimensional space. A graph
is connected if any two distinct vertices are joined by a path. Consider a connected graph
G = (V, F) and a subgraph H C G. For our purposes, we define the graph G — H as the graph
obtained by first deleting edges of H from G and then deleting isolated vertices of the remaining
graph (V, E\ E(H)). Figure 2 gives an example of deleting a subgraph from a graph. Similarly,
for a connected graph G = (V, E) on three or more vertices and any of its edges e = wv, the
graph G — e is obtained by first deleting edge e from G and then removing u (or v) if it becomes
an isolated vertex in the remaining graph (V, E \ {e}).

NN
SO
A A

(i) (ii) (iii)

Figure 2: Subfigure (i) is an example of a graph G with a subgraph H (in red) being a cycle.
To get G — H, first delete the edges of H from G (Subfigure (ii)), and then remove the isolated
vertices from the remaining graph (Subfigure (iii)).

Definition 7 ([26]). A tree is an acyclic connected graph.

Proposition 1. A graph can be obtained by gluing paths at one vertex sequentially if and only
if the graph is a tree.

Remark. Figure 3 gives an example of a tree and one way to construct the graph by gluing
paths at one vertex sequentially.
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Figure 3: (i) An example of a tree. (ii) One way to construct the tree by gluing paths at one
vertex sequentially. Updated graphs are in black. New components are in blue. Red vertices
are the vertices at which graphs are glued together.



Proof. We first show that a graph that can be obtained by gluing paths at one vertex sequentially
is a tree. It is apparent that any graph that is obtained by gluing paths at one vertex sequentially
is connected. This statement follows from a simple inductive proof on the number of paths that
we glue together. Hence, we only need to prove that any graph that is obtained by gluing
paths at one vertex sequentially is acyclic. We assume by contradiction that gluing paths
Py, Py, -+, P, at one vertex sequentially gives a graph G that contains a cycle, say C. Then
{P1,Py,---, P} N C is a set of subpaths and vertices, and cycle C can be obtained by gluing
these subpaths at one pair of endvertices (of different subpaths) sequentially. However, this
contradicts the fact that gluing two paths at their common endvertex always gives a path.
Figure 4 is an example that illustrates the argument.
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(i) (ii) (iii)

Figure 4: Subfigure (i) is an example of a graph that contains a cycle. If Subfigure (i) could
be obtained by gluing paths at one vertex sequentially as shown in Subfigure (ii), then the
cycle could be obtained by gluing subpaths at one pair of endvertices (of different subpaths)
sequentially. However, this contradicts the fact that gluing two paths at their common endvertex
always gives a path.

Conversely, we now show that any tree can be obtained by gluing paths at one vertex
sequentially. A tree with one vertex is simply a vertex, and it can be obtained by gluing two
0-paths together. For the inductive step, let n be any positive integer, and suppose that the
claim holds for all trees on n or fewer vertices. Consider any tree T with n + 1 > 2 vertices.
Recall that any tree with at least two vertices has at least two leaves [26]. Let vertex v be a
leaf of T (i.e. dp(v) = 1), and let e be the only edge that is incident on v. By hypothesis, T is
connected, so any two distinct vertices x,y € V(T —e) C V(T) are connected by a path in T,
say P. The vertex v is not an endvertex of P and dp(v) = 1, so vertex v and edge e cannot be
on P. Hence, P is a path in T —e. Since T'—e C T and T is acyclic, it follows that T — e is
also acyclic. The graph T — e is also connected, so T' — e is a tree. But |T' — e| = n, so by the
induction hypothesis T'— e can be obtained by gluing paths at one vertex sequentially. But e
is a 1-path, and T can be obtained by gluing e and T — e at the only vertex that is adjacent
to v. Hence, T' can be obtained by gluing paths at one vertex sequentially. By induction, any
tree can be obtained by gluing paths at one vertex sequentially. O

Proposition 2. A graph can be obtained by gluing cycles at one vertex sequentially if and only
if the graph satisfies all of the following conditions:

(i) the graph is connected,
(i) every vertex has an even degree, and

(iii) any pair of cycles has at most one common vertez.

Remark. We call such a graph a “tree of cycles”. Figure 5 gives an example of a tree of cycles
and one way to construct the graph by gluing cycles at one vertex sequentially.

Proof. We first show that a graph that can be obtained by gluing cycles at one vertex sequen-
tially satisfies conditions (i)—(iii) by induction on the number of cycles that we use to construct
such a graph.
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Figure 5: (i) An example of a tree of cycles. (ii) One way to construct the graph by gluing
cycles at one vertex sequentially.

For the base case, consider any cycle. A cycle is connected and every vertex has degree 2.
Condition (iii) is trivially true.

For the inductive step, let k be any positive integer and we assume that gluing k or fewer
cycles at one vertex sequentially gives a graph that satisfies conditions (i)—(iii). Let G be a
graph that is obtained by gluing k cycles at one vertex sequentially. Let C be an arbitrary
cycle. Pick any vertex of G and C, say u, and glue G and C at vertex u. We name the new
graph G. We check that conditions (i)—(iii) hold for G.

(i) Since C' and G are connected graphs, it follows that G is connected.

(ii) We have dz(u) = dg(u) +do(u) = dg(u) + 2. For all v € V(G) \ {u}, dz(u) = dg(u).
But every vertex in G has an even degree (in ) and, for all w € V(C) \ {u}, we have
da(w) = do(w) = 2. Thus every vertex in G has an even degree (in G).

(iii) Consider any two distinct cycles Cy and Cs in G. If 01 C or Cy = C, then C1 and Cy
have at most one common vertex by construction of G. Otherwise, we have Cy, Cs C G,

and |[V(C1) NV (Cs)| < 1 by hypothesis. Hence, any pair of distinct cycles in G has at
most one common vertex.

By induction, any graph that can be obtained by gluing cycles at one vertex sequentially
satisfies conditions (i)—(iii).

We now prove the converse by induction on the number of cycles in a graph that satisfies
conditions (i)—(iii).

For the base case, we consider a graph H that contains exactly one cycle C and satisfies
conditions (i)(iii). We assume by contradiction that H is not a cycle. Then H — C'is a forest
(i.e. an acyclic graph). Every vertex of H — C has degree of the same parity as it does in H.
Every component (i.e. maximal connected subgraph) of H — C is a tree on at least two vertices,
so every component has two leaves. But every leaf has degree 1 by definition. This contradicts
our assumption that every vertex in H has an even degree.

For the inductive step, let k be any positive integer, and suppose that any graph that has
exactly k or fewer cycles and satisfies conditions (i)—(iii) can be obtained by gluing cycles at
one vertex sequentially. Let H be a graph that satisfies conditions (i)—(iii) and contains exactly
k + 1 cycles. Pick any cycle C C H. Without loss of generality, suppose that H — C consists
of components O1,03, - - , O, for some positive integer r. We check that each component O;
(1 <i < r) satisfies conditions (i)—(iii).

(i) Every component O; is connected by definition.
(ii) For every z € V(0;) \ V(C), doi(m) = dg(x). For every y € V(O;) N V(C), do,(y) =

dg(y) — 2. But every vertex in H has an even degree. Thus every vertex in O; has an
even degree (in O;).



(iii) Since H satisfies condition (iii) and O; C H, condition (iii) also holds for O;.

But O; C H and it has fewer cycles than H. By hypothesis, O; can be obtained by gluing
cycles at one vertex sequentially.

Since H is connected, every component of H — C shares at least one common vertex with
cycle C. We assume by contradiction that a component O; (1 < j < r) has at least two
vertices that are also on C. Suppose that C = z129 -+ zs for some integer s > 3. Pick
1 <p < g < ssuch that 2z, 2y € O;j and ¢ —p € Z>0 is & minimal number. Since O; is
connected, there exists a z,-z, path (i.e. a path with endvertices 2, and z;) in Oj, say P.
Cycle C contains two zp—%4 paths. If the two paths are of different lengths, then let P be the
shorter one and we have V(P) N V(0;) = {2, 2,}. If the two z, 2, paths are of the same
length, then V(C) N V(O;) = {#p, 24} and pick either of the z,-z, paths as P. In either case,
V(P)N V(P) = {2p, z4}. By our definition of removing subgraphs from a graph, component O;
has at least 3 vertices. Since edge z,z4 ¢ Oj, there must exist some z € V(0;) \ {2, zq} such
that z € V(P). Thus P has length at least 2. But P has length at least 1, and E(P) E(P) =0.
Therefore, P U P has length at least 3. Hence, P U P is a cycle in H that is different from ¢
and {2y, 2z} C V(P U P)NV(C). This constradicts our assumption that any pair of distinct
cycles in H has at most one common vertex.

Hence, every component O; (1 <i < r) has exactly one common vertex with cycle C. But
every component O; can be obtained by gluing cycles at one vertex sequentially. Hence, H can
be obtained by gluing cycles at one vertex sequentially. By induction, any graph that satisfies
conditions (i)—(iii) can be obtained by gluing cycles at one vertex sequentially. O]

Proposition 3. A graph can be obtained by gluing paths and cycles at one vertex sequentially
if and only if the graph satisfies all of the following conditions:

(i) the graph is connected, and

(i) every pair of cycles shares at most one common vertex.

Remark. We call such a graph a “tree of trees and cycles”. Figure 6 gives an example of a tree
of trees and cycles.

Figure 6: An example of a tree of trees and cycles.

Proof. We first show that a graph that can be obtained by gluing paths and cycles at one vertex
sequentially satisfies conditions (i) and (ii) by induction on the number of paths and cycles that
we use to construct such a graph.

We have two base cases: a path and a cycle. In both cases, the graph is connected and
condition (ii) holds trivially.

For the inductive step, let m and n be any nonnegative integers such that m +n > 1,
and suppose that any graph that is obtained by gluing m or fewer paths and n or fewer cycles
satisfies conditions (i) and (ii). Let G be any graph that is constructed by gluing m paths and
n cycles at one vertex sequentially. Let P be any path. Glue P and G at any vertex, say u.
We name the new graph G. Since P and G are connected graphs, it follows that G is also
connected. Since |V(P)NV(G)| =1 and P is a path, no cycle in G contains any edge on P.



Thus every cycle in G is a subgraph of G. But any two distinct cycles in G have at most one
common vertex (in G). Hence, condition (ii) holds in G. Now let C' be any cycle. Glue C' and
G at any vertex, say v. Let G be the new graph. Since C' and G are connected graphs, it follows
that G is also connected. Let C7 and Cs be any two distinct cycles in G. If Ci=CorCy=0C,
then V(C1) N V(Cy) < 1 by construction of G. Otherwise, since V(C) N V(G) = 1, we have
E(C)NE(G) =0, so {Cy,C2} C G. Hence, V(C1) NV (C3) <1 by the induction hypothesis.

By induction, any graph that is obtained by gluing paths and cycles at one vertex sequen-
tially satisfies conditions (i) and (ii).

We now prove the converse by induction on the number of cycles in a graph.

A connected graph that contains no cycles is a tree and satisfies condition (ii) trivially.
We have proved in Proposition 1 that any tree can be obtained by gluing paths at one vertex
sequentially.

For the inductive step, let k£ be any nonnegative integer, and suppose that any graph that
contains exactly k or fewer cycles and satisfies conditions (i) and (ii) can be obtained by gluing
paths and cycles at one vertex sequentially. Let H be a graph that satisfies conditions (i) and (ii)
and contains exactly k+ 1 cycles. Let C be any cycle in H. Without loss of generality, suppose
that H — C consists of components O1, O3, - , O, for some positive integer r. Components
are connected by definition. Every component O; (1 < ¢ < r) is a subgraph of H — C, so
O; has fewer cycles than H and condition (ii) holds for O; (1 < i < r). By hypothesis, O;
can be obtained by gluing paths and cycles at one vertex sequentially. Following a similar
argument as in the proof for Proposition 2, we can prove that every component O; has exactly
one common vertex with cycle C. Hence, H can be obtained by gluing paths and cycles at
one vertex sequentially. By induction, any graph that satisfies conditions (i) and (ii) can be
obtained by gluing paths and cycles at one vertex sequentially. O

4 Demonstration of the gluing technique

4.1 Reversible, elementary reactions with 2-dimensional state spaces

We define an elementary reaction in Definition 8 for the purposes of our study. We shall focus on
reversible, elementary reactions in closed systems in Section 4. We find that the topology of the
undirected graph that corresponds to the state space of such a reaction system is determined
by two factors: (i) the number of reversible reactions present, and (ii) the initial molecular
population.

Definition 8. Let 81,83, -+, S, be n chemical substances. A reaction of the form
181+ -+ anSp — 1S+ -+ BuSa, (5)
where «; and B; (i € {1,---,n}) are nonnegative integers, is an elementary reaction if all of

the following conditions hold
(i) > <2
(i) >2; 8 <2, and
(i) at most one of the sums equals to 2.
Remark. We do not consider reactions whose reactants and products are both second-order.
For instance, X'| + Xy == X5 + &, is not an elementary reaction for our purpose as it should

be regarded as an approximation to the reactions | + Xy == C == X'y + X', where C is a
complex species.
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4.1.1 One reversible reaction

There are three possible closed systems with exactly one reversible, elementary reaction, which
we list in Appendix A. The state spaces of these reactions are simply paths, the lengths of which
are determined by the initial molecular population. We first give the known results about the
stationary distributions on finite, path-like state spaces, and then discuss the advantages of our
recursive algorithm using the gluing technique in this case.

Reference [27] gives the stationary distribution of a continuous-time Markov jump process
whose state space is a finite path. Let N be a positive integer and consider a state space indexed
by {0,1,---, N} with transition rates p; from i toi+1 (i € {0,1,--- , N —1}) and ¢; from i to
i—1 (i €{1,2,---,N}). The stationary distribution (7,71, -+ ,mn)" is given by the relation
T = T H;;lo qf i - and the normalization equation Zf\; o™i = 1.

However, the gluing technique gives insight into the structure of the stationary distribution,
in addition to providing exact solutions. For any positive integer n, an n-path can be obtained
by gluing paths of lengths 1, 2, 4, 8, --- , 2leg2nI=1 4t one vertex sequentially and then gluing
a path of length n — 219827 A path of length n — 21°%27) can be obtained using a similar
gluing strategy. For example, the state space of reaction

Ry
22X, =— &, (6)

Kq

in a closed system with initial condition (X7, X2)T = (20,0)T is a 10-path with states (20 —
22, 2)T for all x € {1,---,10}. Figure 7 illustrates one way to construct the graph.

Figure 7: A demonstration of the gluing technique by gluing paths at one vertex sequentially.
Updated graphs are in black. New components are in blue. Red vertices are the vertices at
which graphs are glued together.

4.1.2 Two reversible reactions

There are eight possible closed systems with exactly two reversible, elementary reactions, which
we list in Appendix B. The state spaces of these reactions are symmetrical, triangular grids,
which we will illustrate using the example of a mass-conserving system with two connected
monomolecular reversible reactions

1 3
Xl T2 XQ T4 XS' (7)

In addition, we propose a recursive algorithm that constructs symmetrical, triangular grids from
such grids of smaller sizes. We also use Reaction System 7 together with the law of conservation
of mass ([14]) to illustrate the computation of the stationary distributions on state spaces that
are symmetrical, triangular grids.

Consider Reactions 7 in a closed system with the conservation law that the total number
of X molecules, T' = X; + X + X3, is constant [14]. The corresponding undirected graphs
are symmetrical, triangular grids (Figure 8), the sizes of which depend on the initial condition.
For ease of representation, we draw graphs using right angles, but all that matters is the
connectivity between the vertices. The smallest component of the graph that consists of both
of the reversible reactions in Equation 7 has an “L” shape. It turns out that a symmetrical,
triangular grid of any size can be constructed by sequential gluing of “L’-shaped components
at one or two vertices.

Nevertheless, the computational cost is at least a quadratic function of the number of “L’-
shaped components glued together. In addition, we need to check that the proportionality
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condition (Equation 3) holds every time we glue graphs at two vertices. In order to improve
the computational efficiency of calculating stationary distributions, we propose a recursive al-
gorithm for the cases when T is a power of 2 as shown in Figure 8. In general, for T' = n being
an arbitrary positive integer, we first use the recursive algorithm to build the state space of
the case T = 2U9g27) and then glue additional “L”-shaped components at one or two vertices
sequentially until we get the complete graph.

T=1 T=2 T=4

1 1 1
21_3‘ 2&: 2} iI
@) 4 4

*—0—90—90o

() (ii) [ L I
() (i) o (iii)' )
T=8
» » 3 »
l—o j»—« l—o j»—«
l. I !
oo o oo . o
'Y
I. ! l. o l.

(O] i (i) (i) (iv)

Figure 8: A demonstration of the gluing technique using grids whose smallest components are
“L”-shaped. Updated graphs are in black. New components are in blue. Red vertices are the
vertices at which graphs are glued together. In Subfigure (i) for T = 1 and Subfigure (ii) for
T = 2, vertices are labeled in green. In Subfigure (iii) for T' = 4 and Subfigure (iv) for T' = 8,
the blue edges are added one at a time.

We wrote a MAPLE (Waterloo Maple Inc.) code that takes logyT € Z>( as an input and
gives an output of the corresponding stationary distribution. The computation time of the code
is within a few seconds on a standard laptop.

Figure 9 gives an “L”-shaped component of the triangular-grid state space in which a vector
(w1, 29, 23)T indicates that there are 21 molecules of species X7, x5 molecules of species X», and
x3 =T — x1 — x2 molecules of species X3 in the system. The stationary distribution on such a

state space is
&1(z1,29,23) = (Pr(state 1), Pr(state 2), Pr(state 3))

Ko (x R3(T 8
- Cl(‘rlax2ax3) : |: 2.‘(61?1:_1)’1’ Hzgxii}; ’ ( )

where C1(x1,x9,x3) = % + 1+ % is a normalizing constant that depends on the

values of z; (i € {1,2,3}).
X1
state 1 | X2
X3,

kz(Xz+ 1) < > kixa

X1-1 k3(X2+1) Xi-1
state 2 X2+ 1 C X2 | state 3

X3 Ka(xs+1) \Xs+

Figure 9: An “L”-shaped component of a triangular-grid state space.

For Reaction System 7 with T' = 1, we have (z1,z2,23) = (1,0,0). Hence, the stationary
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distribution can be obtained by substituting the values of x; (i € {1,2,3}) into Equation 8.

To construct the stationary distribution of Reaction System 7 with T' = 2, we first calculate
the result in symbols and then substitute in (x1, 22, z3) = (2,0,0). As shown in Subfigure 8(ii),
we first glue two “L”-shaped components together at one vertex. The stationary distribution of
the new “L”-shaped component is & (z1 — 1,22+ 1, 23). According to Equation 2, the stationary
distribution of the combined state space keeps the ratios within the single state spaces. The
rescaling ratio for adding the new “L”-shaped component is

Ci(z1,22,23) - 1

Ci(z1 — 1,29 +1,23) - %

(9)

7"1(3017562,%3) =

Hence, the stationary distribution of Subfigure 8(ii), &2(x1,x2,x3), is a 5-vector obtained by
appending the rescaled probabilities of the two new vertices (i.e. the second and third entries
in the vector & (x; — 1,29 + 1,23) - 71(21, 22, 23)) to &1 (21, 22, 23) and then multiplying the
5-vector by a normalization constant Co(xz1, 22, x3).

Next, we glue another “L”-shaped component to the updated state space at two vertices
simultaneously (Subfigure 8(iii)). The stationary distribution of the new “L”-shaped component
is & (x1 — 1,229,253 +1). The proportionality condition (Equation 3) holds in this case, so
Equation 4 applies and the stationary distribution of the combined state space keeps the ratios
within the single state spaces. The rescaling ratio for the new “L’-shaped component is

k3(xg + 2)

ra(ws 1) (10)

ro(z1, T2, x3) = 11(71, T2, T3) -
Hence, the stationary distribution of Subfigure 8(iii), &3(x1,2,3), can be obtained by ap-
pending the rescaled probability of the new vertex (i.e. the third entry in the vector &;(x; —
1,290,253+ 1) - ro(x1, 2, x3)) to &a(r1, 22, z3) and then multiplying the 6-vector by a normaliza-
tion constant C3(x1,x9, x3). Finally, we compute the stationary distribution on the state space
in Subfigure 8(iii) by substituting (z1, z2, z3) = (3,0,0) into 3(x1, x2, x3).

The stationary distributions of Reactions 7 in a closed system with 7' =4 and T = 8 can be
found in the same recursive fashion. We note that the stationary distribution stays the same if
(i) we add a new edge between two existing vertices in a current state space, and (ii) Equation
3 holds. Thus, in step (iii) of the case when T' = 8, we add a 4-path in order to complete the
vertex set. In step (iv), Equation 3 holds for every new edge, so the stationary distribution of
Figure 8(iv) is the same as that of Figure 8(iii).

4.1.3 Three reversible reactions

There are three possible closed systems with 2-dimensional state spaces and exactly three
reversible, elementary reactions, which we list in Appendix C. For these reaction systems,
the smallest components that consist of all reactions are triangles. We note that the three
reversible, elementary reactions cannot be independent, and each reaction can be achieved by
combining the other two reactions. Otherwise, the stochiometric matrix has rank 3 and the
corresponding state space is naturally represented in 3-dimensional space.

Figure 10 gives the state spaces and the recursive gluing algorithm for a mass-conserving
system with reactions

Xl N XQ’ XQ N X?ﬂ X& N Xl’ (11)

when T'=1, 2, 4, and 8 respectively. In general, for T = n being an arbitrary positive integer,
we first use the recursive algorithm to build the state space of the case T' = 21°827) and then glue
additional triangular components at one or two vertices sequentially until we get the complete
graph.
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Figure 10: A demonstration of the gluing technique using grids whose smallest components are
triangles. Updated graphs are in black. New components are in blue. Red vertices are the
vertices at which graphs are glued. In Subgraph (iii) for T = 4 and Subgraph (iv) for T' = 8,
the blue edges are added one at a time.

4.2 Stationary distributions of two interconnected transcriptional compo-
nents

In this subsection, we study the stationary behavior of two interconnected transcriptional com-
ponents by applying a recursive algorithm that glues state spaces together sequentially at one
or two vertices. Specifically, we first model the cascade of two connected transcriptional com-
ponents by the CME [29]. We then provide a method that truncates the infinite state space
to a finite subset with a guarantee of accuracy for how closely the approximation matches the
true solution. Finally, we give the exact stationary solution of the CME as a function of the
reaction rate constants and the initial molecular population, which confirms the results in [29].

4.2.1 Interconnected transcriptional components and the CME

We first introduce the chemical reactions that are associated with the two interconnected tran-
scriptional components and give the corresponding CME [29].

Figure 11 (reproduced from reference [29]) illustrates a transcriptional component connected
to a downstream one. In the upstream component, a protein initiates a cascade which first
produces a transcription factor Z and then activates a reversible binding reaction between Z
and DNA binding sites P in the downstream component.

Upstream transcriptional component

Figure 11: Two interconnected transcriptional components. The figure is reproduced from [29].

Let C be the complex formed by Z and P. The chemical reactions described above are given
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by
==z zZ4+P2g, (12)
J Roft

where K, d, Kon and kog are reaction rates. Let P and C be the numbers of DNA binding sites
P and complexes C respectively. Since the total amount of DNA is conserved, the equation
P + C =T always holds, where T is a constant that is determined by the initial condition.

Assume that the initial condition of the reaction system is (C'(0), Z(0), P(0)) = (co, 20, Po)-
Then the conservation constant is given by T" = pg + ¢g. Let each state in the state space be a
2-vector (C, Z), and the corresponding number of DNA binding sites P is given by P =T — C.
Since there can be arbitrarily many transcription factors Z, the reaction system described by
Equation 12 has an infinite state space (Figure 12).
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Figure 12: (i) The infinite state space of two interconnected transcriptional components when
T = 3: expression and degradation of protein Z corresponds to moving up and down the state
space respectively; production and decomposition of complex C corresponds to moving right
and left respectively. (ii) The graph that is given naturally by the state space in (i).

For ease of calculation, we assume that the system has volume V = 1. Let Pr(c, z) be the
probability that the stochastic process is in state (c,z) at time ¢ given the initial condition
(C(0),Z(0)) = (co,20) at time t = 0. Each state (¢, z) in the state space contributes exactly
one linear ordinary differential equation to the CME, which is given by

dPr(c, z)

e kPr(c,z—1)4+0(z4+1)Pr(c,z+ 1) + kon(z+ 1)(T—c+1)Pr(c— 1,2+ 1)

+roi(c+ 1) Pr(c+ 1,2 = 1) = [k + 02 4+ £onz(T — ¢) + Kosic] Pr(c, 2).
(13)

4.2.2 Truncation of the infinite state space with guaranteed accuracy

We propose a truncation method that is inspired by the finite state projection (FSP) algorithm
([12]). We truncate the infinite space space of two interconnected transcriptional components
by imposing a maximum M € Zsg on Z, where the value of M is determined by the desired
level of accuracy of the approximate solution. Figure 13 gives an example of a truncated graph
when M = 2.

Suppose that € > 0 is the amount of acceptable error. Let 2 be the infinite state space and
Q¢ C Q be the finite truncated state space. We can choose the truncation bound M € Zvg
such that the total probability that the finite state approximation fails to capture (i.e. the total
probability accounted by Qf = Q\ Q) is at most €. In order to calculate the missing total
probability, we loop the states in € into one single state named wr, and states in 2§ into state
we. The transition rate from wy to we is the sum of the transition rates from Qf to . Similarly,
the reverse transition rate is the sum of the transition rates from Qf to 2. Figure 14 illustrates
looping the infinite state space into two states when T = 3.
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Figure 13: (i) The truncated state space of two interconnected transcriptional components when
M =2 and T = 3. (ii) The graph that corresponds to the truncated state space in (i).

Figure 14: Illustration of looping the infinite state space of two interconnected transcriptional
components into two states when T" = 3. The green component of the graph is the finite
subgraph that we want to study. The orange component of the graph accounts for small
probability in the stationary distribution and is the part that we want to discard.

For any T € Z~, the transition rate from wr to w. is k(T + 1), and the reverse transition
rate is 0(M + 1)(T + 1). The stationary probabilities of wf and w, are 65(MH)

K
(M+D+r S(M+T)+k
respectively. We choose the the smallest M € Z-( such that m < €. Rearranging terms
gives

and

M = max(1, F‘“(l&_ﬂ —1). (14)

4.2.3 A recursive algorithm for obtaining analytic stationary solutions

We propose a recursive algorithm that calculates the stationary solution to the CME of two
interconnected transcriptional components. We provide a MAPLE code in Appendix D that
carries out the algorithm automatically. The code takes T, M and the four reaction rate
constants (K, 0, Kon, Koff) as input and gives the stationary distribution on the corresponding
truncated finite state space as output. The algorithm constructs the truncated state space
recursively by gluing smaller components together sequentially at one or two vertices. We
demonstrate the recursive algorithm for the case when 7' = 3 and M = 2 but the method
is applicable for any positive integers T and M. We construct the truncated state space by
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first gluing lateral-“T” components together sequentially at one vertex and then checking the
proportionality condition (Equation 3) for the missing edges. Figure 15 illustrates the method
for T'= 3 and M = 2. We label the states in the truncated state space from left to right and
from bottom to top so that we get the labeling naturally as we expand the graph.

@ (i) (iii) (iv) )

Figure 15: Demonstration of constructing a truncated state space when M = 2 and T = 3.
Updated graphs are in black. New components are in blue. Red vertices are the vertices at
which graphs are glued together. In Subfigure (v), the blue edges are added one at a time.
Green numbers are labels of vertices.

The stationary distribution of a lateral-“T” component (Figure 16) with the bottom state
being (¢,0) (c € {0,1,2}) has a unique stationary distribution

& = (Pr(state 1), Pr(state 2), Pr(state 3), Pr(state 4))

k K2 Kkon(3—c (15)
:7/)0( 73’W’W(C+13)7

where 1), is a normalization constant. Specifically, the stationary distribution of Subfigure 15(i)
is §o = Yo(1, 5, %, 3(;7{”‘;;). The rescaling ratio for adding a second lateral-“T” component to

the right of Subfigure 15(i) is

31 KKon
T = 7&{0& . (16)
Hence, the stationary distribution of Subfigure 15(ii) can be obtained by appending the rescaled
probabilities of the new states (i.e. the second, third and fourth entries of the vector &1 -71) to &
and then normalizing the 7-vector. Similarly, we add a third lateral-“T” component to the right
of the existing state space (Subfigure 15(ii)) to obtain the stationary distribution of Subfigure
15(iii). Then we add a path of length 2 (Subfigure 15(iv)) in order to have all the states in the
truncated state space. Finally, we check the proportionality condition (Equation 3) for all the

missing edges, which always holds in this case.

state 3 @
()

state 2 <(1:> <D <C-S 1) state 4
state 1 <8>

Figure 16: A lateral-“I” component for I" = 3 and M = 2 where ¢ € Z>¢. The first and second
entries of each vector gives the number of complexes C and transcription factors Z respectively
for that particular state.

The above method works for any positive integers T" and M in general. A lateral-“T”
component consists of M + 2 states. We need three steps in order to construct the truncated
state space: (i) glue T lateral-“T” components together sequentially at one vertex, (ii) glue a
path of length M to the existing state space at one vertex, and (iii) check the proportionality
condition (Equation 3) for all missing edges.
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For ¢ € {0,1,2,--- ,T — 1}, the stationary distribution &. on a lateral-“T” component with
state 1 (i.e. the bottom vertex) being (c,0) is given by

(r/0)" ific{1,2,3 - M+1
Pr(state i) = wcmlonl% ;) 1 Z 12,3, ; (17)
Yo S (cF1) 0 ifi =M+ 2,

where 1), is a normalization constant. The stationary distribution on the path of length M is
given by

)
Pr(state ¢) = ¢p-———-— (r5/9)" ) (18)
(i— 1)'
for i € {1,2,3,--- , M + 1}, where ¢r is a normalization constant.

After step (ii), the graph contains all the states from the truncated state space. In order to
complete the graph, we need to add T(M — 1) edges by gluing at the two endvertices of each
edge simultaneously, which requires the proportionality condition (Equation 3) to hold for each
missing edge.

Every missing edge is between states (¢, z) and (¢+ 1,z — 1) for some ¢ € {0,1,2,--- ,T-1}
and z € {2,3,4,--- ,M}. The transition rate from (c,z) to (c+ 1,2 — 1) is konz(T — ¢) and
the reverse transition rate is k(¢ + 1). The stationary distribution on the unit-length path is
given by

—~ B Kof(c + 1)
Pr(state (¢, 2)) = ror(e T 1) + Fona(T —0) (19)
and
Pr(state (c+ 1,2 — 1)) = fion?(T' = ¢) (20)

Koff(c+ 1) + konz(T —¢)
In the graph where the edge is missing, the stationary distribution gives

Pr(state (c, 2)) = <Z> (””"“)C (1/0)" (21)

OKoff z!

and

Pr(state (¢ + 1,2 — 1)) = ¢(C JTF 1) (g:;)“ ((Z/i)J (22)

where v is a normalization constant. The proportionality condition (Equation 3) holds for every
missing edge as
Pr(state (c, 2)) B ﬁ(state (¢, 2))

Pr(state (c+ 1,2 — 1)) ﬁ(state (c+1,2— 1))
Hence, we can add every missing edge to the current graph by gluing at the two endvertices
simultaneously. As explained in Subsubsection 4.1.2, the stationary distribution on the trun-
cated state space (e.g. Subfigure 15(v)) is the same as that on the state space before adding
the missing edges (e.g. Subfigure 15(iv)).

We note that for, any ¢ € {0,1,2,---,T}, we have Pr(state (¢,2)) — 0 as 2 — oo. This
justifies our truncation of the infinite state space to a finite subset by bounding the maximum
value of Z. Moreover, the dependence of Pr(state (¢, z)) on M is only through the normalization
constant ¥. Hence, we can obtain the accurate stationary distribution of the untruncated infinite

(23)

state space by normalizing over z € Z>g and ¢ € {0,1,2,--- , T}, which is
=T c
KKon T KKon 5 (K[O)?
Pr(stat 1 — RO 24
r(state (c,2)) = < + 5/@03) (c> (6/@'03) c z! (24)

Equation 24 has a separable product form
Pr(state (¢, z)) = Pr(state ¢) Pr(state z). (25)

This implies the independence between the stationary behavior of the upstream and downstream
transcriptional components. In addition, the stationary distribution of random variable C' is
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a binomial distribution with parameters n = T and p = (ii—zﬁ +1)~!, and the stationary dis-
tribution of random variable Z is a Poisson distribution with parameter x/J§. Our result of
the stationary distribution confirms Theorem 5.1 in [29]. However, reference [29] used Fein-
berg’s deficiency zero theorem ([31]) and the theorem of product-form stationary distributions
(Theorem 4.1 of [24]) proposed by Anderson, Craciun and Kurtz.

5 Conclusions

In this paper we have explored the benefits and limitations of a technique that was recently
proposed by Mélykuti et al. ([11, 19]) to solve stationary distributions of biochemical reaction
networks by sequential gluing of finite, irreducible state spaces at one or two vertices. We have
explained the relationship between continuous-time Markov jump processes and graph theory,
and characterized the set of state spaces that can be obtained by gluing paths, cycles, or both,
at one vertex sequentially. In addition, we have classified mass-conserving chemical reaction
systems with reversible, elementary reactions and 2-dimensional state spaces according to the
topologies of their state spaces. For each category, we have presented a recursive algorithm to
solve the stationary distributions and illustrated with the example of a mass-conserving system
that has two connected monomolecular reversible reactions. Furthermore, we have showed that
an infinite state space can be truncated to a finite subset with a guarantee of accuracy for how
closely an approximation solution matches the true solution. Even though the gluing technique
can only construct finite state spaces, we find that, by taking the size of a finite state space
to infinity, the steady state response can converge to the analytic solution on the resulting
infinite state space. Finally, we illustrate the aforementioned ideas with the example of two
interconnected transcriptional components.

In future work, we plan to attack the problem of solving the stationary distributions of
genetic toggle switches ([30]). We are also interested in trying the gluing technique ([11, 19])
on 3-dimensional state spaces. Another potential direction of future work is to extend the
gluing technique to enable the construction of infinite state spaces. As we showed with the
example of two interconnected transcriptional components, one possible method is to first solve
the stationary distributions on a finite subset of the state space and then analyze the solution
in the limit of the size of the state space going to infinity.

A Systems with one reversible chemical reaction
X, = X,,
2X, — X,

X+ Xy = X,

B Systems with two reversible chemical reactions

X == Xy=— X3,
2X, = X, = X3,
X, ==2X, = X,
2N, = X, = 2X,,

X+ Xy =X, — X,

X=X, + X3 =4,

X +X,y— X, — X, + &,
X+ Xy =X, = 2X,.

19



C Systems with three reversible chemical reactions
X =4, Xy == A Xy =y,
Xl;‘ZXQ QXQ;‘X:& XB;\XP

D MAPLE code for solving the stationary distribution of two
interconnected transcriptional components

ITC_memo := module()
local memory;
export ITC;

memory = table();

ITC := proc (T::posint, M::posint, a, b, s, t)
if M=1 then

statn_distn == Array(l..(2«T+2));

statn_distn[1] :== 1;

for C from 1 to T do
statn_distn[2«C] := statn_distn[2+C-1]xa/b;
statn_distn[2+C+1] = statn_distn[2+Clx(sx(T—C+1)/(txC));

end do;

statn_distn[2+«T+2] = statn_distn[2+T+1]xa/b;

print(‘The stationary distribution for T=¢, T, ‘and M=1 is ¢, statn_distn, ‘.¢);

else
pl0] :== Array(1..(M+2));
plO][1] = 1;

for Z from 1 to M do
plOJ[Z+1] = (a/b)AZ/Z

end do;

p[O][M+2] := axsxT/(bxt);

if T=1 then
statn_distn := ArrayTools[Concatenate|(2, p[0], Array(1..M));
for Z from 1 to M do
statn_distn[M+2+Z] := statn_distn[M+1+Z]*xa/(Z*Db);
end do;
for Z from 2 to M do
if sxZ«T/t = statn_distn|M+1+Z]/statn_distn[Z+1] then
do_nothing := Z;
else
print(‘Proportionality condition failed for the edge between (C, Z)=
(0, ¢, Z, *) and (C, Z)=(1, ¢, Z-1, ) when T=1 and M=¢, M, “.¢);
end if;
end do;
else
statn_distn := p|0];
for C from 1 to T—1 do
statn_distn := ArrayTools[Concatenate](2, statn_distn, p[0][2..(M+1)]x*
statn_distn[-1], (a/b)xsx(T—C)/((C+1)x*t)*statn_distn[-1]);
end do;
statn_distn := ArrayTools[Concatenate|(2, statn_distn, Array(1..M));
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for Z from 1 to M do
statn_distn|Ts«(M-+1)+1+Z] := statn_distn|Tx(M+1)+Z|*a/(Zxb);
end do;
for C from 1 to T do
for Z from 1 to M—1 do
if sx(Z+1)x(T—C+1)/(txC) =
statn_distn[Cx(M+1)+Z-+1]/statn_distn[Cx(M+1)+Z+1—M]| then
do_nothing = 7 ;
else
print(‘Proportionality condition failed for the edge between
(C, 2)=( C-1, Z+1, *) and (C, Z)=(%, C, Z, ‘) when
T=¢ T, ¢ and M=¢, M, “.9)
end if;
end do;
end do;
end if;
print(‘The stationary distribution for T=¢, T, ¢ and M=¢, M, is, statn_distn,
end if;

end proc;

end module;
ITC = ITC_memo:-ITC;
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