
Cross-entropy Temporal Logic Motion Planning

Scott C. Livingston

Department of Control and

Dynamical Systems

California Institute of

Technology

Pasadena, CA, USA

slivingston@cds.caltech.edu

Eric M. Wolff

nuTonomy LLC

Cambridge, MA, USA

eric@nutonomy.com

Richard M. Murray

Department of Control and

Dynamical Systems

California Institute of

Technology

Pasadena, CA, USA

murray@cds.caltech.edu

ABSTRACT
This paper presents a method for optimal trajectory genera-
tion for discrete-time nonlinear systems with linear temporal
logic (LTL) task specifications. Our approach is based on
recent advances in stochastic optimization algorithms for op-
timal trajectory generation. These methods rely on estima-
tion of the rare event of sampling optimal trajectories, which
is achieved by incrementally improving a sampling distribu-
tion so as to minimize the cross-entropy. A key component
of these stochastic optimization algorithms is determining
whether or not a trajectory is collision-free. We generalize
this collision checking to e�ciently verify whether or not a
trajectory satisfies a LTL formula. Interestingly, this verifi-
cation can be done in time polynomial in the length of the
LTL formula and the trajectory. We also propose a method
for e�ciently re-using parts of trajectories that only par-
tially satisfy the specification, instead of simply discarding
the entire sample. Our approach is demonstrated through
numerical experiments involving Dubins car and a generic
point-mass model subject to complex temporal logic task
specifications.

1. INTRODUCTION
This paper presents a method for computing optimal tra-
jectories for discrete-time nonlinear systems subject to tem-
poral logic specifications. We are motivated by the need for
autonomous robots to e�ciently execute tasks with com-
plex temporal constraints. Such robots often have nonlinear
dynamics and configuration spaces that are di�cult to rep-
resent analytically. Examples include robotic manipulators
that must repeatedly perform intricate assembly tasks, or
autonomous cars that must navigate tra�c. In these types
of demanding settings, near-optimal control policies are typ-
ically required.

To concisely and precisely specify a wide range of complex
tasks, we use linear temporal logic (LTL). LTL is an expres-
sive task-specification language that can be used to spec-
ify safety requirements, acceptable response to the environ-

ment, desired goal visitation, periodic motions, and stabil-
ity [2]. These properties generalize classical robotic motion
planning [15].

Informally, traditional methods for motion planning with
LTL specifications rely on first constructing a labeled graph
(i.e., a finite abstraction) that represents possible behaviors
of the dynamical system (see [1, 4, 12, 24]). Given a fi-
nite abstraction and an LTL specification, controllers can
be automatically constructed using an automata-based ap-
proach [2, 7, 12] inspired by techniques developed for dis-
crete systems [2]. However, this approach is limited to low-
dimensional systems (less than 6 continuous dimensions) as
the time to compute a discrete abstraction is exponential in
the number of dimensions. Additionally, the size of an ap-
propriate automaton may be exponential (or worse) in the
length of the LTL formula [2].

To avoid the expensive computations of a discrete abstrac-
tion and an automaton, we directly sample trajectories from
a distribution over trajectories. Each sampled trajectory
is then checked to determine if it satisfies a given tempo-
ral logic specification. Surprisingly, this check can be done
time polynomial in the length of the specification and tra-
jectory. The sampling distribution is then updated based
on the quality of the sampled trajectories, and this proce-
dure repeats until convergence. Our approach generalizes
the cross-entropy motion planning method [13] by incorpo-
rating LTL task constraints.

The contributions of this paper are twofold. First, we present
a stochastic optimization technique for optimal trajectory
generation of nonlinear systems operating in complex con-
figuration spaces with linear temporal logic specifications.
Each iteration of this algorithm runs in time polynomial in
the size of the system and specification, and does not require
the costly computation of a discrete abstraction or automa-
ton. Furthermore, the approach is straightforward to imple-
ment in a parallel manner. Second, we provide a method
for re-sampling parts of trajectories that are promising, in
the sense that they satisfy a relaxed specification. We em-
pirically demonstrate that this reuse improves convergence
rates, improving on state-of-the-art techniques. The latter
contribution of incremental trajectory construction is im-
portant for the types of highly-constrained problems that
are common in robotics, where sampling-based methods are
expected to generate many infeasible points.

Submitted, 2015 International Conference on Hybrid Systems: Computation and Control (HSCC)
http://www.cds.caltech.edu/~murray/papers/lwm15-hscc.html

Related work

Some recent work avoids the computationally expensive con-
struction of an abstraction and an automaton by directly
encoding a temporal logic formula as mixed-integer linear
constraints on the system [10, 14, 22, 23]. However, these
approaches assume that the free configuration space can be
represented as a union of polytopes, which is not the case
for many robotic systems.

Our work is closely related to sampling-based motion plan-
ning techniques for temporal logic planning [5, 9, 18]. These
approaches iteratively build a finite abstraction of the sys-
tem using sampling- based motion planners, which can han-
dle nonlinear dynamics and complicated configuration spaces.
Our approach is di↵erent in that we iteratively refine a sam-
pling distribution over “good” trajectories, instead of itera-
tively building and model checking a graph of feasible tra-
jectories.

Statistical approaches have previously been used for model
checking of hybrid systems. Monte Carlo algorithms have
been developed for verifying finite-state systems [8], discrete
event systems [25], and linear hybrid systems [17]. Addi-
tionally, cross-entropy approaches have been used to falsify
metric temporal logic properties for hybrid systems [20], and
finite-time properties for black-box hybrid models [6]. In-
stead, we consider synthesizing optimal plans with infinite-
time temporal properties, leverage e�cient LTL satisfaction
algorithms, and exploit more detailed knowledge of the sys-
tem dynamics.

2. PRELIMINARIES
In this section we give background on dynamical systems and
linear temporal logic. Our treatment is brief and intended
primarily to fix notation.

Notation: An atomic proposition is an indivisible statement
that is either True or False. The cardinality of a set X is
denoted by |X|.

2.1 System model
We consider discrete-time nonlinear systems of the form

xt+1 = f(xt, ut), (1)

with time indices t = 0, 1, . . ., states x 2 X , control inputs
u 2 U , and initial state x0 2 X . As will be shown later,
our method applies to any system that admits sampling of
trajectories based on a parameterization, and in particular
X and U can have the structure of Rn, SE(2), or countable
spaces like Z.

Let AP be a finite set of atomic propositions, which indicate
basic properties, such as occupancy of a goal region. The
labeling function L : X ! 2AP maps states to subsets of
atomic propositions that are True.

A trajectory (run) x = x0x1x2 . . . of system (1) is an infinite
sequence of its states, where xt 2 X is the state of the
system at index t, and for each t = 0, 1, . . ., there exists a
control input ut 2 U such that xt+1 = f(xt, ut). Given an
initial state x0 and a control input sequence u, the resulting
trajectory x = x(x0,u) is unique. A word is an infinite

sequence of labels L(x) = L(x0)L(x1)L(x2) . . . where x is
a trajectory. Let xi = xixi+1xi+2 . . . denote the trajectory
x from index i, and let L(xi) = L(xi)L(xi+1)L(xi+2) . . .
denote the word from index i.

2.2 Linear temporal logic
We use linear temporal logic (LTL) to concisely and pre-
cisely specify permitted system behavior. LTL is powerful
language that can be used to specify a wide range of impor-
tant system behaviors for robots and other cyberphysical
systems. We briefly state the syntax and semantics of LTL;
see [2] for a detailed treatment.

Syntax: LTL syntax consists of (a) a set of atomic propo-
sitions AP , (b) Boolean operators: ^ (and) and ¬ (not),
and (c) temporal operators: # (next) and U (until). An
LTL formula is defined by the following grammar:

' ::= p | ¬' | '1 ^ '2 | #' | '1 U '2,

where p 2 AP is an atomic proposition.

Semantics: The semantics of LTL are defined inductively
over a word L(x) as follows:

L(xi) |= p if and only if p 2 L(xi)

L(xi) |= ¬' if and only if L(xi) 6|= '

L(xi) |= '1 _ '2 if and only if L(xi) |= '1 _ L(xi) |= '2

L(xi) |= '1 ^ '2 if and only if L(xi) |= '1 ^ L(xi) |= '2

L(xi) |= #' if and only if L(xi+1) |= '

L(xi) |= '1 U '2 if and only if 9j � i such that (2)

L(xj) |= '2 and L(xn) |= '1 8i n < j

Definition 1. A word L(x) satisfies ', denoted by L(x) |=
', if L(x0) |= '. A trajectory x satisfies ' if L(x) |= '.

Remark 1. The Boolean operators _ (or) and =) (im-
plies) can be defined in the usual way. Informally, the no-
tation #' means that ' is true at the next step, '1 U '2

means that '1 is true until '2 is true, ⇤' means that ' is
always true, 3' means that ' is eventually true, and ⇤3'
means that ' is true repeatedly [2].

3. PROBLEM STATEMENT
In this section, we formally state the main problem treated
in this paper.

Let the generic cost function J(x,u) map from trajectories
and control input sequences to nonnegative real numbers.

Problem 1. Given a dynamical system of the form (1),
an initial state x0 2 X , and an LTL formula ', compute a
control input sequence u that minimizes J(x(x0,u)) subject
to L(x(x0,u)) |= '.

Problem 1 is a challenging nonconvex optimization problem
due to the nonlinear dynamic constraints, and the combina-
torial temporal logic constraints. The core of our solution
to Problem 1 is the cross-entropy method, a stochastic opti-
mization algorithm that has been used to successfully solve
challenging point-to-point motion planning problems [13].

The remainder of this paper details how to extend the cross-
entropy method to handle complex LTL specifications. We

present our approach in two parts: a basic algorithm in Sec-
tion 4, and a more e�cient version in Section 5. The latter
algorithm reuses infeasible trajectories to significantly in-
crease the computational e�ciency of the method.

Remark 2. While we give a discrete-time formulation of
the problem, continuous-time systems can be handled using
the same cross-entropy framework by defining appropriate
semantics for LTL over continuous trajectories, e.g., [12].

4. CROSS-ENTROPY LTL PLANNING
In this section we present our first main contribution: a
method for stochastic optimization of trajectories subject to
LTL constraints. Our solution is based on the cross-entropy
motion planning framework introduced in [13].

The basic idea behind applying the cross-entropy approach
to motion planning [13] is to repeat the following two steps:
1) generate sample trajectories from a distribution and com-
pute their costs, and 2) update the distribution using a sub-
set of “good” samples, until the sampling distribution con-
verges to a delta function (hopefully) over an optimal trajec-
tory. Although convergence to a globally optimal solution
cannot be guaranteed (as with nonconvex optimization in
general), the approach does explore the entire state space.

We first give a high-level overview of the cross-entropy method
in Section 4.1. In Section 4.2, we introduce a finite trajec-
tory parameterization that is amenable to computation. We
extend the cross-entropy method to complex temporal logic
tasks in Section 4.3. Finally, we discuss e�cient methods for
determining if a sampled trajectory satisfies an LTL formula
in Section 4.4, and detail the complexity of our approach in
Section 4.5.

4.1 Cross-entropy optimization
The cross-entropy method estimates rare events (e.g., sam-
pling an optimal trajectory) using importance sampling. Let
Z denote a random variable defined over a space Z. The rare
event of interest is finding a parameter z with a real-valued
cost J(z) which is near the cost of an optimal parameter z⇤.
This rare-event estimation is equivalent to the global opti-
mization of J(z). Our development closely follows [13] and
is based on [19].

Rare-event estimation

Consider the problem of estimating the probability that a
parameter z 2 Z sampled from the probability density func-
tion p(·; v̄) (with parameter v 2 V) has a cost J(z) smaller
than a given constant �. This probability is defined as

l = Pv̄(J(Z) �) = Ev̄

⇥
I{J(Z)�}

⇤
,

which can be approximated by

l̂ =
1
N

NX

i=1

I{J(Zi)�}
p(Zi; v̄)
p(Zi; v)

,

where Z1, . . . , ZN are i.i.d. samples from the importance
density p(·, v). The issue is that when {J(Z) �} is a rare
event, l̂ will be incorrectly estimated as zero.

The idea behind the cross-entropy method is to employ a
multi-level approach using a sequence of parameters {vj}j�0

(parameterizing the importance density) and levels {�j}j�1.
The sequence converges to the optimal v⇤, which then can
be used to estimate the integral l̂.

The procedure starts by drawing N samples Z1, . . . , ZN us-
ing a sampling distribution with an initial parameter v0,
e.g., v0 = v̄. The value �1 is set to the ⇢th quantile of
I{J(Z)�}, where ⇢ is a small scalar, e.g., ⇢ 10�1. The
level �1 can be approximated by sorting the costs of the
samples J(Z1), . . . , J(ZN) in an increasing order, and set-
ting �̂1 = Jd⇢Ne.

The optimal sampling parameter v1 for level �1 is then ap-
proximated numerically by

v̂1 = argmax
v2V

1
N

NX

i=1

I{J(Zi)�̂1} ln p(Zi, v),

where Z1, . . . , ZN are i.i.d. samples from the previous dis-
tribution p(·, v0).

The procedure then iterates to compute the next �i and vi,
terminating when �i �. The probability of J(Z) � is
then computed using v = vi. In summary, each iteration of
the algorithm performs two steps, starting with v0:

1. Sampling and updating of �j : Sample Z1, . . . , ZN

from p(·, v̂i�1) and compute the ⇢th quantile �̂t.

2. Adaptive updating of vj : Compute v̂j such that

v̂j = argmin
v2V

1
|Ej |

X

Zk2Ej

ln p(Zk; v), (3)

where Ej is the set of samples for which J(Zk) �̂j .

Computing an optimal trajectory

An optimal trajectory can be computed by iterating the
steps above until the level �j approaches the optimal cost
�⇤. Typically, p(·, vj) will approach a delta distribution,
signifying that a local optimum has been found. Note that
although the method explores the state space globally it may
converge to a local optimum if there were no samples near
the global optimum.

4.2 A finite trajectory parameterization
As LTL specifications are defined over infinite time, one
must encode an infinite trajectory using a finite represen-
tation that is amenable for computation. We encode an in-
finite trajectory using a “lasso,” i.e., a finite prefix followed
by a finite su�x that is repeated. Precisely, we consider
trajectories of the prefix-su�x form

x = x0x1 · · ·x⌧�1(x⌧ · · ·xT)
! = xpre(xsuf)

!, (4)

where xpre = x0x1 · · ·x⌧�1 is the trajectory prefix, xsuf =
x⌧ · · ·xT is the trajectory su�x, and ! denotes infinite repe-
tition. Besides step-wise consistency with the dynamics (1),
loop closure must be enforced, i.e., x⌧ = f(xT , uT) for some
control input uT 2 U . If ⌧ = 0, then the prefix is empty,
i.e., the trajectory is a loop.

Only considering trajectories in prefix-su�x form is restric-
tive, as there may exist trajectories that satisfy the speci-
fication, but are not eventually periodic. This behavior is

possible (unlike for finite, discrete systems [2]) due to the
continuous state space. While this restriction is potentially
an issue for analysis, it is of no practical limitation for tra-
jectory synthesis like we are considering.

4.3 Algorithm
Let ⇥ = Rn denote the parameter space, and fix the scalar
loop index l in the range 1, . . . , n+ 1. Given an initial state
x0 and loop index l, we assume there exists a procedure
GenTrajx0,l(✓) that takes as input parameter values ✓ 2 ⇥
and returns a trajectory

x(✓) = x0x1 · · ·x⌧�1(x⌧ · · ·xT)
! (5)

where ⌧ depends on p as follows. Intuitively, each of the n
components of ✓ = (✓1, ✓2, . . . , ✓n) determines a finite seg-
ment of the trajectory obtained from GenTraj and more-
over, there are n+1 such segments. The first segment is from
the initial state x0 to some state that is obtained using ✓1.
From this state, another sequence of states is obtained using
✓2, and so on. The loop index l, which we fix before per-
forming the stochastic optimization described below, is the
end point of these fragments at which the loop of the su�x
is closed, thereby forming the desired prefix-su�x structure.
If l = 1, then there is no prefix. For l > 1, the su�x is
obtained by connecting after the (l� 1)-th fragment, as ob-
tained after using parameter component ✓l�1.

We now list some concrete realizations of the parameter
space ⇥. Parameter values ✓ 2 ⇥ could be control inputs
u, in which case GenTraj would integrate (1) while ap-
plying these inputs to obtain a trajectory. Alternatively,
the parameters ✓ could define a sequence of waypoints in
X and GenTraj could solve the corresponding boundary-
value problems by using an appropriate local planner [15].
For example, in Section 6, trajectories for Dubins car are
parameterized using finite sequences of time durations and
turning rates.

Besides trajectory parametrization, the other important part
of our method is defining and updating the sampling distri-
bution. Following the notation of Section 4.1, this distri-
bution is assumed to be taken from a parametrized family
of probability density functions {p(·; v) | v 2 V}. In order to
simplify notation in the remainder of the paper, we introduce
a routine Update(v, ✓1, . . . ✓m) that returns parameters for
a new distribution (see equation (3)) more appropriate for
trajectories with the parameters ✓1, . . . ✓m, given the distri-
bution p(·; v).

We are now ready to express the CE-LTL method in Algo-
rithm 1. Details for several lines are as follows:

• Line 7: Trajectories are obtained by sampling param-
eter vectors. When a trajectory is infeasible (i.e., does
not satisfy the LTL specification) as checked on Line 9,
it is re-sampled. An extension for re-using promising
trajectories is described in Section 5.

• Line 8: Control inputs u are obtained from ✓i. E.g.,
✓i itself can be a sequence of control inputs, or it can
be a collection of waypoints in X , local planners for
which yield control inputs.

Algorithm 1 CE-LTL

1: INPUT: LTL formula ', cost function J , initial state x0,
initial sampling distribution p(·; v0), number of trajec-
tories per iteration N , threshold cost ↵

2: OUTPUT: parameters ✓⇤ of best trajectory x✓⇤ found
3: j := 0 //Iteration counter
4: repeat
5: for all i = 1, . . . , N do
6: repeat
7: ✓i ⇠ p(·; vj)
8: x✓i = GenTraj(✓i) //Compute trajectory
9: until L(x✓i) |= '
10: end for
11: Sort ✓1, . . . , ✓N according to cost, such that

J(x✓1) J(x✓2) · · · J(x✓N)
12: j := j + 1
13: vj := Update(vj�1, ✓1, . . . , ✓d⇢Ne)
14: until J(x✓1) < ↵
15: return ✓1 //Parameters of trajectory with least cost

• Line 9: A thorough discussion about checking whether
traces of trajectories satisfy ' is in Section 4.4.

• Line 13: The probability density function according to
which trajectoriesare sampled is adjusted so as to ap-
proach the (unknown) optimal distribution using the
set of best trajectories x✓1 , . . . ,x✓d⇢Ne found on the
current iteration. We abbreviate this step using the
routine Update, which is implemented using equa-
tion (3).

• Line 14: Any of several termination conditions may
be used, including a fixed number of iterations, or the
sampling distribution approaching a delta distribution.

4.4 Model checking sampled trajectories
An important part of the method presented in Section 4.3 is
checking whether sampled trajectories satisfy the LTL for-
mula ', as on Line 9 of Algorithm 1. Indeed, the time
required to do this is a major contributor to the total execu-
tion time, besides the time entailed by discarding the many
infeasible trajectories and re-sampling (for which we present
an extension in Section 5). Here we outline three approaches
to checking trajectories, which taken together demonstrate
the modularity of our method.

The length of an LTL formula ' is the number of symbols,
and is denoted by |'|. The length of a trajectory x in prefix-
su�x form is |xpre|+ |xsuf|, and is denoted by |x|.

4.4.1 Polynomial-time checking

The first approach for determining if a sampled trajectory
satisfies an LTL formula exploits the fact that, the seman-
tics of LTL and CTL (computational tree logic) coincide over
paths [16]. Thus, one can use e�cient CTL model checking
algorithms to verify that a trajectory satisfies an LTL for-
mula. The standard CTL model checking algorithm uses
dynamic programming to solve this problem in time time
bilinear in the length of the system and specification, i.e.,
O(|x|⇥ |'|) [2].

Figure 1: A (simplified) Büchi automaton corre-
sponding to the LTL formula ' = 3A ^ ⇤3B ^
⇤3C ^ ⇤S. Informally, the system must visit A,
repeatedly visit B and C, and always remain in S.
Here Q = {q0, q1, q2, q3}, ⌃ = {A,B,C, S}, Q0 = {q0},
F = {q3}, and transitions are represented by labeled
arrows.

4.4.2 Automata-based checking

Another approach to determining if L(x) |= ' is to check
whether L(x) is in the language of a finite automaton that
recognizes '.

Nondeterministic Büchi automata: Any LTL formula '
can be automatically translated into a corresponding Büchi
automaton A' of size 2O(|'|) [2]. Figure 1 shows an example
of a Büchi automaton.

Definition 2. A nondeterministic Büchi automaton is a
tuple A = (Q,⌃, �, Q0, F) consisting of (i) a finite set of
states Q, (ii) a finite alphabet ⌃, (iii) a transition relation
� ✓ Q ⇥ ⌃ ⇥ Q, (iv) a set of initial states Q0 ✓ Q, (v) and
a set of accepting states F ✓ Q.

Let ⌃! be the set of infinite words over ⌃. A word L(�) =
⌃0⌃1⌃2 . . . 2 ⌃! induces an infinite sequence q0q1q2 . . . of
states in A such that q0 2 Q0 and (qi,⌃i, qi+1) 2 � for i � 0.
Run q0q1q2 . . . is accepting (accepted) if qi 2 F for infinitely
many indices i 2 N appearing in the run.

Deterministic Rabin automata: Similarly, any LTL formula
can be translated into a corresponding deterministic Rabin

automatonA' of size 22
O(|'|)

[2]. Figure 2 shows an example
of a deterministic Rabin automaton.

Definition 3. A deterministic Rabin automaton is a tuple
A = (Q,⌃, �, q0,F) consisting of (i) a finite set of states Q,
(ii) a finite alphabet ⌃, (iii) a transition function � : Q⇥⌃ !
Q, (iv) an initial state q0 2 Q, (v) and a set of accepting
pairs F = {(L1, U1), . . . , (LJ , UJ)}.

Let ⌃! be the set of infinite words over ⌃. A word L(�) =
⌃0⌃1⌃2 . . . 2 ⌃! is an infinite sequence q0q1q2 . . . of states
in A such that �(qi,⌃i) = qi+1 for i � 0. Run q0q1q2 . . . is
accepting (accepted) if there is a pair (Lj , Uj) 2 F such that
qi 2 Lj for infinitely many indices i 2 N0 appearing in the
run and qi 2 Uj for only finitely many i (possibly none).

For either type of automaton, the set of words for which
the corresponding run is accepting is denoted by L(A). Let

� ���������

�

������ �����

��	
�

�

����

������ �����

�����

Figure 2: A deterministic Rabin automaton for the
LTL formula 3G ^ ⇤S. States are shown in rect-
angles numbered 0, 1, and 2. The initial state is 1
and is shaded gray. Edges are labeled with the input
values that would cause the transition, written as a
Boolean formula in terms of G and S (the inputs to
the automaton). There is one acceptance pair (L,U),
where L = {0} and U = {1, 2}.

A' be an automaton (either deterministic Rabin or nonde-
terministic Büchi) that recognizes '. Then, checking that a
trajectory satisfies the LTL formula ' is equivalent to check-
ing if L(x) 2 L(A').

For nondeterministic Büchi automata, this condition can be
checked in time bilinear in the size of A' and the trajectory,
i.e., O(|x| ⇥ |A'|). Due to the nondeterminism in the au-
tomaton, this check must use graph search to explore di↵er-
ent branches. For deterministic Rabin automata, this con-
dition can be checked in O(|x|) time, since the automaton
is deterministic.

4.5 Complexity
While determining rates of convergence for cross-entropy
method is di�cult [19], it is possible to precisely state the
complexity of generating each sample trajectory and deter-
mining if it satisfies the LTL specification.

The complexity of generating each sample trajectory is highly
dependent on the parameterization that is used. For exam-
ple, if one parameterizes the trajectory by a sequence of
states, and uses a local planner [15] to connect these states,
the complexity is dependent on the local planner used. Note,
that a simple parameterization consisting of a sequence of
control inputs can be used to generate a dynamically feasi-
ble trajectory in time linear in the length of the trajectory.
However, a local planner might still be necessary, as loop
closure involves the solution of a two-point boundary value
problem.

We now summarize the complexity of determining whether
or not a trajectory in prefix-su�x form satisfies an LTL for-

mula. The reduction to CTL model checking described in
Section 4.4.1 gives an O(|x| ⇥ |'|) algorithm. Additionally,
this does not require the initial construction of an automa-
ton. The automaton-based approaches described in Sec-
tion 4.4.2 require the initial construction of an automaton

of size 2O(|'|) (Büchi) or 22
O(|'|)

(Rabin). However, this
worst-case behavior is rarely encountered in practice. Once
the appropriate automaton has been constructed, the cost
to check each trajectory is O(|x|⇥ |A'|) (Büchi) and O(|x|)
(Rabin). Thus, there is a problem-dependent trade-o↵ be-
tween using the CTL model checking algorithm, construct-
ing a non-deterministic Büchi automaton, or constructing a
deterministic Rabin automaton.

5. RE-USING TRAJECTORIES
In this section we present our second main contribution: a
method for re-using sampled trajectories that satisfy a re-
laxed specification, in a sense made precise below. For mo-
tivation, consider the classical motion planning setting of
going to a goal region while avoiding collisions with obsta-
cles. Incorporating information about the obstacle positions
and shapes into the sampling distribution over the parame-
ter space may be relatively di�cult, i.e., not far from solv-
ing the entire Problem 1. However, while it may be eas-
ier to begin with a distribution that does not incorporate
application-specific information, it comes at the practical
cost of sampling a large number of infeasible trajectories,
which using the basic approach of Section 4 would be subse-
quently rejected. For general LTL formulae, the problem of
finding feasible trajectories is strictly more di�cult than the
classical setting, and so we are motivated to try to re-sample
parts of trajectories that appear to be nearly feasible.

To make the intuitive motivation above precise, let ' be the
given LTL specification. Suppose that is another LTL for-
mula such that L(') ⇢ L() (notice the subset relation is
proper). Everything else being equal, any trajectory that is
feasible with respect to ' is also feasible with respect to .
This implies a subset relation over the set of trajectories for
a given dynamics (1), from which it follows that a sampled
trajectory satisfies with at least the probability of satisfy-
ing '. Intuitively, sampling trajectories for is easier than
for '. For a carefully chosen formula , the trajectories fea-
sible for can be made feasible for ' by adjusting only some
of the control inputs.

5.1 Trajectory re-use algorithm
Suppose that the given LTL specification ' can be decom-
posed into two LTL formulae and ⇣ such that ' ⌘ ^ ⇣.
Furthermore suppose that words not in L() can be iden-
tified after a finite number of steps. That is, certificates of
violations of are finite. In the context of the present work,
we can decide whether L(x) |= for a trajectory x with-
out having to search for cycles (cf. procedures for checking
feasibility in Section 4.4.). Furthermore, since ' =) ,
a trajectory x is feasible with respect to ' only if it is also
feasible with respect to . A trajectory x is called promising
if L(x) |= ⇣ but x is infeasible with respect to the desired
LTL formula ', in particular L(x) /2 L().

Recalling the notation and parameterization introduced in
Section 4, let ✓ = (✓1, . . . , ✓n) be the parameter values used

Algorithm 2 Trajectory re-use

1: INPUT: x✓, ✓, such that ' =) , max attempts

2: OUTPUT: ✓̂ or invalid
3: s := LastSafe (x✓, ✓)
4: counter := 0
5: while counter < max attempts do
6: Sample ✓̂s+1, . . . , ✓̂n from restricted p(·; vj)
7: ✓̂ :=

⇣
✓1, . . . , ✓s, ✓̂s+1, . . . , ✓̂n

⌘

8: Compute trajectory x✓̂ from ✓̂
9: if L(x✓̂) |= ' then

10: return ✓̂
11: end if
12: counter := counter+ 1
13: end while
14: return invalid

to construct x✓. Since admits finite violation certificates,
it is possible to find a first state of the trajectory at which
step it must be that L(x) /2 L(). Because sampling is
in terms of parameters ✓, we want to find a value s in
{1, . . . , n} such that the trajectory fragment constructed
from ✓1, . . . , ✓s is the largest such fragment not providing
a certificate of violation of . It is assumed there is a rou-
tine named LastSafe that finds s. E.g., LastSafe could
be based on a runtime monitor for LTL as described in [3].

In the context of the (j+1)-th iteration of Algorithm 1, once
s is found, the current probability density function p(·; vj) is
restricted to dimensions s+1, . . . , n of the parameter space⇥
and sampling is attempted using this restricted distribution.
Denoting this new sample by ✓̂s+1, . . . , ✓̂n, a new trajectory
is constructed using ✓1, . . . , ✓s, ✓̂s+1, . . . , ✓̂n and checked for
feasibility.

Algorithm 2 is intended to be inserted into Algorithm 1
immediately following Line 8, together with an if-clause to
check whether it returns invalid, in which case the trajec-
tory is entirely discarded and a new one is sampled (Line 7).

5.2 Comparison with existing work
In classical motion planning, the basic problem is to move
from an initial state to a set of goal states while avoiding
obstacles. As an LTL formula in Problem 1, this may be
expressed by

' = ⇤¬Obs ^ 3G, (6)

where Obs and G are atomic propositions corresponding to
unions of polygons in the state space X , known respectively
as the obstacles and goal. However, as an LTL formula, any
solution trajectory is necessarily infinite, whereas classically
the trajectory terminates upon reaching the set labeled G.
In this paper we treat LTL specifications as appropriate for
Problem 1 and as such, our methods produce trajectories of
infinite duration. However, it is not di�cult to adjust the
results herein for other specification languages. In particu-
lar we expect that the method introduced in this section for
re-using promising trajectories (cf. Algorithm 2) could im-
prove the original application of the cross-entropy method
to point-to-point motion planning, which we briefly demon-
strate by numerical experiments.

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

1

Figure 3: The labeled workspace in which the reach-
ability specification (6) is applied in our comparison
of prior work and our method for re-use in a classical
point-to-point problem.

Table 1: Run times for 7 trials of CE (prior work),
10 trials of CE with re-use, each with 20 iterations,
and 20 feasible trajectories per iteration

Method min (s) mean (s) max (s)

CE (prior work) 354.2 466.1 582.5
CE with re-use 133.0 174.7 226.5

Using the specification (6) but allowing satisfying trajec-
tories to have finite length, we compared the method de-
scribed in [13] against a modified version in which our Algo-
rithm 2 is applied to re-use parts of promising trajectories.
The workspace providing labels is shown in Figure 3. The
task specification (6) is decomposed by selecting the sub-
formula := ⇤¬Obs, which clearly admits finite violation
certificates—these are just the part of the trajectory from
the initial state x0 to the first state in collision with an obsta-
cle. Hence a sampled trajectory x is promising if it reaches
G (i.e., L(x) |= 3G) but there is some obstacle with which
it collides. The subroutine LastSafe is then implemented
by finding the last parameter from which the promising tra-
jectory was constructed before having the collision. In our
experiment we used the dynamics of Dubins car, as treated
in a thorough example in Section 6 below. We also used
the same trajectory parameters as described there, namely
a finite sequence of time duration and control inputs. The
maximum number of re-use attempts before returning in-
valid in Algorithm 2 is 10. Timing results after repeated
trials are listed in Table 5.2. A substantial advantage from
applying our method for trajectory re-use is apparent. The
convergence time improves by approximately a factor of 3.

6. EXAMPLES
In this section we apply the presented methods to two ex-
amples: Dubins car and a point-mass model. For both, the

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

1

2

3

4

Figure 4: The workspace W used in the Dubins car
example. The initial state is indicated by a small red
circle in the lower-left together with a line segment
based at it. The polygons correspond to atomic
propositions P1, . . . , P4, and the union of the circles
is the collective obstacle and has atomic proposition
Obs, all as used in the example specification (8).

cost function is defined to be

J (x(x0,u)) =
T�1X

t=0

kxt+1 � xtk2 + kx⌧ � xT k2, (7)

for a trajectory x0x1 · · ·x⌧�1(x⌧ · · ·xT)
!, which is of the

prefix-su�x form as introduced in Section 4.2. Ignoring the
infinite repetition of the su�x, (7) is just the path length.

Algorithms 1 and 2 and the examples described in this sec-
tion were implemented in the MathWorks MATLAB. LTL
specifications are converted to deterministic Rabin automata
using the tool LTL2DSTAR [11], which is freely available
online at http://www.ltl2dstar.de. We created a Python
script that parses output from LTL2DSTAR and generates
a MATLAB function that returns true if a given word in
prefix-su�x form is accepted by the automaton.

6.1 Dubins car
Dubins car has trajectories that are solutions of the system
of ordinary di↵erential equations

ẋ = cos ✓

ẏ = sin ✓

✓̇ = !,

where the only control input is turning rate !. Intuitively it
describes a unicycle moving in the plane at constant speed
and that is instantaneously oriented in the direction ✓. Here
we take the forward speed to be constant 1, but the treat-
ment is easily modified for other magnitudes. The Dubins
car model is both well-studied and well-motivated, e.g., since
it captures basic requirements for aircraft to maintain lift.

The labeling function is defined according to the labeling
shown in Figure 4, which we call the workspace. Notice
that this defines L only in terms of position (x, y) 2 R2,
i.e., labels are independent of orientation. This matches our
intuitive description of tasks in terms of the vehicle visiting
or avoiding certain locations. The specification is

⇤W ^⇤¬Obs ^⇤3P1 ^⇤3P2 ^⇤3P3 ^⇤3P4, (8)

where the labeled polygons in the figure have correspond-
ing propositions P1, . . . , P4. The union of the circles in the
figure is the obstacle, collectively represented by the atomic
proposition Obs. Occupancy of the workspace is enforced by
⇤W where the atomic proposition is true only for positions
inside the range [0, 20]⇥ [0, 20].

We parameterize trajectories as sequences of 10 pairs of time
durations and turning rates. The loop index is 5. (Recall the
terminology of Section 4.3.) E.g., the first three trajectory
parameter components (one per column)

✓
1 1 0.5
0 ⇡/4 �⇡/4

◆

describe motion that proceeds by steering forward for 1 sec-
ond, turning left by ⇡/4 radians (i.e., turning at a rate of
⇡/4 radians per second for a total of 1 second), and finally
turning right by ⇡/8 radians.

The sampling distribution is a multivariate Gaussian. When
generating samples, we discard those in which the time du-
ration is less than zero (because negative input durations
are not meaningful) or the absolute turning rate is greater
than 1. Because control inputs are bounded, trajectories
are of bounded curvature, which in addition to the constant
forward speed renders the example nontrivial.

Providing some of the details for Line 8 of Algorithm 1 in
this example, sampled trajectories are constructed as fol-
lows. First, sample a matrix of durations and turning rates.
Then apply it as a piecwise constant steering input. Let x⌧
be the state reached after applying the first four parameter
components (i.e., first four columns of the sampled matrix),
and let xT be the state reached after applying all of the
sampled inputs. (Recall that p = 5 is the loop index in
this example.) The desired prefix-su�x is finally created by
steering from xT to x⌧ . While our current implementation
always makes this connection by a hard left turn, note that
analytic solutions for optimal point-to-point steering ignor-
ing obstacles is known for Dubins car [15].

Algorithms 1 and 2 were applied for 30 iterations. Exam-
ple feasible trajectories found at various times during the
optimization are shown in Figure 5. A plot showing the
minimum path length (recall the cost function (7)) trajec-
tory found for each iteration is Figure 6. Notice the drastic
improvement following the first few iterations. Such jumps
may arise from changes in the best homotopy class of trajec-
tories found thus far. The plateau of minimum path lengths
beginning at iteration 21 suggests that a local minimum was
found.

6.2 Sampling waypoints
The example in this section demonstrates the case of sam-
pling waypoints and then using local planners to create a full

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

1

2

3

4

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

1

2

3

4

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

1

2

3

4

Figure 5: Demonstration of the improvement of tra-
jectories. From top to bottom, feasible trajectories
are shown from iterations 1, 15, and 30, respectively.
The small line segments drawn along the path indi-
cate orientation of Dubins car.

5 10 15 20 25 30
38

39

40

41

42

43

44

45

46

47
P

at
h
 l

en
g
th

 (
co

st
)

Iteration

Figure 6: For each iteration of Algorithm 1 applied
in the example of Section 6.1, the minimum path-
length (cost) among feasible sampled trajectories
is plotted. Compare with the sampled trajectories
shown in Figure 5.

trajectory. This is distinct from the previous example be-
cause, rather than apply a finite sequence of control inputs
and obtain the resulting states, we must solve a collection
of boundary-value problems in order to obtain the trajec-
tory. As apparent from Line 8 of Algorithm 1, this is a
crucial step, and it has the advantage that manual design
of the initial sampling distribution is more intuitive because
the LTL specification in Problem 1 depends on a labeling
function defined over states, not control inputs. (Recall the
system model from Section 2.1.)

The workspace used here is the same as in the previous ex-
ample, as shown in Figure 4. The same LTL specification
(8) is also used.

We do not declare a particular dynamics (1) here. Instead,
the crucial aspect is the manner of constructing trajecto-
ries, which proceeds as follows. Samples are obtained from
a multivariate gaussian distribution. Each sample is a 2⇥10
matrix, where each column corresponds to a position in the
workspace, and the sample as whole is a sequence of 10 way-
points. Means of the sampling distribution were initialized
to locations selected manually as indicated by bold red as-
terisks in the top plot of Figure 7.

The initial state x0 is (1, 2), and the tie index is 3. For
this example, the tie index has the easy interpretation as
the second waypoint, i.e., the su�x of a trajectory is formed
by connecting back to the second waypoint. Trajectories are
constructed by cubic spline interpolation between waypoints
and the initial state.

7. CONCLUSIONS AND FUTURE DIREC-
TIONS

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

1

2

3

4

0
.0

2

0
.0

2

0.020.02
0
.0

2

0.0
2

0.02

0
.0

4

0.04

0
.0

4

0.04 0.04

0.06

0.06

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

1

2

3

4

2

24

Figure 7: Demonstration of the improvement of tra-
jectories for the example of Section 6.2. Both plots
are displayed in the workspace from Figure 4, which
is used in both examples. The sampling distribution
is multivariate Gaussian, and the means of the distri-
bution used in the respective iteration are indicated
in each plot by bold red asterisks. Furthermore the
covariance sublevels are indicated by a iso-curves
like a topographic map. The top plot is from the
first iteration. One of the feasible trajectories found
is shown as a magenta dashed curve. The bottom
plot is from iteration 15, and it also includes a feasi-
ble trajectory found at that iteration. The sampling
distribution is very tight and the covariance levels
are mostly occluded.

We presented a stochastic optimization algorithm for opti-
mal trajectory generation for nonlinear systems operating
in complex configuration spaces with linear temporal logic
specifications. Importantly, each iteration of our algorithm
runs in time polynomial in the size of the system and spec-
ification, and does not require the computation of a dis-
crete abstraction or automaton. However, it may be ben-
eficial to pre-compute an appropriate automaton to practi-
cally increase the e�ciency of the algorithm. Additionally,
we demonstrated how re-sampling parts of partially infeasi-
ble trajectories can result in empirically faster convergence
compared to a state-of-the-art method.

One promising avenue for future work is planning for stochas-
tic systems. A chance-constrained approach could take into
account disturbances during the planning stage to compute
a “robust” or “risk- aware” open-loop trajectory. Addition-
ally, feedback control policies could be computed by consid-
ering a sampling distribution over value functions instead of
trajectories.

Another direction is to generalize the notion of trajectory
reuse. The notion of edit distance between strings, has been
used to compute minimal corrections to strings so that they
belong to a regular language [21]. Similar techniques for
omega-regular languages could be used to develop a more
principled approach to trajectory reuse in stochastic opti-
mization.

We are in the process of performing detailed experimental
comparisons with similar state-of-the-art methods, e.g., [9].

Acknowledgements
The authors thank Marin Kobilarov for providing source
code implementing the CE method in MATLAB. This work
was partially supported by United Technologies Corpora-
tion and IBM, through the industrial cyberphysical systems
(iCyPhy) consortium.

8. REFERENCES
[1] R. Alur, T. A. Henzinger, G. La↵erriere, and G. J.

Pappas. Discrete abstractions of hybrid systems. Proc.
IEEE, 88(7):971–984, 2000.

[2] C. Baier and J.-P. Katoen. Principles of Model
Checking. MIT Press, 2008.

[3] A. Bauer, M. Leucker, and C. Schallhart. Runtime
verification for LTL and TLTL. ACM Trans. Softw.
Eng. Methodol, 40(4), September 2011.

[4] C. Belta and L. C. G. J. M. Habets. Controlling of a
class of nonlinear systems on rectangles. IEEE Trans.
on Automatic Control, 51:1749–1759, 2006.

[5] A. Bhatia, M. R. Maly, L. E. Kavraki, and M. Y.
Vardi. Motion planning with complex goals. IEEE
Robotics and Automation Magazine, 18:55–64, 2011.

[6] E. M. Clarke and P. Zuliani. Statistical model
checking for cyber-physical systems. In Proc. of
Automated Technology for Verification and Analysis,
pages 1–12, 2011.

[7] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J.
Pappas. Temporal logic motion planning for dynamic
robots. Automatica, 45:343–352, 2009.

[8] R. Grosu and S. A. Smolka. Monte Carlo model

checking. In In Proc. of Tools and Algorithms for
Construction and Analysis of Systems, pages 271–286,
2005.

[9] S. Karaman and E. Frazzoli. Sampling-based
algorithms for optimal motion planning with
deterministic µ-calculus specifications. In Proc. of
American Control Conf., 2012.

[10] S. Karaman, R. G. Sanfelice, and E. Frazzoli. Optimal
control of mixed logical dynamical systems with linear
temporal logic specifications. In Proc. of IEEE Conf.
on Decision and Control, pages 2117–2122, 2008.

[11] J. Klein and C. Baier. Experiments with deterministic
!-automata for formulas of linear temporal logic.
Theoretical Computer Science, 363:182–195, 2006.

[12] M. Kloetzer and C. Belta. A fully automated
framework for control of linear systems from temporal
logic specifications. IEEE Trans. on Automatic
Control, 53(1):287–297, 2008.

[13] M. Kobilarov. Cross-entropy motion planning. Int. J.
of Robotics Research, 31:855–871, 2012.

[14] Y. Kwon and G. Agha. LTLC: Linear temporal logic
for control. In Proc. of HSCC, pages 316–329, 2008.

[15] S. M. LaValle. Planning Algorithms. Cambridge Univ.
Press, 2006.

[16] N. Markey and P. Schnoebelen. Model checking a
path. In Proc. of the Int. Conf. on Concurrency
Theory, 2003.

[17] T. Nghiem, S. Sankaranarayanan, G. Fainekos,
F. Ivancić, A. Gupta, and G. J. Pappas. Monte-Carlo
techniques for falsification of temporal properties of
non-linear hybrid systems. In Proc. of the 13th ACM
International Conference on Hybrid Systems:
Computation and Control, pages 211–220, 2010.

[18] E. Plaku. Planning in discrete and continuous spaces:
from LTL tasks to robot motions. In Advances in
Autonomous Robotics. Springer, 2012.

[19] R. Y. Rubinstein and D. P. Kroese. The Cross-entropy
Method: A Unified Approach to Combinatorial
Optimization. Springer, 2004.

[20] S. Sankaranarayanan and G. Fainekos. Falsification of
temporal properties of hybrid systems using the
cross-entropy method. In Proc. of the 15th ACM
International Conference on Hybrid Systems:
Computation and Control, pages 125–134, 2012.

[21] R. A. Wagner. Order-n correction for regular
languages. Commun. ACM, 17(5):265–268, 1974.

[22] E. M. Wol↵ and R. M. Murray. Optimal control of
nonlinear systems with temporal logic specifications.
In Proc. of Int. Symposium on Robotics Research,
2013.

[23] E. M. Wol↵, U. Topcu, and R. M. Murray.
Optimization-based control of nonlinear systems with
linear temporal logic specifications. In Proc. of Int.
Conf. on Robotics and Automation, 2014.

[24] T. Wongpiromsarn, U. Topcu, and R. M. Murray.
Receding horizon temporal logic planning. IEEE
Trans. on Automatic Control, 2012.

[25] H. L. S. Younes and R. G. Simmons. Probabilistic
verification of discrete event systems using acceptance
sampling. In In Proc. 14th International Conference
on Computer Aided Verification, pages 223–235, 2002.

