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Abstract

Motivated by the availability of different types of delays in embedded systems and biological

circuits, the objective of this work is to study the benefits that delay can provide in simplifying the

implementation of controllers for continuous-time systems. Given a continuous-time linear time-invariant

(LTI) controller, we propose three methods to approximate this controller arbitrarily precisely by a simple

controller composed of delay blocks, a few integrators and possibly a unity feedback. Different problems

associated with the approximation procedures, such as finding the optimal number of delay blocks or

studying the robustness of the designed controller with respect to delay values, are then investigated.

We also study the design of an LTI continuous-time controller satisfying given control objectives whose

delay-based implementation needs the least number of delay blocks. A direct application of this work is

in the sampled-data control of a real-time embedded system, where the sampling frequency is relatively

high and/or the output of the system is sampled irregularly. Based on our results on delay-based controller

design, we propose a digital-control scheme that can implement every continuous-time stabilizing (LTI)

controller. Unlike a typical sampled-data controller, the hybrid controller introduced here—consisting

of an ideal sampler, a digital controller, a number of modified second-order holds and possibly a unity

feedback—is robust to sampling jitter and can operate at arbitrarily high sampling frequencies without

requiring expensive, high-precision computation.

I. INTRODUCTION

The field of control systems has seen remarkable progress in areas such as robust control,

adaptive control, cooperative control, system identification and optimal control [15], [26], [28],

[35], [46]. This has made it possible to engineer high performance controllers for real-world

systems. However, the complex structure of such controllers is often an obstruction to their

implementation. It is, therefore, potentially useful to impose a simplicity constraint on the
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structure of the controller being designed for a large-scale system. This problem has not yet

attracted much attention in the literature, and there are only a few works aiming at designing

low-complex controllers. For example, Brockett [9] tackles a similar problem by optimizing a

performance index that accounts for the complexity of the controller.

On the other hand, many theories have been developed for the analysis and synthesis of time-

delay control systems in the continuous-time domain due to the ubiquity of communication,

computation or propagation delays in both embedded systems and biological circuits [22], [37],

[45]. The book [36] describes the presence of delay in biology, chemistry, economics, mechanics,

physics, physiology, and engineering sciences. Most of the existing controller design methods for

time-delay systems regard delay as a nuisance and design a controller for the undelayed model

of system in such a way that it is sufficiently robust to the underlying delay. Nevertheless, it is

known that the voluntary introduction of delay in the control of an undelayed system can benefit

the control process. For instance, delay can be used to create a limit cycle for nonlinear systems

[8], to perform deadbeat tracking for continuous-time systems [42], or to stabilize oscillatory

systems [1], [39]. In the continuous-time domain, delay blocks, known also as delay lines, are

intended to delay their incoming signal by a certain time period and exist in many different fields.

For example, transmission lines in electronics/communications and cavity delay lines (trombone

delay lines) in optics play the role of delay lines [11], [33].

Neurons and gene regulatory networks are two sources of delays in biology [2]. Time delays

appear in genetic networks due to transcription, translation, and translocation processes [39], [40].

Time delays have important roles in biological systems such as causing protein levels to oscillate

in gene regulatory networks or making different rhythmic spatio-temporal patterns in neural

networks [14], [38], [39]. Recently, there has been a considerable amount of interest in synthetic

biology, whose goal is to build artificial biological systems for engineering applications [16], [21],

[34]. This is often achieved by assembling and programming different biological components

in such a way that the resulting circuit performs a computation, fabricates a molecular-scale

structure or controls a system of molecular sensors and actuators [3], [17], [41]. By regarding a

biological system composed of several interacting components as a distributed control system,

two easy-to-manipulate parameters for design purposes are (i) the topology of the distributed

system (interaction topology) and (ii) time delays in the interactions. Hence, the interaction

graph together with the amount of delays in the interactions plays the role of the controller in a
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biological system. A primary motivation of the present work is the necessity of treating delays

as the control parameters for this important class of emerging systems.

In more traditional engineered control systems, a common source of delays is the discrete delay

in clocked systems. Since the invention of digital circuits and digital computers, there has been

an every-growing interest in the digital control of continuous-time systems. Computer controlled

systems have been widely used in a broad range of applications from robotics, autopilot and radar

to anti-lock braking systems [4], [29]. A typical digital-control scheme for a continuous-time

system is composed of an analog-to-digital converter (sampler), a digital processor and a digital-

to-analog converter (hold circuit). This configuration is referred to as sampled-data control system

and has been long studied in the literature [12], [27], [44]. Among many problems that have been

investigated in the context of sampled-data control systems are stability, robustness, sensitivity,

frequency-domain characterization, H2 and H∞ sampled-data controllers and best achievable

tracking performance [6], [13], [18], [24], [30], [43]. Current silicon technology has enabled the

design of embedded systems operating at very high frequencies [5]. However, the conventional

methods for the synthesis of sampled-data control systems require high processing power to

cope with numerical issues if the sampling rate is relatively fast. More precisely, increasing the

sampling frequency makes the digital controller extremely sensitive to measurement noise and

computational round-off errors. The situation becomes worse if the sampling is subject to jitter

and irregularities.

In this paper, we first consider the continuous-time domain in which the delay operator does

not appear naturally. Given a continuous-time linear time-invariant (LTI) controller, we show that

the controller can be approximated arbitrarily precisely by a simple delay-based controller. This

controller is composed of some delay blocks, a few integrators and possibly a unity feedback. If

the controller is stable and single-input single-output, the number of integrators is at most two.

This result implies that every high-order LTI controller has a simple delay-based implementation,

which uses delay blocks rather than several integrators. Several properties of the proposed delay-

based controller are investigated throughly in this paper. Later on, we tackle the problem of

designing a continuous-time LTI controller satisfying given control objectives whose delay-based

implementation needs the least number of delay blocks.

As an application of the aforementioned results, we propose a robust digital-control scheme for

continuous-time systems that can be used in two important scenarios: (i) having a high sampling
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frequency with limited computational power (ii) having a slow processor with jitter and irregular

sampling times. Note that the second scenario occurs when the sampling frequency is relatively

faster than the slow processing rate and, in addition, the sampling times are prone to delays

and irregularities [32]. The main focus here will be on the first application (scenario), while

the second application can be treated similarly. We show that every continuous-time stabilizing

(LTI) controller can be implemented in a hybrid form consisting of a sampler, a digital processor,

some so-called “modified second-order holds” and possibly a unity feedback from the hold circuit

to the sampler. This hybrid controller benefits from the fact that the increase of the sampling

frequency has a direct influence only on the memory size of the controller, as opposed to its

parameters. This property makes the parameters of the controller robust to the sampling rate and

irregularities.

The rest of the paper is organized as follows. The delay-based implementation of a given

controller in the continuous-time domain is studied in Section II, and subsequently the delay-

based controller design is tackled in Section III. The results are then applied to the sampled-data

control problem in Section IV. Simulation results are presented in Section V to illustrate the

techniques developed here. Finally, some concluding remarks are given in Section VI.

II. CONTINUOUS-TIME DELAY-BASED IMPLEMENTATION

Consider a continuous-time LTI system S with the state-space representation

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
(1)

where x(t) ∈ �n, u(t) ∈ �m and y(t) ∈ �r denote the state, input and output of the system,

respectively. Let P (s) denote the transfer function of S. Assume that a controller G(s) must be

designed for the system in order for its behavior to satisfy certain specifications. It is preferred

in practice that G(s) has the least possible complexity. The simplest structure that one can think

of for G(s) is likely a static output-feedback controller G(s) = L ∈ �r×m, i.e., u(t) = Ly(t).

However, it is well-known that all LTI systems are not stabilizable via static output feedbacks.

A more complex, but still simple, type of controller is as follows:

u(t) =
p�

i=1

αiy(t− τi), (2)
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where α1, α2, ...,αp are constant gains and τ1, τ2, ..., τp are some nonnegative delays. The above

controller is motivated by biological systems, as discussed in the introduction. Note that this

controller can be expressed in the Laplace domain as
�p

i=1 αie−τis. Since the decision problem

of whether there exists a stabilizing controller of the form u(t) = Ly(t) is NP-hard, it is expected

that a direct design of a controller of the type (2) is cumbersome. This section aims to develop

an indirect method for designing a controller in the form of (2) based on a given LTI controller.

To this end, consider a given LTI controller G(s) satisfying prescribed design specifications. We

write a state-space realization of G(s) as

ẋc(t) = Acxc(t) + Bcy(t),

u(t) = Ccxc(t) + Dcy(t),
(3)

where xc(t) ∈ �nc represents the state of the controller. The first goal of this part is to

approximate the given controller G(s) by a simple delay-based controller Ĝ(s) of the form
�p

i=1 αie−τis so that the approximation error is less than any prescribed tolerance. Since it may

turn out that a proper approximating controller Ĝ(s) either does not exist or exploits many

delays, another objective of the paper is to characterize other variants of the type (2) that still

have easy implementation and can approximate every stabilizing controller.

A. Illustrative Examples

Before developing the main results, we wish to illustrate with two examples how a high-order

rational controller G(s) can be approximated by a simple delay-based controller.

Example 1: Consider the dynamical control system Gn

ṁi(t) =
1

0.05 + pσ(i)(t)
+ 0.05− 0.502mi(t) + liζ1(t), i = 1, 2, ..., 10,

ṗi(t) = 0.35mi(t)− 0.7pi(t), i = 1, 2, ..., 10,

ζ2(t) = m1(t) + p4(t) + p10(t),

(4)

with the parameters (l1, l2, ..., l20) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1) and (σ(1),

σ(2), ...,σ(10)) = (10, 1, 2, ..., 9). The control system Gn is indeed a specific gene regulatory

network consisting of 10 gene-protein pairs in a ring, where ζ1(t) is an external injection signal,

ζ2(t) is the output of the circuit, and mi(t), pi(t) are the concentrations of mRNA and protein

for the ith species [39]. We linearize the system Gn around its unique positive equilibrium point
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Fig. 1. (a): The Bode plots of the controllers G(s) (dashed) and G̃(s) (solid) for Example 1 in Subsection II-A; (b): The Bode

plots of the controllers G(s) and G̃(s) for Example 2 in Subsection II-A.

and denote the linearized system as G(s). Since the control system G(s) has very slow dynamics

(due to the existence of the mode with eigenvalue −0.0285), let the frequency range of interest

be the interval [0, 1]. By considering Gn as a part of a larger gene regulatory network N , the

circuit Gn can be regarded as a controller in the network N . The goal of this example is to

study if the controller G(s) can be replaced by a simple delayed-based controller in the network

N . To this end, define Ĝ(s) :=
�20

j=0 e−3jsg(3j), where g(t) denotes the impulse response of

the controller G(s). The Bode diagrams of the controllers G(s) and Ĝ(s) are plotted over the

frequency range [0, 1] in Figure 1(a), which show that the static controller Ĝ(s) with only 20

delay blocks performs very similarly to the controller G(s) with 20 states over the desired range

of frequencies.

Example 2: Consider the (admittedly artificial) controller G(s) = 1− (s+0.9)80

(s+1)80 , which is hard

to approximate by a low-order LTI controller due to its repeated poles. Let g(t) be the Laplace

inverse of the controller G(s) and approximate the signal g(t) by a piecewise linear function

ĝ(t). A candidate for the approximating function ĝ(t) is shown in Figures 2(a) and 2(b). This

piecewise linear function has 10 knots given by the vector τ as follows:

τ =
�

0 0.1 0.2 0.3 0.4 0.5 0.81 1.21 1.96 2.72
�
. (5)

The values of ĝ(t) at the breakpoints are

ĝ(τ1) = 7.901, ĝ(τ2) = 4.631, ĝ(τ3) = 2.505, ĝ(τ4) = 1.121, ĝ(τ5) = 0.312,

ĝ(τ6) = −0.264, ĝ(τ7) = −0.551, ĝ(τ8) = −0.14, ĝ(τ9) = 0.1, ĝ(τ10) = 0.0163,
(6)
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where τi denotes the ith element of τ for every i ∈ {1, 2, ..., 10}. Define Ĝ(s) as the Laplace

transform of ĝ(t), which can be obtained as

Ĝ(s) :=
9�

i=1

�
wi

s2
+

ĝ(τi)

s

�
e−τis +

9�

i=1

�
−wi

s2
− ĝ(τi+1)

s

�
e−τi+1s, (7)

where

wi =
ĝ(τi+1)− ĝ(τi)

τi+1 − τi
, i = 1, 2, ..., 9. (8)

The implementation of Ĝ(s) requires 2 integrators and 9 delay blocks. The Bode plots of G(s)

and Ĝ(s) are compared in Figure 1(b) to show how closely Ĝ(s) approximates G(s). Note that a

purely integrator-based implementation of G(s) performing as well as Ĝ(s) is expected to need

more than 30 integrators (this can be verified using the balanced model-reduction method [15]).

To develop a concrete theory for the general case, assume for now that G(s) is a single-

input single-output (SISO) controller that is (asymptotically) stable. These assumptions will be

removed in Subsections II-G and II-H. With no loss of generality, we suppose that G(s) is

strictly proper, because the direct term Dc in the controller corresponds to a static feedback that

can be added to the delay-based controller directly. Three different methods will be proposed in

the sequel for designing Ĝ(s).

B. Method 1: Approximation by pure delays

Let Ĝ(s) be a function in the Laplace domain that is analytic on the open left-half s-plane.

It follows from the maximum modulus theorem and the stability of the controller G(s) that

max
s: Re{s}≥0

|G(s)− Ĝ(s)| = max
ω∈�

|G(jω)− Ĝ(jω)|, (9)

where the operator | · | returns the absolute value of a complex number. Therefore, the maximum

difference between the controllers G(s) and Ĝ(s) can be computed by restricting evaluation to

the jω axis. On the other hand, the definition of the Fourier transform yields

G(jω) =

� ∞

0

g(t)e−jωtdt. (10)

Since each term e−jωt has the form of a delay component, the above integral implies that G(s)

can be regarded as a controller with static distributed delays. In contrast, the controller Ĝ(s) to

be designed should be in the form of static lumped delays. Hence, the question of interest would

be how to approximate the distributed delays with lumped delays. To answer this question, one
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Fig. 2. (a): A piecewise linear approximation of the inverse Laplace of G(s) = 1 − (s+0.9)80

(s+1)80
in the interval [0, 0.5]; (b): a

piecewise linear approximation of the inverse Laplace of G(s) = 1− (s+0.9)80

(s+1)80
in the interval [0.5, 2.5]; (c): an approximation

of the inverse Laplace of the controller G(s) = 1
(s+1)20

by a step-like function (needed for Method 2).

can take advantage of any integral approximation method, such as the midpoint method. More

precisely, consider some nonnegative numbers τ1 < τ2 < ... < τp and define Ĝ(s) as

Ĝ(s) =
p−1�

i=1

g(τi)(τi+1 − τi)e
−τis (11)

or

Ĝ(s) =
p−1�

i=1

g(τ̄i)(τi+1 − τi)e
−τ̄is, (12)

where τ̄i = τi+τi+1

2 for i = 1, 2, ..., p − 1. The main focus of this subsection will be on the

approximating controller (12) as the other one can be analyzed similarly.

Theorem 1: The approximation error G(jω) − Ĝ(jω) satisfies the following inequality for

every ω ∈ �:

|G(jω)− Ĝ(jω)| ≤
√

2

� τ1

0

|g(t)|dt +
√

2

� ∞

τp

|g(t)|dt

+
√

2
p−1�

i=1

(τi+1 − τi)3

24
max

τ∈[τi,τi+1]

������
∂2

�
g(τ) cos(ωτ)

�

∂2τ

����� ,

�����
∂2

�
g(τ) sin(ωτ)

�

∂2τ

�����

�
.

(13)

Proof: The proof is a direct consequence of the midpoint error formula. The details are omitted

for brevity (see the proof of Theorem 2 for a similar argument). �
Notice that the right side of the inequality given in Theorem 1 can become large for sufficiently

large values of ω due to the existence of the second derivative of the term cos(ωτ). This fact

can also be justified from another standpoint: if τ1, τ2, .., τp are integer multiples of some real

number, then Ĝ(jω) will be a periodic number, otherwise it would be almost periodic with a

potentially large period. As a result, Ĝ(jω) cannot approximate G(jω) for high frequencies.
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However, in the case when the system for which G(s) is designed acts as a low-pass filter with

an appropriate stop frequency, it is not critical that G(jω) and Ĝ(jω) are quite different for

high frequencies. On the other hand, it can be inferred from the inequality (13) that the numbers

τ1, τ2, ..., τp (in addition to p) can be chosen in such a way that Ĝ(jω) approximates G(jω)

arbitrarily precisely over any desired range of frequencies.

C. Method 2: Approximation by step-like functions

Since Ĝ(s) proposed by Method 1 has an undesirable behavior in high frequencies, a more

sophisticated approach can be used to resolve this issue. The basic idea behind the new method

is to approximate the impulse response of the controller G(s) by a step-like function. Figure 2c

illustrates this idea for the particular controller G(s) = 1
(s+1)20 . Given a monotonically increasing

sequence of nonnegative numbers τ1, τ2, ..., τp, the function g(t) can be approximated by a step-

like function such as

ĝ(t) =





g(τi) t ∈ [τi, τi+1], i = 1, 2, ..., p− 1

0 t < τ1 or t > τp

(14)

or

ĝ(t) =





g (τ̄i) t ∈ [τi, τi+1], i = 1, 2, ..., p− 1

0 t < τ1 or t > τp

(15)

where τ̄i = τi+τi+1

2 . This subsection will focus on the later ĝ(t) as the former one can be analyzed

similarly. The transfer function corresponding to the function ĝ(t) given in (15) is as follows:

Ĝ(s) =
1

s

p�

i=1

αie
−τis, (16)

where

α1 := g(τ̄1), αi := g(τ̄i)− g(τ̄i−1) (i = 2, 3..., p− 1), αp := −g(τ̄p−1). (17)

Note that Ĝ(s) can be implemented using p static delay terms and an integrator.

Theorem 2: The approximation error G(jω) − Ĝ(jω) satisfies the following inequality for

every ω ∈ �:

|G(jω)− Ĝ(jω)| ≤
√

2

� τ1

0

|g(t)|dt +
√

2

� ∞

τp

|g(t)|dt +
p−1�

i=1

max
τ∈[τi,τi+1]

|g��(τ)|
√

2(τi+1 − τi)3

24

+
√

2
p−1�

i=1

|g�(τ̄i)|max
�
|Re{H(i, ω)}| , |Im{H(i, ω)}|

�
,

(18)
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where

H(i, ω) :=

� τi+1

τi

(t− τ̄i)e
−jωtdt, i = 1, 2, ..., p− 1, ω ∈ �. (19)

Proof: One can use the Taylor series with the Lagrange form of the remainder to obtain that for

every i ∈ {1, 2, ..., p− 1} and t ∈ [τi, τi+1], there exists a function γ(t) ∈ [τi, τi+1] such that

g(t) = g(τ̄i) + g�(τ̄i)(t− τ̄i) +
g��(γ(t))

2
(t− τ̄i)

2. (20)

Therefore

|Re{G(jω)− Ĝ(jω)}| =

����
� ∞

0

(g(t)− ĝ(t)) cos(ωt)dt

���� ≤
p−1�

i=1

� τi+1

τi

����
1

2
g��(γ(t))(t− τ̄i)

2 cos(ωt)dt

����

+
p−1�

i=1

����
� τi+1

τi

g�(τ̄i)(t− τ̄i) cos(ωt)dt

���� +

����
� τ1

0

g(t) cos(ωt)dt

���� +

�����

� ∞

τp

g(t) cos(ωt)dt

�����

≤
p−1�

i=1

max
τ∈[τi,τi+1]

|g��(τ)|(τi+1 − τi)3

24
+

� τ1

0

|g(t)|dt +
p−1�

i=1

|g�(τ̄i)| |Re{H(i, ω)}|+
� ∞

τp

|g(t)|dt.

(21)

An inequality similar to (21) can be written for |Im{G(jω)− Ĝ(jω)}| which together with (21)

proves this theorem. �
It is noteworthy that H(i, ω) introduced in the above theorem has the property that it is equal to

zero at ω = 0 and also tends to zero as ω goes to infinity. The inequality provided in Theorem 2

implies that one can design the delays τ1, τ2, ..., τp (besides p) so that the approximation error

is less than any given number at every frequency (note that since G(s) is strictly proper, g(t)

attenuates to zero as t increases).

D. Method 3: Piecewise linear approximation

Although Method 2 eliminates the fluctuation effect created by Method 1 at high frequencies,

we propose a third method that normally needs fewer delays than Method 2 at the cost of

deploying one more integrator. Let the function g(t) be approximated by a piecewise linear

function ĝ(t) with the breakpoints τ1, τ2, ..., τp (listed in an ascending order), namely

ĝ(t) =






g(τi+1)−g(τi)
τi+1−τi

(t− τi) + g(τi) t ∈ [τi, τi+1]

0 t < τ1 or t > τp

(22)

for all i ∈ {1, 2..., p− 1}. As before, the function Ĝ(s) can be obtained as follows:

Ĝ(s) =
p�

i=1

βi(s)e
−τis, (23)
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where

β1(s) :=
w1

s2
+

g(τ1)

s
, βi(s) :=

wi

s2
− wi−1

s2
(i = 2, ..., p− 1), βp(s) := −wp−1

s2
− g(τp)

s
,

and

wi :=
g(τi+1)− g(τi)

τi+1 − τi
, i = 1, 2, ..., p− 1. (24)

Note that the approximating controller Ĝ(s) introduced above can be implemented using p static

delay terms and two integrators. It is desired to measure the estimation error �G(jω)−Ĝ(jω)�∞,

where � · �∞ denotes the infinity norm.

Theorem 3: The approximation error �G(jω)− Ĝ(jω)�∞ satisfies the following inequality:

�G(s)− Ĝ(s)�∞ ≤
√

2

� τ1

0

|g(t)|dt +
√

2

� ∞

τp

|g(t)|dt +
p−1�

i=1

max
τ∈[τi,τi+1]

|g��(τ)|
√

2(τi+1 − τi)3

12
.

(25)

Proof: Given an index i ∈ {1, 2, ..., p−1}. it follows from the polynomial interpolation formula

that

g(t)− ĝ(t) =
1

2
g��(η(t))(t− τi+1)(t− τi), t ∈ [τi, τi+1], (26)

where η(t) is some time instant in the interval [τi, τi+1]. Therefore, one can write:

|Re{G(jω)− Ĝ(jω)}| =

����
� ∞

0

(g(t)− ĝ(t)) cos(ωt)dt

���� ≤
����
� τ1

0

g(t) cos(ωt)dt

����

+

�����

� ∞

τp

g(t) cos(ωt)dt

����� +
p−1�

i=1

� τi+1

τi

����
1

2
g��(η(t))(t− τi+1)(t− τi) cos(ωt)dt

����

≤ 1

2

p−1�

i=1

max
τ∈[τi,τi+1]

|g��(τ)|
� τi+1

τi

(τi+1 − t)(t− τi)dt +

� τ1

0

|g(t)|dt +

� ∞

τp

|g(t)|dt

=
p−1�

i=1

max
τ∈[τi,τi+1]

|g��(τ)|(τi+1 − τi)3

12
+

� τ1

0

|g(t)|dt +

� ∞

τp

|g(t)|dt.

(27)

A similar inequality can be obtained for |Im{G(jω) − Ĝ(jω)}| whose combination with the

above relation completes the proof. �
It follows from the inequality provided in Theorem 3 that the delays τ1, τ2, ..., τp (together

with p itself) can be contrived in such a way that the approximation error in infinity norm does

not exceed a prescribed tolerance.

In this subsection, we approximated the time-domain signal g(t) with a piecewise linear

function, by assuming that the knots of the approximating signal lie on the curve of the function
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g(t). This assumption has been made for simplicity and it is not required in general to choose

the corners of the approximating function ĝ(t) on the signal g(t). This idea is illustrated in

Figure 2b. The theory developed above can be easily extended to the general case.

E. Optimal Choice of Delays

Three methods have been proposed in the preceding subsections for approximating a given

high-order controller by a simple delay-based controller. In terms of the given delays, upper

bounds on the infinity norm of the error were proposed for each method. However, a fundamental

question in the first place would be how to find an optimal set of delays {τ1, τ2, ..., τp}. The

provided upper bounds can definitely help pick appropriate delays. Alternatively, one can take

advantage of the existing methods in the literature for this purpose. More specifically, notice that

Methods 2 and 3 rely on the approximation of a function g(t) by a step-like or a piecewise linear

function ĝ(t). Given a function norm � · � (namely 1 or ∞ norm), there are systematic methods

in the literature for finding a function ĝ(t) with the minimum number of breakpoints such that

the error �g(t) − ĝ(t)� is less than a prescribed positive tolerance ε. The most straightforward

way for this purpose is to discretize the signal g(t) in order to make the underlying problem

finite dimensional. One of these methods will be outlined in the sequel for piecewise linear

approximation with respect to the ∞-norm. Let T denote a positive time such that |g(t)| ≤ ε for

all t ≥ T . Discretize the signal g(t) over the interval [0, T ] with a sampling period h to obtain

a discretized signal gh(t). The goal is to find a discrete piecewise linear signal ĝh(t) such that

�gh(t)− ĝh(t)�∞ ≤ ε. Four problems can be defined as follows for a given positive real ε and

a natural number p:

• P1: Find a piecewise linear function ĝh(t) with the minimum number of breakpoints

(corners) such that �gh(t)− ĝh(t)�∞ ≤ ε.

• P2: Find a piecewise linear function ĝh(t) with the minimum number of breakpoints such

that ĝh(t) overlaps on gh(t) at its corners (when regarded as a graph) and that �gh(t) −

ĝh(t)�∞ ≤ ε.

• P3: Find a piecewise linear function ĝh(t) with at most p breakpoints such that �gh(t) −

ĝh(t)�∞ is minimum.

• P4: Find a piecewise linear function ĝh(t) with at most p breakpoints such that ĝh(t) overlaps

on gh(t) at its corners and that �gh(t)− ĝh(t)�∞ is minimum.
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Note that the delays being found will be all multiples of the sampling time h. Let N denote the

number of discrete points of the function gh(t). It is shown in [25] that there are deterministic

algorithms for solving P1, P2, P3 and P4 whose complexities are O(N), O(N2), O(N2 log N)

and O(N2 log N), respectively. This implies that P1 seems to be the easiest problem to solve,

which is indeed the most desirable one for the purpose of the present paper. However, since the

algorithm for solving P1 is somewhat involved, the algorithm for P2 will be briefly explained.

To solve P2, represent the points of the discrete signal gh(t) with p1, p2, ..., pN . Construct a

directed graph G with N vertices as follows. For every i, j ∈ {1, 2, ..., N} and i < j, connect

vertex i to vertex j via a directed edge if the infinity norm between the line connecting pi to

pj and all points pi, pi+1, ..., pj is less than or equal to ε. This graph can be built in O(N2).

Now, every path in this graph from vertex 1 to vertex N is a candidate for ĝ(t). An optimal

ĝ(t) corresponds to the shortest path from vertex 1 to vertex N , which can be found in O(N2)

due to the graph being acyclic.

F. Unstable Controllers

Assume that a given controller G(s) is unstable. The next question would be how to implement

this controller in practice using delay terms with the aim of simplifying the control structure.

The easiest approach is to decompose G(s) as the cascade of stable and unstable sub-controllers

and then simplify only the stable part. This technique is inefficient in the case when most of the

poles of the controller G(s) are unstable. Thus, a more advanced technique will be introduced

here. Since G(s) stabilizes the system S, the controller itself must be stabilizable. Therefore,

there exists a matrix gain L ∈ �1×nc such that Ac − BcL is Hurwitz. Define w(t) := Lxc(t)

and e(t) := y(t) + w(t). The controller G is equivalent to the feedback configuration given in

Figure 3, whose backward path is a unity feedback and whose forward path is a controller Ge(s)

with the control law
ẋc(t) = (Ac −BcL)xc(t) + Bce(t),

u(t) = Ccxc(t),

w(t) = Lxc(t).

(28)

It can be observed that the controller Ge(s) with the single input e(t) and the outputs u(t)

and w(t) is stable. Now, each of the transfer functions from “e(t) to u(t)” and “e(t) to w(t)”

June 12, 2010 DRAFT



14

)(sG)(ty )(tu )(ty )(tu
)(tv

)(~ sG

(a) (b) (c)

Fig. 3. Figures (a) and (b) show an unstable controller and its equivalent feedback representation, respectively, where the

forward path controller Ge(s) is stable. Figure (c) describes a generic model for the stabilizing controller G(s).

can be approximated by a simple delay-based controller. This makes the controller Ge(s) be

approximated by a controller Ĝe(s) consisting of delay blocks and at most four integrators (due

to the existence of two SISO transfer functions). As a result, every stabilizing unstable controller

G(s) can be approximated by a feedback controller with the unity feedback whose forward path

is a delay-based controller.

G. Multi-Input Multi-Output and Distributed Control Systems

Assume for now that the controller G(s) is multi-input single-output. The results developed

earlier can be adopted to show that:

• If G(s) is stable, each of Methods 1, 2 or 3 can be easily used to approximate G(s) with

a delay-based controller consisting of at most two integrators.

• If G(s) is unstable, it should be first realized as the configuration given in Figure 3(b).

Then, the forward path can be approximated using a delay-based controller with the main

difference that the resulting controller could potentially need more than 4 integrators. The

reason is that the signal w(t) is no longer a scalar, and hence the approximation of the

transfer function from e(t) to w(t) requires as many double-integrators as the number of

nonzero rows of the auxiliary matrix L. Note that if, for instance, G(s) is stabilizable

through one of its single inputs, there exists a proper matrix L with only one nonzero row.

In the case when G(s) is a multi-input multi-output (MIMO) controller, regard this as a set

of multi-input single-output sub-controllers and then apply the above result to each of these
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sub-controllers.

It can be deduced from the above discussion that in the case when G(s) is a large matrix,

a delay-based controller may need several delays and more than 4 integrators. Nevertheless, an

important application of this work is in the distributed/decentralized control of an interconnected

system. For such an application, G(s) is naturally partitioned into a number of blocks where

each block represents the local controller of a control channel/agent. Then, disparate blocks of

G(s) can have their own delay sets and integrators as they correspond to separate control agents.

H. Stability Issue

Recall that the approximating controller Ĝ(s) obtained using Method 2 or Method 3 includes

one or two integrators. A potential concern is that Ĝ(s) could have a pole at the origin, whereas

G(s) has no pole in the closed right-half complex plane. However, it can be shown that Ĝ(0) is

finite in both cases, as a pole-zero cancellation occurs. Since this cancellation cannot take place

perfectly in practice, an extra pole at zero will be introduced using Methods 2 and 3. Although

this new pole may not affect the stability of the closed-loop system, in the case when a stable

approximating controller is sought, one can resolve the issue easily. To present the main idea,

consider Method 2 which approximates g(t) by a step-like function, namely

ĝ(t) =





g(τi) t ∈ [τi, τi+1], i = 1, 2, ..., p− 1

0 t < τ1 or t > τp

(29)

Let ĝ(t) be modified as below:

ĝ(t) =





g(τi)e−α(t−τi) t ∈ [τi, τi+1], i = 1, 2, ..., p− 1

0 t < τ1 or t > τp

(30)

where α is a (small) positive number. As before, define Ĝ(s) to be the Laplace transform of

ĝ(t). It is easy to show that Ĝ(s) can be implemented using p delay terms along with the stable

low-pass filter 1
s+α as opposed to an integrator.

I. Stability and Robustness

It was shown earlier how to approximate a nominal controller G(s) by a delay-based controller

with possibly a unity feedback (in the case of an unstable G(s)). The resultant controller may

not stabilize the system S due to the approximation error not being sufficiently small. Thus, a
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stability analysis is required to guarantee the closed-loop stability of the system. To this end,

consider a general controller G(s) (which could be stable or unstable) that is approximated by a

unity feedback, as depicted in Figure 3, with a delay-based sub-controller Ĝe(s) in the forward

path. Note that the case of a stable controller G(s) is a special case of this setting by letting L be

zero. This subsection develops some results for the SISO case, which can be easily generalized

to the MIMO case. Notice that Ĝe(s) is an approximation of the sub-controller Ge(s), and that

the error between these two controllers can be best modeled by both additive and multiplicative

terms. Therefore, let ∆1(jω) ∈ C and ∆2(jω) ∈ C2×1 be uncertainty functions such that

Ĝe(jω) = Ge(jω)(1 + ∆1(jω)) + ∆2(jω), ∀ω ∈ � (31)

(where C denotes the set of complex numbers). It can be shown that the closed-loop control

system (under the approximating controller designed) is stable if
����

P̄Ge

1 + P̄Ge

����
∞
|∆1(jω)|+

����
P̄

1 + P̄Ge

����
∞
|∆2(jω)| < 1, ∀ω ∈ �, (32)

where P̄ (s) =
�

P (s) 1
�
. The above inequality provides a means to check the stability of the

closed-loop system for a designed Ĝ(s), or even to design Ĝ(s) by first finding the permissible

uncertainties ∆1(jω), ∆2(jω) and then obtaining delays so that the above inequality is satisfied.

A question arises: how sensitive is the designed controller to the delay values? This question

is of a great importance due to the fact that it may not be possible to have a perfect delay block

in practice. To investigate this issue, consider Method 1. Let the delay values τ1 + δτ1, τ2 +

δτ2, ..., τp + δτp be used in the delay blocks instead of the nominal values τ1, τ2, ..., τp. This

means that the approximating controller

Ĝ(s) =
p−1�

i=1

g(τi)(τi+1 − τi)e
−τis (33)

will be perturbed as follows:

Ĝ(s) + ∆Ĝ(s) =
p−1�

i=1

g(τi)(τi+1 − τi)e
−(τi+δτi)s. (34)

It is easy to observe that ∆Ĝ(jω) is negligible for small values of ω; in particular, ∆Ĝ(0) = 0.

However, ∆Ĝ(jω) may become large for a high frequency ω. In other words, a perturbation in

the delays would affect the transfer function of the controller only at high frequencies, which is
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not a big issue if the system for which the controller is designed is strictly proper (due to the

filtering property of the system).

Remark 1: The two above-mentioned analyses are based on the assumption that the delay

blocks operate either at the nominal values τ1, ..., τp or at some fixed perturbed values τ1 +

δτ1, τ2 + δτ2, ..., τp + δτp. Nevertheless, the delay terms are always subject to jitter in practice,

which make them time-varying as τ1 + δτ1(t), τ2 + δτ2(t), ..., τp + δτp(t). The foregoing stability

analyses can be easily adopted to derive sufficient conditions guaranteeing the bounded-input

bounded-output stability of the closed-loop system under time-varying delays. For instance, the

condition (32) should be modified as
����

P̄Ge

1 + P̄Ge

����
∞
�∆1�∞ +

����
P̄

1 + P̄Ge

����
∞
�∆2�∞ < 1, (35)

where ∆1 and ∆2 are time-varying uncertainties that account for both the impulse response

approximation error and jitter in the delay terms. Other sufficient conditions can be obtained

using the techniques discussed in [22], which turn out to be explicit in terms of the variation

rates δ̇τ1(t), ..., δ̇τp(t).

III. NEAR-OPTIMAL DELAY-BASED CONTROLLER DESIGN

The problem of implementing a given continuous-time controller G(s) in a delay-based form

was investigated in the preceding section. Now, assume that some design specifications are

provided instead of a controller G(s) directly. Since there may exist an infinite number of

controllers G(s) satisfying the underlying design objectives, we wish to find the one whose

delay-based implementation needs the least number of delay blocks. To this end, for simplicity

and with no loss of generality, assume that the system S is strongly stabilizable, single-input

multi-output and its direct term D is equal to zero. Two methods will be proposed in the sequel

for designing a stable controller G(s) whose delay-based implementation is near-optimal, where:

• In method 1, the order of the unknown controller G(s) is set a priori and the design

specifications are rather general.

• In method 2, the order of the unknown controller G(s) is arbitrary (not fixed), and the

stability of the closed-loop system is the only design objective.

For the first method, denote the order of the controller G(s) being designed as nc and the

given design specifications as D. Assume that the control specifications D can be translated into
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a matrix inequality as

L(Ac, Bc, Cc, R) ≺ 0, (36)

for some slack (matrix) variable R and matrix operator L that is bilinear (quadratic) in its

argument, where ≺ represents the matrix inequality in the negative-definite sense. It is noteworthy

that many specifications such as guaranteed H2 performance, guaranteed H∞ performance, robust

pole-placement or any combinations of these specifications can be expressed in the above form

(even the ones involving rank constraints) [7], [15]. The simplicity of the best piecewise linear

approximation of g(t) is directly related to how smooth (up to the second order) this function

is. Hence, the performance index

J :=

� ∞

0

�g��(t)�2
2 dt, (37)

where � · �2 denotes the 2-norm operator, is a measure of the difficulty of approximating g(t)

by a piecewise linear function. In particular, when J is equal to 0, the impulse response g(t)

must be a line. Thus, the goal is to minimize the performance index J in order to find a

controller G(s) whose digital implementation is near-optimal. The stabilizable controller G(s)

being found can be assumed to be both controllable and observable (because an infinitesimal

perturbation of a stabilizable controller always makes it controllable and observable). The state-

space representation (Ac, Bc, Cc) of G(s) can be considered to be in the observable form,

implying that Cc is equal to
�

1 0 · · · 0
�
. Therefore, the only unknown parameters are

Ac and Bc. We introduce the following optimization problem.

Optimization 1: Minimize the scalar α subject to

L(Ac, Bc, Cc, R) ≺ 0,



 AcP + PAT
c AcBc

BT
c AT

c −I



 ≺ 0,



 −α CcAcP

PAT
c CT

c −P



 ≺ 0, (38)

for matrix variables Ac ∈ �nc×nc and Bc ∈ �nc×r, a symmetric matrix variable P ∈ �nc×nc and

a slack variable R of appropriate dimension, where Ac is in the (observable) canonical form.

Denote the optimal values of the matrices Ac and Bc solving Optimization 1 with A∗
c and B∗

c ,

respectively. The objective is to show that Optimization 1 indeed minimizes the performance

index J and, more precisely, the optimal value of α is equal to the minimum of J .

Theorem 4: The controller G(s) with the state-space matrices (A∗
c , B

∗
c , Cc) is stable, satisfies

the design specifications D and minimizes the performance index J .
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Proof: Given a controllable, observable, and stable controller G(s) with the matrices (Ac, Bc, Cc),

one can write

g(t) = Cce
ActBc, ∀t ≥ 0. (39)

Hence,

g��(t) = CcAce
ActAcBc, ∀t ≥ 0. (40)

As a result, the performance index J can be obtained as

J =

� ∞

0

CcAce
ActAcBcB

T
c AT

c eAT
c tAT

c CT
c dt, (41)

or equivalently J = CcAcPAT
c CT

c , where P is the unique solution of the Lyapunov equation

AcP + PAT
c + AcBcB

T
c AT

c = 0. (42)

Now, it can be proved that J is equal to the minimum (infimum) of a scalar α subject to the

constraints

AcP + PAT
c + AcBcB

T
c AT

c ≺ 0, CcAcPAT
c CT

c ≺ α, −P ≺ 0. (43)

The Schur complement formula can be used twice to deduce that the above constraints are

identical to the ones given in Optimization 1. �
Theorem 4 states that Optimization 1 yields a controller G(s) whose digital implementation

is near-optimal. Nevertheless, regardless of the first constraint in this optimization corresponding

to the design specifications, the other two constraints are nonlinear in the variables Ac, Bc and

P . This is a common issue in many control problems for designing a fixed-order controller [15].

However, it can be observed that if either Ac or Bc, P are fixed, the second and third constraints

in Optimization 1 turn into linear matrix inequalities. Hence, one can start from a stable controller

and solve this optimization problem iteratively by fixing Ac and Bc, P alternatively until a local

solution is found (see [31] and the references therein for similar algorithms).

Due to the design specifications being rather general, the complexity of Optimization 1 is not

clear. As a second method, let the design specification D be only the stability of the closed-loop

system, the order of the controller G(s) being found be unknown, and the controller be biproper

if necessary (G(s) was strictly proper in the previous method). Consider a single-input single-

output, stable, low-pass filter F̄(s) whose relative degree is greater than 2. Denote the impulse
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response of F̄(s)G(s) as ḡ(t). Define a new performance index J̄ as

J̄ :=

� ∞

0

�ḡ��(t)�2
2 dt. (44)

Unlike the performance index J , the new index J̄ operates on the filtered impulse response to

remove any possible jitter that makes the second derivative of g(t) unnecessarily high but does not

affect the piecewise linear approximation of g(t) noticeably. It will be shown in the sequel that

although finding a stable, stabilizing controller G(s) minimizing J̄ may not be a convex problem,

it can be cast as a well-known problem for which there exist different sufficient conditions in

the convex form. Note that the main reason why J̄ is considered here instead of J is that the

introduction of the filter F̄(s) simplifies the corresponding optimization problem and converts

it to a well-studied problem. Since F̄(s) is stable with a relative degree greater than 2, the

transfer function s2F̄(s) has a state-space realization as (Af , Bf , Cf , 0), where Af is a Hurwitz

matrix. Design two matrix gains L1 ∈ �m×n and L2 ∈ �n×r such that the matrices A + BL1

and A + L2C become both Hurwitz. Consider the system

ẋf (t) =



 A + BL1 + L2C 0

BfL1 Af



xf (t) +



 −L2

0



 y(t) +



 B

Bf



 ζ1(t),

uf (t) =
�

0 Cf

�
xf (t),

ζ2(t) =
�
−C2 0

�
xf (t) + y(t),

with the inputs y(t), ζ1(t) and the outputs uf (t), ζ2(t). Find a finite-dimensional, stable, LTI

controller from ζ2(t) to ζ1(t) to minimize the 2-norm of the transfer function from y(t) to

uf (t) in above control system, and denote it with Q∗(s). It can be observed that finding Q∗(s)

amounts to a standard H2 strong stabilization problem. Note that the closely related problems of

H2 strong stabilization and H∞ strong stabilization have been thoroughly investigated in several

works [19], [20], [10], [23].

Theorem 5: Let G(s) be taken as the controller given in Figure 3(c) with Q(s) equal to Q∗(s)

and M(s) with the control law

ẋ(t) = (A + BL1 + L2C)x(t)− L2y(t) + Bζ1(t),

u(t) = L1x(t) + ζ1(t),

ζ2(t) = −Cx(t) + y(t).

(45)
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This choice of the controller G(s) is stable, stabilizes the system S and minimizes the perfor-

mance index J̄ .

Sketch of Proof: It follows from the linear fractional transformation that every stabilizing,

finite-dimensional, LTI controller G(s) can be decomposed into the form given in Figure 3(c) for

some stable controller Q(s) [12]. Augment the controller G(s) with the modified filter s2F̄(s) by

connecting the filter to the output of the controller G(s), and denote the output of the augmented

system with uf (t). It can be observed that the impulse response of the augmented system is equal

to ḡ��(t). This result is due to the facts that s2F̄(s) is strictly proper and that the term s2 acts

as a double differentiator. Now, it follows from Parseval’s theorem that
�∞

0 �ḡ��(t)�2
2 dt is equal

to the 2-norm of the transfer function of the augmented system from y(t) to uf (t). The proof

is completed by noting that the model (45) under the controller Q(s) from ζ2(t) to ζ1(t) is a

state-space representation of this augmented system. �
Theorem 5 states that finding a stable, stabilizing controller G(s) with a near-optimal digital

implementation amounts to the well-studied problem of stable H2 optimal control (or H2 strong

stabilization). As an alternative to the index J̄ , one can argue that the minimization of the

simple index
�∞

0 �g(t)�2
2 dt (with no differentiation involved) also leads to a near-optimal g(t).

This minimization can be converted to finding a stable H2 optimal controller Q(s) for the

configuration given in Figure 3(c). To summarize, two indices J and J̄ were introduced in this

section to design a controller G(s) with a smooth impulse response. Once the function g(t) is

obtained using either of the above-mentioned methods, the technique spelled out in Subsection

II-E can be used to find a minimal set of delays {τ1, τ2, ..., τp}.

IV. SAMPLED-DATA CONTROLLER DESIGN

Consider the LTI system S given in (1) and, with no loss of generality, assume that D = 0.

There are numerous applications for which it is desirable to control this system using a digital

controller, e.g. a micro-controller. A conventional digital-control scheme, referred to as sampled-

data control system, is depicted in Figure 4, which consists of the following components:

• Sampler: This part is intended to sample the output of the system S at a pre-specified

frequency f0.

• Digital Controller: This controller processes the digital signal provided by the sampler.
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Fig. 4. This figure illustrates a conventional sampled-data control system.

• Hold circuit: This part generates the input of the system S by converting the discrete-time

output of the digital controller to a continuous-time signal.

Unlike an ideal sampler, there exist different types of ideal hold circuits such as a zero-order

hold or a first-order hold. After choosing a sampling frequency and a proper type of hold circuit,

the main challenge is to design a digital controller, denoted by Gd, for the sampled-data control

system in such a way that the closed-loop system satisfies certain design specifications. Three

methods have been long studied in the literature for this purpose:

i) Design a controller Gd for the discrete-time equivalent model of the system S.

ii) Design Gd by first finding a continuous-time (finite-dimensional) controller G for the system

S and then discretizing it.

iii) Design Gd directly for the time-varying closed-loop system.

With the ongoing technological advances, it is now possible to sample the outputs of many

real-world systems at a very high rate f0, on the order of several kilohertz. Although a high

sampling rate is desirable for collecting more information from the continuous-time output y(t),

a sampled-data controller designed using the aforementioned techniques may suffer from some

robustness issues for a relatively large f0. To illustrate this fact, consider method (ii) and assume

that the hold circuit of the sampled-data control system is a zero-order hold. Let G be a given

finite-dimensional, continuous-time controller designed for the system S, with the state-space

representation
ẋc(t) = Acxc(t) + Bcy(t),

u(t) = Ccxc(t) + Dcy(t).
(46)

The digital controller Gd can be taken as the discrete-time equivalent model of G obtained using

the step-invariant method, which turns out to be

xd[κ + 1] = Adxd[κ] + Bdy[κ],

u[κ] = Cdxd[κ] + Ddy[κ], κ = 0, 1, 2, ...,
(47)
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(a) (b)

Fig. 5. (a) An analog implementation of the controller Ĝ(s); (b) The hybrid controller Ĝd associated with the continuous-time

controller Ĝ.

where

Ad = ehAc , Bd =

� h

0

etAcdt Bc, Cd = Cc, Dd = Dc, h =
1

f0
. (48)

(Instead of the step-invariant method, one can alternatively use other existing methods such as

the Tustin approximation.) Observe that as the sampling period h goes to 0, Ad and Bd converge

to I and 0, respectively. This implies that the convergence is independent of the values of the

matrices Ac and Bc, which makes the digital controller Gd extremely fragile and sensitive to

measurement and numerical round-off errors. By denoting the order of the controller G with

nc, it can be argued that this undesirable sensitivity is a consequence of generating the input

u[κ] in terms of the last nc + 1 samples of the output, i.e. y[κ], y[κ − 1], ..., y[κ − nc]. More

precisely, as h goes to zero, all these samples become indistinguishable and, therefore, performing

numerical computations on them leads to a poor implementation. This observation is valid for

the aforementioned methods (i) and (iii) as well. A question arises as to whether it is possible to

generate u[τ ] in terms of some sufficiently distant samples, namely y[κ−τ1], y[κ−τ2], ..., y[κ−τp]

for some disparate numbers τ1, τ2, ..., τp, and deploy a new type of (fast) hold circuit so that the

resulting digital controller becomes satisfactorily robust and easily implementable (note that the

idea of using distant output samples is not equivalent to slow sampling). The results developed

in the preceding section will be exploited here to address this problem under the assumption

that both sampler and hold circuit operate at the same high frequency. The generalization to the

case when the hold circuit (or actuator) operates at a slower frequency (or even aperiodically)

is straightforward.
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Given an LTI continuous-time controller G(s) satisfying some prescribed design specifications,

our goal is to implement this controller in the form of the configuration given in Figure 4 with a

high sampling rate f0. Assume for now that G(s) is stable and single-input single-output. These

assumptions will be removed later in this subsection. In addition, with no loss of generality,

suppose that Dc is equal to 0 (because this term corresponds to a direct static feedback from

y(t) to u(t) that can be easily implemented). The method developed in the previous section (in

particular, the discretization technique discussed in Subsection II-E) can be used to approximate

the time-domain signal g(t) by a piecewise linear signal ĝ(t) with a finite number of breakpoints

all belonging to the set {0, h, 2h, ...}. Recall that the Laplace transform of ĝ(t) can be written as

Ĝ(s) =
p�

i=1

�
αi

s2
+

βi

s

�
e−τihs, (49)

for some scalars α1, ...,αp, β1, ..., βp, where τ1h, ..., τph denote the breakpoints of the signal

ĝ(t) in an ascending order. An analog implementation of the controller Ĝ(s) is visualized in

Figure 5(a), which consists of three blocks:

• Block 1 delays the incoming signal y(t) by τ1h, ..., τph seconds.

• Block 2 performs basic math operations to generate the signals v1(t) :=
�p

i=1 αiy(t− τih)

and v2(t) :=
�p

i=1 βiy(t− τih).

• Block 3 employs two integrators to generate u(t) from v1(t) and v2(t).

Define Ĝd as a hybrid controller with the configuration depicted in Figure 5(b) corresponding

to the continuous-time controller Ĝ. Notice that Ĝd is obtained from the particular configuration

of Ĝ given in Figure 5(a) using the following steps:

• Block 1 is replaced by an ideal sampler with the sampling frequency f0.

• Block 2 is substituted by a memory capable of storing the last τp + 1 samples of y(t) and

a digital processor for computing v1[κ] :=
�p

i=1 αiy[κ− τi] and v2[κ] :=
�p

i=1 βiy[κ− τi].

• Block 3 is replaced by two zero-order holds and two integrators. This resulting block can

be regarded as a “modified second-order hold” because of its analogy to a standard second-

order hold that consists of a conventional digital-to-analog converter and two integrators

(analog circuits).

The hybrid controller Ĝd introduced above is indeed a sampled-data controller with an ideal

sampler and a modified second-order hold. Recall that the parameters Ad and Bd of a controller

Gd obtained using a conventional discretization method converge to I and 0 as h tends to zero,
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which makes the controller sensitive to measurement and computational errors. In contrast, the

correlation between the parameters α1, ...,αp, β1, ..., βp of the controller Ĝd and the sampling

period h is minimal in the sense that the precision of these parameters need not be increased

as h goes to zero. Indeed, reducing h mainly affects the memory size, rather than the forego-

ing coefficients. This key property makes the hybrid controller Ĝd suitable for fast-sampling

applications.

We wish to study the error resulting from implementing the continuous-time controller Ĝ as

the hybrid controller Ĝd. To this end, note that although Ĝ is time-invariant, its counterpart Ĝd

is time-varying. In order to bypass the time-varying nature of this hybrid controller, since the

system S acts as a low-pass filter (due to being strictly proper) and the sampling frequency f0

is relatively high, it is reasonable to assume that high-frequency harmonics of the output signal

y(t) in the system S under Ĝ or Ĝd are negligible. Hence, assume that the output of the system

S goes through an ideal low-pass filter F with the cut-off frequency ω0 := 2π
h before being

processed by the controller. Let F ◦ Ĝ and F ◦ Ĝd denote the cascades of the filter F with the

controllers Ĝ and Ĝd, respectively.

Theorem 6: The hybrid controller F ◦ Ĝd is a linear time-invariant system with the transfer

function

F ◦ Ĝd(jω) =






F ◦ Ĝ(jω) ·
�

e−jω h
2

sin(ω h
2 )

ω h
2

�
ω ∈ [−ω0, ω0]

F ◦ Ĝ(jω) otherwise.
(50)

Proof: In the cascade controller F ◦ Ĝd, let yf (t), y(t) and u(t) denote the incoming signal

of F , the incoming signal of Ĝd and the output of Ĝd, respectively. Due to the presence of the

filter F , the relation F ◦ Ĝd(jω) = F ◦ Ĝ(jω) = 0 holds if ω �∈ [−ω0, ω0]. Now, consider a

frequency ω ∈ [−ω0, ω0]. It can be verified that (see [12], Chapter 3)

Y
�
e−jωh

�
=

1

h

� ∞�

k=−∞

Y (jω + jkω0)

�
=

1

h
Yf (jω),

V1[z] =

�
p�

i=1

αiz
−τi

�
Y [z], V1(jω) = h

�
e−jω h

2
sin

�
ω h

2

�

ω h
2

�
V1

�
e−jωh

�
.

(51)

Thus,

V1(jω) =

�
e−jω h

2
sin

�
ω h

2

�

ω h
2

��
p�

i=1

αie
−jωhτi

�
Yf (jω). (52)
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Similarly,

V2(jω) =

�
e−jω h

2
sin

�
ω h

2

�

ω h
2

��
p�

i=1

βie
−jωhτi

�
Yf (jω). (53)

The proof follows immediately from the equations (52) and (53). �
As pointed out earlier, the approximating controller Ĝ can be arbitrarily close to the original

controller G. On the other hand, Theorem 6 states that the hybrid controller Ĝd behaves differ-

ently from its continuous-time counterpart Ĝ by a factor e−jω h
2

sin ω h
2

ω h
2

in the Fourier domain if its

incoming signal has no harmonics at frequencies greater than ω0. Notice that as h goes to 0, the

real-valued factor sin ω h
2

ω h
2

tends to 1 and so does the complex-valued factor e−jω h
2 . As a result,

Ĝd is a digital implementation of the original controller G. In order to mitigate the effect of the

discretization error e−jω h
2

sin ω h
2

ω h
2

, let the controller Ĝd be manipulated so that its discrepancy with

the original controller Ĝ becomes only a multiplicative real-valued factor sin ω h
2

ω h
2

(this reduces the

delay between the outputs of Ĝd and Ĝ). To this end, the following procedure can be taken.

Procedure 1:

• Approximate g(t) with a piecewise linear function g̃d(t) in such a way that its breakpoints

lie in the set {h
2 , 3h

2 , 5h
2 , ...}, as opposed to {0, h, 2h, ...}.

• Find the Laplace transform of g̃d(t) and write it in the form of
p�

i=1

�
αi

s2
+

βi

s

�
e−(τih+h

2 )s. (54)

• Define G̃d to be the hybrid controller depicted in Figure 5(b), where

v1[κ] :=
p�

i=1

αiy[κ− τi], v2[κ] :=
p�

i=1

βiy[κ− τi]. (55)

• The system F ◦ G̃d is LTI with the transfer function

F ◦ G̃d(jω) =






F ◦ G̃(jω) ·
�

sin(ω h
2 )

ω h
2

�
ω ∈ [−ω0, ω0]

F ◦ G̃(jω) otherwise
(56)

The hybrid controller G̃d introduced in Procedure 1 is another digital implementation of G

which, in comparison to the hybrid controller Ĝd, is expected to have less discrepancy with

respect to the target controller Ĝ.

Th results developed so far are based on the assumption that the initial controller G(s) is

stable. If this stabilizing controller is not stable itself, the idea spelled out in Subsection II-G
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(a) (b)

Fig. 6. (a): An equivalent implementation of an unstable controller G(s); (b): the hybrid controller Ĝd associated with an

unstable continuous-time controller G.

can be used to reconfigure the controller as the feedback form given in Figure 6(a) whose forward

path is stable. Since the transfer functions from “e(t) to u(t)” and “e(t) to w(t)” are stable in

the new configuration, they can be implemented via their hybrid counterparts explained earlier.

Hence, the unstable controller G(s) can be implemented in the sampled-data control scheme

depicted in Figure 6(b), which consists of an ideal sampler, a digital controller, two modified

second-order holds and a unity feedback. Note that if it turns out to be impossible in practice

to add the signals y(t) and w(t) before sampling, as suggested in Figure 6(b), the output of the

system, i.e. y(t), can be first sampled and then added to the samples of the signal w(t).

To generalize the results of this section to multi-input multi-output controllers, it suffices to

follow the line of arguments discussed in Subsection II-H. The details are omitted here for

brevity.

Remark 2: We proposed a new hybrid implementation of a given continuous-time controller

in this section, whose real-time complexity (i.e. the processing time required by its processor) is

contingent upon the number of delays τ1, τ2, ..., τp. Given some design specifications, a question

arises as what continuous-time controller G(s) satisfies the design objectives and, in addition,

its hybrid counterpart needs the least number of delays. To answer this question, recall that an

impulse response g(t) must be found whose satisfactory piecewise linear approximation with

breakpoints belonging to the set {0, h, 2h, ...} requires the least number of corners. Notice that
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10−3 10−2 10−1 100 101 102 103−1500

−1000

−500

0

Frequency (rad/sec)

Ph
as

e 
(d

eg
)

 

 

G(s) Ĝ(s)
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Fig. 7. (a): The time-domain signals g(t) and ĝ(t) in the interval [0, 3]; (b): the time-domain signals g(t) and ĝ(t) in the

interval [3, 20]; (c): the Bode plots of the controllers G(s) and Ĝ(s) for the example given in Section VI.

as long as the sampling period is sufficiently small, the set {0, h, 2h, ...} can be estimated by the

real set �+, which converts the underlying problem to finding the smoothest impulse response

g(t) satisfying the design specifications. This problem has been already tackled in Section III.

Remark 3: The hybrid configuration proposed here can be modified slightly to handle sam-

pling irregularities, e.g. non-uniform sampling (deterministic jitter) and missing samples. Indeed,

it suffices to pre-process the samples by an interpolation algorithm to estimate the true values

of the samples at the desired times τ1h, ..., τph. The effectiveness of this approach follows from

two facts: (i) there are a large number of non-uniform samples for interpolation due to the

sampling period h being relatively small, (ii) since the delay terms τ1h, ..., τph are designed to

be sufficiently distant, a sampling irregularity caused by a small perturbation in these values

does not alter the output of the digital controller noticeably.

V. NUMERICAL EXAMPLE

Consider the 8th order unstable plant P (s) = P1(s)
P2(s) , where

P1(s) :=0.0064s5 + 0.0024s4 + 0.071s3 + s2 + 0.1045s + 1,

P2(s) :=s8 + 0.161s7 + 6s6 + 0.582s5 + 9.984s4 + 0.407s3 + 3.9822s2 + 0.08s + 0.08.

This system has been obtained from a benchmark example for the strong stabilization problem

by adding the term 0.08s + 0.08 to the denominator (see [10], [23] and the references therein).

One can design an LQG controller for this system with the weighting matrices Q = I and R = 1

(the noise covariance is assumed to be I) to obtain a stable controller G(s) = G1(s)
G2(s) , where

G1(s) :=15.76s7 − 3.896s6 + 60.68s5 − 9.68s4 + 34.99s3 − 2.064s2 − 12.39s + 0.2986,

G2(s) :=s8 + 8.684s7 + 41.18s6 + 115.3s5 + 208.8s4 + 250.9s3 + 197.9s2 + 111.1s + 26.64.
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We use a variant of Method 3 to approximate G(s) by a simple delay-based controller consisting

of a number of delay blocks and at most two integrators (see the remark given after Theorem

3). The impulse response of the controller G(s), plotted in Figures 7(a) and (b), is an oscillatory

signal. This makes it impossible to find a good piecewise linear approximation of this function

with only a few breakpoints, because there are several dominant peaks in the signal g(t) that

should be all chosen as breakpoints. Based on the peaks of the signal g(t), a vector of breakpoints

τ was obtained as

τ =
�

τ1 τ2 · · · τ12

�
=

�
0 0.2 0.37 1.03 2 3.15 4.7 6.7 10.1 13.55 17.11 20

�
.

The method proposed in Subsection II-E can be used to find the best piecewise linear ap-

proximation of g(t) with its knots given by the vector τ . Note that the corners of the obtained

approximating function ĝ(t) do not necessarily lie on the function g(t). The corresponding signal

ĝ(t) is plotted in Figures 7(a) and 7(b). The controller Ĝ(s) turns out to be

Ĝ(s) =
p�

i=1

�
αi

s2
+

βi

s

�
e−τis,

where
�

α1 α2 · · · α12

�
=

�
−84.1100 68.3058 0.4660 −0.1936 28.2217 −16.3791 5.3132

−1.6841 0.0895 −0.0436 0.0223 −0.0081
�
,

�
β1 β2 · · · β12

�
=

�
13.9861 0 0 0 0 0 0 0 0 0 0 −0.0061

�
.

The Bode plots of the controllers G(s) and Ĝ(s) are compared in Figure 7(c), which illustrate

that Ĝ(s) is a good approximation of G(s). Let G̃(s) denote a 6th order reduced model of G(s)

obtained using the balanced model-reduction technique. To compare Ĝ(s) with G̃(s), notice that:

max
ω∈[0,1]

|Ĝ(jω)−G(jω)| � 0.03, max
ω∈[0,1]

|G̃(jω)−G(jω)| � 0.33.

This implies that an LTI approximation of G(s) that performs as well as Ĝ(s) requires at least

7 integrators, whereas Ĝ(s) can be implemented using 2 integrators and 11 delay blocks.

Now, assume that the objective is to implement the optimal controller G(s) in a sampled-data

control configuration with the sampling frequency f0 = 100Hz under the assumption that the

precision of the parameters of the digital controller is confined to four fractional digits. This

assumption is made to ensure that the digital processor performs a reasonable truncation before
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Fig. 8. (a): The output of the system S under a conventional sampled-data controller with f0 = 100Hz; (b): The output

of the system S under a conventional sampled-data controller with f0 = 10Hz; (c): The output of the system S under G(s)

(dotted curve) and Ĝd with f0 = 100Hz (solid curve); (d): The input of the system S under G(s) (dotted curve) and Ĝd with

f0 = 100Hz (solid curve).

any computation. For this purpose, let the initial state of the system be the vector [1 1 · · · 1].

As the first approach, we convert the controller G(s) to a conventional sampled-data controller

using the step-invariant method and then truncate the parameters of the digital controller to 4

significant fractional digits. The output of the system is plotted in Figure 8(a) to demonstrate

that the closed-loop system is unstable. Note that this instability is only the result of reducing the

infinite precision to four digits. If the sampling frequency is reduced to 10Hz, the closed-loop

system will be still unstable, as illustrated in Figure 8(b). In contrast, the controller G(s) can

be implemented in the hybrid configuration Ĝd using the continuous-time delay-based controller

Ĝ(s). The output and input of the system are plotted under both the continuous-time controller

G(s) and its hybrid implementation Ĝd in Figures 8(c) and 8(d). These figures clearly demonstrate

that the proposed hybrid controller performs similarly to the original LQG controller and that

the high sampling frequency f0 = 100Hz does not cause a robustness issue.

VI. CONCLUSIONS

Motivated in part by biological systems, this paper studies the possibility of synthesizing

controllers whose implementation mainly requires delay blocks, as opposed to integrators. This

problem is particularly important for continuous-time systems whose control using conventional

techniques needs many integrators. First, we showed that every stabilizing continuous-time linear

time-invariant (LTI) controller can be approximated arbitrarily precisely by a simple delay-based

June 12, 2010 DRAFT



31

controller comprising delay blocks and a few integrators. In particular, if the controller is both

stable and single-input single-output, the number of integrators is at most two. Finding the optimal

number of delay blocks, finding the optimal values of the delays, and studying the robustness of

the designed controller can also be treated within the framework presented. Finally, we considered

the problem of designing a continuous-time LTI controller which not only satisfies prescribed

design specifications, but also has the least complex delay-based implementation.

An application of our delay-based controller design is in the sampled-data control of continuous-

time systems in presence of sampling jitter and/or a high sampling frequency. Indeed, since

a conventional sampled-data controller with a relatively high sampling frequency needs high-

precision computation to cope with a robustness issue and sampling jitter also worsens the

situation, we proposed a new type of digital-control scheme that does not suffer from these

issues. We showed that every continuous-time stabilizing (LTI) controller can be implemented

in a hybrid configuration composed of an ideal sampler, a digital controller, a number of modified

second-order holds and possibly a unity feedback. An advantage of this hybrid controller is that

increasing the sampling frequency mainly affects the memory size of the controller, as opposed

to its parameters. This property makes the controller robust to measurement and computational

errors at high frequencies, and hence obviates the necessity of increasing the processing precision.
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