
Backtracking temporal logic synthesis for uncertain environments

Scott C. Livingston, Richard M. Murray, and Joel W. Burdick

Abstract— This paper considers the problem of synthesiz-
ing correct-by-construction robotic controllers in environments
with uncertain but fixed structure. “Environment” has two
notions in this work: a map or “world” in which some controlled
agent must operate and navigate (i.e. evolve in a configuration
space with obstacles); and an adversarial player that selects con-
tinuous and discrete variables to try to make the agent fail (as
in a game). Both the robot and the environment are subjected
to behavioral specifications expressed as an assume-guarantee
linear temporal logic (LTL) formula. We then consider how
to efficiently modify the synthesized controller when the robot
encounters unexpected changes in its environment. The crucial
insight is that a portion of this problem takes place in a metric
space, which provides a notion of nearness. Thus if a nominal
plan fails, we need not resynthesize it entirely, but instead can
“patch” it locally. We present an algorithm for doing this, prove
soundness, and demonstrate it on an example gridworld.

I. MOTIVATION AND INTRODUCTION

Consider the hypothetical office floor map shown in Fig. 1,
and suppose a robot is tasked with always visiting the lounge
and printing room. If a special “espresso ready” flag is
received, then the robot must eventually go to the coffee
nook. Additionally, there are safety requirements, e.g.

• avoid collisions with a priori known walls (appearing
in given map); and

• avoid collisions with short-term static (e.g. trash bins)
and dynamic (e.g. people) objects in the area.

Given a floor map and assumptions about
• arrival rate of the “espresso ready” flag; and
• how static and dynamic obstacles can appear or move,

a controller M , generally taking the form of a hybrid system,
can be synthesized to guarantee this behavior. During online
operation, errors in the nominal map may be discovered.
In this illustration, the “lounge” room has been newly
partitioned with cubicles. Thus the map needs mending, as
may the robot’s control system.

Assuming the nominal controller M is large and com-
putationally difficult to completely re-synthesize on the new
map, the algorithm proposed in this paper can locally “patch”
it to recover global correctness. It does so by exploiting
the fact that most behavior in the office continues to be
correct, if only we can negotiate the discovered change
locally. Of course, the change may indeed have global
consequences, and in that case, the entire control system will
be resynthesized.

The setting and conclusions are more general than the
repetitive navigation problem of this motivating example.

S.C. Livingston, R.M. Murray, and J.W. Burdick are with the California
Institute of Technology, Pasadena, CA, slivingston@caltech.edu,
murray@cds.caltech.edu, jwb@robotics.caltech.edu.

Fig. 1. Illustration of office space in the example. Room A is the “printing
room,” room B is the “lounge,” and room C is the “coffee nook.”

This paper considers the problem of “reactive synthesis,”
whose goal is to automatically create an autonomous ma-
chine that satisfies some given description of desired output
behavior, no matter what input is applied, subject to con-
straints expressed in a temporal logic over infinite strings
[1]; such a general statement goes at least back to Church
[2].

In the hybrid control systems literature, two main ap-
proaches have been used to attack the reactive synthesis
problem. The first approach uses methods from the computer
aided verification literature for synthesizing the discrete
portion of the reactive program. To use this approach, the
underlying continuous dynamics of the robot and environ-
ment must already be abstracted into a discrete dynamical
system, for which these tools are directly applicable [3], [4].
The discrete abstraction step must preserve, in a simulation
sense [5], the connectivity and reachability of the abstracted
regions in the underlying continuous space.

The second approach is to algorithmically find controllers
that satisfy a temporal logic specification, or what has also
been called symbolic motion planning (for an informal
overview, see [6]). Several correct-by-construction method-
ologies have been considered. Kloetzer and Belta show how
to find controllers for affine systems and propositions defined
over partitions of state space [7]. Karaman and Frazzoli
propose a solution found by sampling sequences of control
inputs to a nonlinear system. To that end they propose an
extension of RRT that allows cyclic behavior, called RRG
[8].

Only recently has uncertainty been treated directly in work
applying formal methods to robotics. Wongpiromsarn et al.
treat uncertainty as disturbances acting on the underlying
continuous dynamics [9]. Johnson and Kress-Gazit studied
the effect of probabilistic errors in determining proposition
values (motivated by sensor errors), providing some insight

Submitted, 2012 International Conference on Robotics and Automation (ICRA)
http://www.cds.caltech.edu/~murray/papers/lmb12-icra.html



into fragility of the original specification [10]. Belta et al.
have framed uncertainty in the language of Markov decision
processes and proposed algorithms for discrete policies that
maximize probability of satisfying a given temporal logic
specification [11], [12].

This paper considers, in the formal system framework,
a type of uncertainty which has heretofore been largely
ignored—potential topological changes in the robot’s en-
vironment. To address this type of uncertainty, we try to
bridge the gap of abstraction that previously formed a strong
separation between the underlying continuous dynamics of
a physical system and the discrete variables over which
reactive synthesis occurs. That is, we wish to recover some
of the structure of the underlying Banach space and use
it to repair flawed models originally used to create nom-
inal plans. Our approach is dubbed “backtracking reactive
synthesis.” Philosophically, our method can be considered a
generalization of the concepts behind Stentz’s D* algorithm
[13], to the problem of creating correct and always running
hybrid controllers. Whereas D* “patches” a motion plan in
order to handle unforeseen problems in the environment,
this paper “patches” a general hybrid automaton. The most
similar prior work is that of Wongpiromsarn et al. [9], who
show a method for decomposing a large reactive synthesis
problem into a partial order of receding horizon subproblems.
A major limitation in that work is the need to construct the
decomposition by hand, i.e. no automatic horizon selection
procedure is given. In this paper, we use the metric of the
underlying space to provide a notion of “localness”, which
permits “patching” a nominal solution. The “patches” can be
thought of as “short horizon problems,” in the terminology
of [9].

II. DEFINITIONS AND PROBLEM SETTING

Let Y be a set of “system” variables, and X a set of
“environment” variables, both finite and boolean. Throughout
the paper these sets of variables are assumed disjoint, i.e.
X ∩ Y = ∅. Individual variables are written as uppercase
letters, e.g. V ∈ X . Write the set of valuations of the
controlled variables as ΣY ; i.e. any particular setting of
these variables is some y ∈ ΣY . Note that what we call
“valuations” is also variously called “states” (e.g., see [14]),
but we reserve the word for continuous dynamics in a “state”
space. The variables in Y may be labeled and ordered such
that for y ∈ ΣY , yi denotes the valuation of the i-th variable
in Y at y. Similar notation is used for the environment
variables X .

Let formY : ΣY → Bool (Y) be the map taking valuations
of Y to boolean formulae such that the resulting formula is
true precisely when the variables have the given valuation.

formY (y) �
�

�

i∈IT

yi
�

∧




�

j∈IF

¬yj


 , (1)

where the index sets IT and IF denote indices for which the
variables are true and false, respectively. The domain can
be restricted to a particular set of variables in the natural

TABLE I
LINEAR TEMPORAL LOGIC (LTL) OPERATORS

∨ “or”
∧ “and”
¬ “not”
� “next”
♦ “eventually”
� “always” (safety)
�♦ “infinitely often” (progress)
|= “satisfies”

way; this is indicated by changing the subscript, e.g. formX .
When we are concerned with both sets of variables, we will
drop the subscript and write

form : ΣX × ΣY → Bool (X ∪ Y) ,

form(xy) = form(x) ∧ form(y).

An execution trace is a sequence of environment and system
valuations, occurring as turns in a game; write such a
sequence as

σ := x0y0x1y1 · · · ,

where the subscripts indicate (discrete) time steps. For reac-
tive synthesis, we wish to generate a strategy function

M : (ΣXΣY)
∗
ΣX → ΣY

to select values for controlled variables that satisfy a behav-
ioral specification, given the environment variables satisfy
an assumption. Given the specification ϕ, an LTL formula
over variables X ∪ Y , we seek an M such that for any
resulting trace σ, σ |= ϕ. Informally, this notation means “the
execution σ is correct with respect to the specification ϕ.”

In this paper, we consider a restricted class of linear
temporal logic (LTL) formulae with which the synthesis
problem can be efficiently solved, called GR(1) (Generalized
Reactivity) [15], [16]. A GR(1) formula ϕ has the form

ψe :=




�

i∈Ie,t

�ψe,ti



 ∧




�

i∈Ie,g

�♦ψe,gi





ψs :=




�

i∈Is,t

�ψs,ti



 ∧




�

i∈Is,g

�♦ψs,gi





ϕ := (ψe ∧ ψinit) =⇒ ψs, (2)

where ψe,ti are state formulae defined over X ∪ Y ∪ �X ,
ψs,ti are state formulae defined over X ∪ Y ∪ � (X ∪ Y),
ψe,gi are state formulae defined over X ∪ Y , and ψinit is a
state formula describing initial conditions on X ∪Y . We refer
to subformulae of the form �ψe,ti as “safety” properties, and
subformulae of the form �♦ψe,gi as “progress” properties.
The index sets for the subformulae are Ie,t, Ie,g , Is,t, Is,g .

There are two important aspects of GR(1) formulae. First,
the specification has an assumption-guarantee structure. Sec-
ond, only two types of properties are specified, and they
affect the problem in distinct ways. Given current values,



safety properties restrict what values the variables can take
next. Hence “safety” provides the machinery for expressing
reachability for a discrete abstraction of an underlying con-
tinuous system. Progress properties describe behaviors that
occur “infinitely often”. A progress formula may not be true
for a particular step but will be true in finite time. E.g., this
can be used to describe surveillance behavior by a robot. For
related model checking theory, see [17], [18].

A solution strategy M is represented by a finite automaton
that takes environment valuations (actions) as input.

Definition 1: A finite automaton is a tuple

M = (ΣX , S, S0, g, δ) ,

where the set of environment valuations ΣX is the input
alphabet, S is a finite set of nodes, S0 ⊆ S initial nodes,
δ : S × ΣX → S is the transition function, and g : S → ΣY
labels nodes with system output.

Without loss of generality and since we do not require
node labels to be unique, we assume throughout that the
transition function δ is injective with respect to ΣX , i.e.

x1 �= x2 =⇒ δ(v, x1) �= δ(v, x2) for all v ∈ S.

Definition 2: The set of edges of M is

E (M) � {(v, v�) ∈ S × S | ∃x ∈ ΣX . δ(v, x) = v�} .

With this edge set, we may regard M as a directed graph.
From the assumed injectivity of δ with respect to ΣX , an
edge labeling function is immediate

h : E(M) → ΣX ,

h ((v, v�)) = x iff δ(v, x) = v�.

The sets of edges going into and out of a node v ∈ S are

In(v) = {(v�, v) ∈ E(M) | v� ∈ S}
Out(v) = {(v, v�) ∈ E(M) | v ∈ S} .

An execution trace σ = x0y0x1y1 . . . leads to an execution
path ρ = s0s1s2 . . . of the nodes si ∈ S visited by M given
the input string x0x1 . . .. From the labeling g, an execu-
tion path yields a sequence of system outputs (or actions)
y0y1 . . ..

The patched strategies generated by the algorithm in
Section III have finite memory. Nodes are able to clear or
set memory, and transitions may be conditioned on memory
contents. Since the memory is finite, such “finite memory
automata” are equivalently expressive to those defined above.
The extension is only a matter of notation, and simplifies our
treatment.

Let Z ⊆ Rn open, and U ⊆ Rm be a set of control inputs,
and let the dynamics be

zk+1 = f (zk, uk) , (3)

where f is smooth. We call Z the “continuous state space”
and sometimes Eq. (3) the “underlying continuous system.”
A cellular decomposition P of Z is chosen such that it is
proposition-preserving and satisfies a reachability condition
(defined below; also see [5]).

For any cell ζj ∈ Z/P , a valuation y ∈ ΣY is said to take
place in that cell if it implies that the continuous state z is
in ζj . In this case, we write

y =⇒ ζj .

Definition 3: Let ζi, ζj ∈ Z/P . ζj is said to be reachable
from ζi if for any z0 ∈ ζi, there exists some finite control
sequence µ : {0, . . . k − 1} → U such that applying µ to
dynamics Eq. (3) with initial condition z0 yields a final state
of zk ∈ ζj .

Definition 4: V ∈ X ∪ Y is said to be a spatially-
dependent variable if its truth-value is a function of the
continuous state Z, written V : Z → {True,False}.

Definition 5: Let S� ⊆ S, and let {ζk}k ⊆ Z/P , where
k ∈ K is an index set. We define the region nodes to be

Reg(S�, {ζk}k) � {v ∈ S� | ∃k ∈ K . g(v) =⇒ ζk} .
Intuitively, Reg() is the set of nodes that satisfy some set of
cells of the continuous space — i.e., if the valuation of the
node holds (or equivalently, if an execution path has led to
that node), then the underlying continuous system must be
in one of the given cells.

Definition 6: Let γ > 0. The abstract neighborhood is

Bγ (ζi) � {ζj ∈ Z/P | ∃z1 ∈ ζi, z2 ∈ ζj . �z1 − z2� < γ} .
For completeness, define B0 (ζi) = {ζi}.

Intuitively, the abstract neighborhood lifts the ball of
radius γ from the continuous space up into the discrete
abstraction in such a way that mapping the Bγ back down
into the continuous space will cover the original norm ball.

Definition 7: Let S� ⊆ S, and let ψ be a boolean formula.
We define the satisfying nodes to be

Sat(S�,ψ) �
�
v� ∈ S� | ∃e� ∈ In(v�) .

h(e�)g(v�) |= ψ
�

Intuitively, Sat() gives all nodes for which the corresponding
valuation label and some inward edge label satisfies the given
formula.

Definition 8: Let M be a solution automaton, and let
S� ⊆ S. Then the set of exit nodes is defined

Exit(S�
) �

�
v1 ∈ S� | ∃x ∈ ΣX , v2 ∈ S \ S� .

δ(v1, x) = v2
�
.

Or equivalently,

Exit(S�
) � {v1 ∈ S� | ∃v2 ∈ S \ S� . (v1, v2) ∈ E(M)} .

The set of entry nodes is defined in a similar manner,

Entry(S�
) �

�
v1 ∈ S� | ∃x ∈ ΣX , v2 ∈ S \ S� .

δ(v2, x) = v1
�
.

Definition 9: Let l ∈ S�, where S� ⊆ S. Define the
restricted reachable set to be

Reach
∗
(l, S�

) �
�
v ∈ S� | �l, p1, . . . , pk, v� is a path with

p1, . . . , pk ∈ S�
�

The path of zero length is included, i.e. l ∈ Reach
∗
(l, S�).



III. ALGORITHM

A. Overview

We assume there is a nominal robot controller M that real-
izes a (global) specification ϕ. This controller is “nominal” in
that it was constructed based on a model of the world Z/P ,
wherein the robot can move among cells of interest subject
to some dynamics. If from online sensing one of the cells
ζi ∈ Z/P is discovered to be unreachable, then M must be
corrected if the robot is still to satisfy ϕ. Hence initialization
of our algorithm.

Execution begins when a cell ζi ∈ Z/P expected to be
reachable turns out not to be. Suppose this is first sensed
when the automaton M is at node v ∈ S. There are two
main parts to our approach:

1) find a neighborhood around ζi such that a set of local
specifications {ϕl}l can be realized; and

2) replace defunct parts of M with the synthesized local
patches {Mnew,l}l.

1) Finding locally realizable specifications: The first step
proceeds by iteratively considering larger neighborhoods
until local patches are realized or the global problem is ob-
tained. The latter eventually occurs because for a sufficiently
large neighborhood, synthesizing patches is as hard as re-
synthesis of the entire strategy M . If the global problem has
become infeasible, then terminate with failure.

The sets of spatially-dependent environment and system
variables are Xspatial and Yspatial, respectively. By the as-
sumption that the initial cellular decomposition P of the
state space Z is proposition-preserving, the notion of neigh-
borhood for our purposes is some subset of Z/P . Hence the
definition of abstract neighborhood, Brinc (ζi) ⊆ Z/P . The
radius rinc is iteratively incremented by γ, which has the
same units as the continuous state space Z. Given that the
control strategy will change only when the robot is in this
neighborhood, some of the spatially-dependent variables will
have fixed truth-value and thus need not be included in the
patch synthesis problem. The restricted set of variables is
called Xinc ∪ Yinc in the algorithm.

Since we seek to correct “local” behavior, all parts of the
original strategy M that correspond to the robot being in
the neighborhood Brinc (ζi) ⊆ Z/P must be replaced. The
corresponding set of nodes in M is Reg(S,Brinc (ζi)). This
set is important for two purposes. First, any system goals
ψs,gi that are satisfied at some node in it must be included
as local goals in the patch. Otherwise the environment might
be able to drive the system into this patched cell indefinitely,
leading to a specification violation.

Second, by examining how nodes from
S� := Reg(S,Brinc (ζi)) connect with the remainder of
the strategy automaton, entry and exit points for patches
can be determined. Specifically, the entry nodes are
Entry(S�) ∪ {v} ∪ Init. Nodes in Entry(S�) are just those
from the original M that have an incoming transition
from a node outside the abstract neighborhood. Thus
for an execution path to lead from outside a patch to

l ∈ Entry(S�), the continuous state of the robot must
transition from outside to in Brinc (ζi).

The other set of entry nodes, {v} ∪ Init, handles special
cases. v is the node at which the unreachable cell ζi was
discovered. We must ensure initialization from v is satisfiable
since we want the algorithm to perform patching online—
with no need for “restarts.” Nodes in Init are those from
which the robot can be started in the neighborhood Brinc (ζi),
thus possibly never encountering a transition into it.

Complementary to entry nodes l, we must find exit points
to return to M after local correction Mpatch,l, except in a
special case described below. To ensure correctness of the
output of the algorithm Mnew with respect to the global
specification, a list of possible exit points is formed of those
nodes that

• were reachable in M from l by paths restricted to S�,
and

• correspond to continuous states z that can be driven
out of the neighborhood Brinc (ζi) in one (abstract)
transition.

This set is Reach
∗
(l, S�) ∩ Exit(S�).

As noted earlier, the local patch may be required to
satisfy some global system goals. Therefore it does not
suffice to immediately return to M when execution in a
patch automaton reaches one of the above exit nodes. In the
special case that these system goals were only satisfied in
the abstract neighborhood, the environment might drive the
system to the same exit node every time a patch is visited and
prevent infinite-often satisfaction of these goals. This case is
addressed by adding finite memory {ξi}i to the strategy. The
goal indicators {ξi}i allow an execution path that enters the
patch to remain there until all local system goals are satisfied.
Of course, such “indicators” could be incorporated into the
system variables Y without loss of generality.

There is a special case where, for some entry node l,

Reach
∗
(l, S�

) ∩ Exit(S�
) = ∅.

If such a node l was reached by M during an execution trace,
then the continuous state z would enter the neighborhood and
never leave it. Since the given controller M is assumed to
be correct for the nominal model, such an execution trace is
in fact correct (nominally). It follows that all global system
goals could be satisfied using M restricted to the abstract
neighborhood, hence a patch Mpatch,l beginning at l would
not need to eventually return to M .

From the above description, a patch synthesis problem
with an appropriate “patch” specification ϕl is rooted at each
entry node. If all {ϕl}l are realizable, then the algorithm has
succeeded. It remains only to merge the results {Mpatch,l}l
into the original M .

2) Patching-in the corrections: There are two major steps
to merge each patch automaton Mpatch,l into M . First, recall
that l is an “entry” node in the original M . By definition of
ϕl, the truth-value of environment and system variables at
l is matched by some initialization node in Mpatch,l; call
it l�. Each outgoing transition from l that matches (i.e. has



same environment label x) an outgoing transition from l�

is replaced such that the new transition leads into Mpatch,l.
Thus the patch automaton is “entered” when the continuous
state z of the robot enters the neighborhood Brinc (ζi).

Second, if there is no exit point (recall the special case
noted earlier), then remaining in Mpatch,l is correct. Oth-
erwise, there must be some way to leave Mpatch,l. By
definition of ϕl, the label of at least one “exit” node
p ∈ Reach

∗
(l, S�) ∩ Exit(S�) in M must be satisfied in-

finitely often for an execution contained entirely in Mpatch,l.
Thus after entering Mpatch,l, an execution path will always
eventually be able to return to M at a transition reachable
before patching. Now using the local goal indicators {ξi}i,
exiting Mpatch,l can only occur after all locally satisfiable
goals are met. Because they are guaranteed to be met
eventually by ϕl, matching nodes in Mpatch,l can have
outward transitions augmented to allow returning to M when
all indicators {ξi}i are True.

Once all patches {Mpatch,l}l are merged as above, the
invalid nodes Reg(S, {ζi}) corresponding to reaching the
unreachable ζi can be removed. Return the final solution
Mnew.

B. Formal statement
The algorithm is listed in Figs. 2 through 10. The division

into two blocks of code follows the “two part” description
given in the overview of the previous section.

Clarifications of code in Fig. 2:
• Line 4 checks whether the abstract neighborhood is

sufficiently large to warrant global re-synthesis.
• Lines 8–15 build sets of environment and system

variables that could change in the local problem—in
particular (line 11), those spatially-dependent variables
that could change value for some continuous trajectory
in the abstract neighborhood.

• Line 23 defines initial conditions for the patch specifi-
cation. This ensures correct “entry points.”

• Line 24 accounts for the special case that I �s,g = Is,g
and from entry point l an execution path will never leave
the neighborhood. Hence local navigation goal ψpatch,l

is set to be vacuously satisfied on line 25.
• Lines 29–31 define exit conditions for the patch speci-

fication. These ensure possible “exit points.”
• Lines 32–34 include safety properties and global goals

that are relevant in the local problem. Line 34 defines
the patch specification ϕl.

Clarifications of code in Fig. 3:
• Line 1 creates a new node set by taking the disjoint

union of the original node set and those of all patch
strategies. In the pseudocode, references to Spatch,l,
Reg(S, {ζi}), etc. are to the corresponding subsets of
Snew.

• Lines 7–14 find all nodes from Mpatch,l that share
labeling with l. Edges are then replaced to cause Mnew

to transition into Spatch,l when appropriate.
• Line 15 finds all nodes in Spatch,l that satisfy one of

the disjuncts in ψpatch,l from the patch specification ϕl.

• Lines 16–23 find among the possible exit nodes in the
original strategy M those which match one of the patch
exit nodes in Sexit. Outgoing transitions are appended to
p� ∈ Snew,l. Conditions are added such that a transition
out of the patch can only be taken if all local goals have
been met at least once (Line 20). Otherwise, execution
must continue in the patch (Line 21).

• Lines 24–30 add memory rules to nodes such that
appropriate indicators are set when system goals are
satisfied.

IV. ANALYSIS

Several sets are invoked in the algorithm in such a
way that, if they were empty, then the algorithm would
fail to run. We show this is not the case. Let ζi be
the unreachable cell, let S� := Reg(S,Brinc (ζi)), and let
l ∈ Entry(S�) ∪ {v} ∪ Init.

Remark 1: Merging only occurs at nodes corresponding
to reachable cells, i.e.

Entry(S�
) ∩ Reg(S, {ζi}) = Exit(S�

) ∩ Reg(S, {ζi}) = ∅
Remark 2: Q in line 7 of Fig. 3 is nonempty. Nonempti-

ness follows from realizability of ϕl —in particular, its initial
conditions ψ�

init,l.
Remark 3: Sexit is nonempty. Mpatch,l is a realization of

ϕl, thus by construction of the patch goals ψpatch,l, at least
one match will be found.

As stated, the algorithm is not complete due to the
simplifying assumption regarding environment behavior in
the patch cell. We do not require the adversarial environment
to satisfy all of its global “infinitely often” behaviors. A
simple counterexample is navigating a vehicle through a thin
passageway. Under the patch assumption, it could be blocked
indefinitely by an environmentally-controlled obstacle. In
contrast, the global specification could require it to clear the
passageway always eventually, hence realizability.

However, increasing the radius rinc causes the algorithm
to reduce to the global problem after a finite number of
iterations. So in that (degenerate) sense, it is complete.

Theorem 1: Any successfully patched controller Mnew

realizes the original specification Eq. (2).
Proof: Let ζi be the cell discovered to be unreachable.

Let N = Brinc (ζi) ⊆ Z/P be the abstract neighborhood.
Set rinc to its value at algorithm termination, and let
S� = Reg(S,Brinc (ζi)).

Aside from initial conditions, the assumption of the global
specification Eq. (2) implies the assumptions of all patch
specifications {ϕl}l because the latter is a proper subset of
the former. We can ignore the initial conditions ψ�

init,l of the
patch specification since by construction they are reachable
in the original automaton M from its own initial conditions
ψinit.

There are two cases to consider. First, for any execution
path that is a subset of S \Reg(S, {ζi}), the global specifi-
cation is satisfied by hypothesis.

It remains to address execution paths that include nodes
from Spatch,l for some l. There are two basic possibilities



Fig. 2. Main loop
Require: ζi ∈ Z/P unreachable, v node in M

1: rinc ← 0

2: repeat
3: rinc ← rinc + γ
4: if Z/P = Brinc(ζi) then
5: abort //recovered global problem
6: end if
7: S� ← Reg(S,Brinc (ζi))
8: for V in {X ,Y} do
9: Vinc ← V \ Vspatial

10: for V in Vspatial do
11: if V (Brinc(ζi)) = {True,False} then
12: Vinc ← Vinc ∪ {V }
13: end if
14: end for
15: end for
16: for α in {e, s} do
17: I �α,t ← FindTrans(Xinc,Yinc,α)
18: I �α,g ← LocalGoals(Brinc (ζi) ,α)
19: end for
20: Init ← S0 ∩ Reg(S,Brinc (ζi))
21: Soln ← ∅ //set of patch automata
22: for l in Entry(S�) ∪ {v} ∪ Init do
23: ψ�

init,l ←
�

e∈In(l) form(h(e)g(l))
24: if Reach∗(l, S�) ∩ Exit(S�) = ∅ then
25: ψpatch,l ← True //special case
26: else
27: ψpatch,l ← False

28: end if
29: for p ∈ Reach

∗
(l, S�) ∩ Exit(S�) do

30: ψpatch,l ← ψpatch,l∨
��

e∈In(p) form(h(e)g(p))
�

31: end for
32: ψ�

e ←
��

i∈I�
e,t

�ψe,ti

�
∧
��

i∈I�
e,g

�♦ψe,gi

�

33: ψ�
s ←

��
i∈I�

s,t
�ψs,ti

�
∧
��

i∈I�
s,g

�♦ψs,gi

�

34: ϕl ← ψ�
init,l ∧ ψ�

e =⇒ ψ�
s ∧�♦ψpatch,l

35: if ϕl realizable then
36: Mpatch,l ← Synthesize(Xinc,Yinc,ϕl)

37: Soln ← Soln ∪ {(l,Mpatch,l,ϕl)}
38: else
39: goto line 3 //failed; try next larger radius
40: end if
41: end for
42: return Soln

43: until all ϕl realizable

from which the more general case can be composed: an
execution path that enters then leaves a patch automaton in
finitely many steps; or an execution path that enters but does
not leave a patch automaton.

For the former case, let ρ be an execution path that enters
and leaves in finitely many steps a patch automaton with
index l. Recall the new strategy Mnew is an automaton with
finite memory in which an execution path cannot leave one
of the sets of patch nodes Spatch,l unless all system goals

Fig. 3. Create new strategy Mnew

Require: Soln = {(l,Mpatch,l,ϕl)}l
1: Snew ← S � (

�
l Spatch,l)

2: Mem ← {ξi}i∈I�
s,g

//goal indicator memory
3: Rule ← RuleClear //nodes clear memory by default
4: Cond ← NULL //no conditional transitions by default
5: Mnew ← (ΣX , Snew, S0, g, δ,Mem,Rule,Cond)
6: for (l,Mpatch,l,ϕl) in Soln do
7: Q ← FindMatches(l, Spatch,l)

8: for (l, w) in Out(l) do
9: for ((l, w), l�, (l�, w�)) in Q do

10: E(Mnew) ← E(Mnew) ∪ (l, w�)
11: delete (l, w) from E(Mnew)

12: delete (l�, w�) from E(Mnew)

13: end for
14: end for
15: Sexit ← Sat(Spatch,l,ψpatch,l)

16: for p ∈ Reach
∗
(l, S�) ∩ Exit(S�) do

17: Q ← FindMatches(p, Sexit)

18: for ((p, w), p�, (p�, w�)) in Q do
19: E(Mnew) ← E(Mnew) ∪ (p�, w)
20: Cond(p�, w) ← CondAll
21: Cond(p�, w�) ← CondAnyNot
22: end for
23: end for
24: for p� in Spatch,l do
25: if ∃e� ∈ In(p�), i ∈ I �s,g . h(e�)g(p�) |= ψs,gi then
26: Rule(p�) ← RuleSetIfSat
27: else
28: Rule(p�) ← NULL
29: end if
30: end for
31: end for
32: for w in Reg(S, {ζi}) do
33: delete w from Snew //. . . and dependent edges
34: end for
35: return Mnew

satisfied in S� are satisfied. By the fact that Mpatch,l realizes
specification ϕl, Spatch,l can eventually be departed for any
admissible environment behavior.

Given all locally satisfiable system goals have been visited
at least once, the execution path ρ returns to the original
automaton at a node v that was previously reachable from
the same node at which the patch set Spatch,l was entered,
l. This follows from the local navigation goals in ψpatch,l,
which were selected to have the same valuation as reachable
exit points in M , i.e. Reach∗(l, S�) ∩ Exit(S�).

The environment could have driven the system from l to v
under the original strategy M . Hence, any valuations on the
execution trace after the path visits patch set Spatch,l were
reachable in the original M . Therefore subsequent infinite-
often satisfaction of system goals is preserved in this case
under the new strategy Mnew.

The latter case is only possible for those Mpatch,l where
Reach

∗
(l, S�) ∩ Exit(S�) = ∅, i.e. for which the original



Fig. 4. FindTrans(). Subroutine to find relevant safety properties.
1: I �α,t ← ∅
2: for i in Iα,t do
3: if ∃x ∈ ΣXinc , y ∈ ΣYinc . xy � ψα,ti then
4: I �α,t ← I �α,t ∪ {i}
5: end if
6: end for
7: return I �α,t

Fig. 5. LocalGoals(). Subroutine to find goals locally satified in original
strategy M .

1: I �α,g ← ∅
2: for i in Iα,g do
3: if Sat(S,ψα,gi) ∩ Reg(S,Brinc (ζi)) �= ∅ then
4: I �α,g ← I �α,g ∪ {i}
5: end if
6: end for
7: return I �α,g

Fig. 6. FindMatches(). Subroutine to find nodes with matching valuations
and outward edges.
Require: l node, and S set of nodes

1: Match ← ∅
2: for w in S do
3: if ∃e1 ∈ In(l), e2 ∈ In(w) . h(e1)g(l) = h(e2)g(w)

then
4: for e�1 in Out(l) do
5: for e�2 in Out(w) do
6: if h(e�1) = h(e�2) then
7: Match ← Match ∪ {(e�1, w, e�2)}
8: end if
9: end for

10: end for
11: end if
12: end for
13: return Match

Fig. 7. RuleClear(). Clear all memory.
Require: Mem finite memory

1: for ξ in Mem do
2: ξ ← 0

3: end for
4: return Mem

Fig. 8. RuleSetIfSat(). Set any memory entry for which corresponding
system goal is true.
Require: memory Mem, node p, local goal index set I �s,g

1: for i in I �s,g do
2: if ∃e ∈ In(p) . h(e)g(p) |= ψs,gi then
3: ξi ← 1

4: end if
5: end for
6: return Mem

solution M would have a continuous trajectory forever
remaining in N . It follows that I �s,g = Is,g . Because Mpatch,l

realizes ϕl by hypothesis, therefore the execution path for-

Fig. 9. CondAll(). Enable transition only if all memory entries are True.

1: if ∀ξ ∈ Mem . ξ = 1 then
2: return True

3: else
4: return False

5: end if

Fig. 10. CondAnyNot(). Enable transition only if at least one memory
entry is False

1: if ∃ξ ∈ Mem . ξ = 0 then
2: return True

3: else
4: return False

5: end if

Fig. 11. Gridworld hallways. “I” is the robot initial position, each location
marked with “G” must be visited infinitely often (like surveillance), and the
shaded cell contains an obstacle that can move freely within it. The original
maps, used for synthesizing nominal controllers, do not include the black
walls.

ever remaining in Spatch,l must be correct with respect to
the global specification Eq. (2).

If the structure of the continuous space changes as consid-
ered here, e.g., newly sensed unreachability of cell ζi ∈ Z/P ,
then some safety properties of the original specification may
need to be updated to reflect this. Therefore, soundness is
with respect to the updated global specification.1

Remark 4: The worst-case (asymptotic) time and memory
complexity of the presented algorithm is that of global re-
synthesis.

V. EXAMPLES

Results below were obtained and displayed using the tools
TuLiP [19] and Gephi [20]. Software implementing our
algorithm and the gridworld setting will soon be released
open source.

Consider the gridworld shown in upper Fig. 11. The robot
begins operation in the upper-left cell and must visit the cells
marked “G” infinitely often. Also it must avoid a dynamic
obstacle in the shaded cells. Despite its apparent simplicity,
the problem is actually quite large when all movements of
the obstacle and robot are addressed. Recall that we seek
to guarantee correctness of the synthesized controller, so
probabilities of success are not sufficient.

The nominal strategy M has 259 nodes. After patching,
the new control strategy Mnew has 1036 nodes and is
depicted in Fig. 12. The final solution consists of nonlocal
parts of M that remain valid, patches Mnew,l, and edges
connecting them. Control flow is clockwise about the top

1Nonetheless with some abuse of terminology, we use “original” and
“global” interchangeably.



Fig. 12. Patched automaton Mnew for problem in upper Fig. 11. The loops
indicate the robot visiting both goals infinitely often. The knots are clusters
of nodes, representing execution path variations given different obstacle
(environment) positions. The small tail toward the top of the figure is for
initialization. Execution traces run there for a finite prefix before proceeding
into the main behaviors.

Fig. 13. Patched automaton Mnew for problem in lower Fig. 11. The
fan-like parts in the upper-left and lower-right are patches, and the web-like
subgraphs are the remaining valid parts of the nominal strategy.

of the figure. An execution path proceeds over this “hoop”
before branching into one of the patches. After the rightmost
goal in the gridworld is satisfied as a local system goal in
ϕl, the execution path leaves the patch and returns to what
remains of M around the part noted by “Exit” in the figure.

A similar example is shown in lower Fig. 11, where
now the robot must correctly negotiate a dynamic obstacle
to satisfy both recurring goals. The result of patching is
depicted in Fig. 13.

VI. CONCLUSION

We presented a method for using online sensor data to
update a robot controller locally while recovering global
correctness. Our approach focuses on reachability of the
continuous state space. Such changes are static, e.g., when a
mobile robot must update its floor layout given new mapping
data. Future work will address changes in dynamic properties
of the environment estimated online.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Eric Wolff and
Sandeep Chinchali for comments on this manuscript. This
work is partially supported by the Boeing Corporation.

REFERENCES

[1] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,”
in Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ser. POPL ’89. New
York, NY, USA: ACM, 1989, pp. 179–190. [Online]. Available:
http://doi.acm.org/10.1145/75277.75293

[2] A. Church, “Logic, arithmetic, and automata,” in Proceedings of the
International Congress of Mathematicians, August 1962, pp. 23–35.

[3] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal logic-
based reactive mission and motion planning,” IEEE Transactions on
Robotics, vol. 25, no. 6, pp. 1370–1381, 2009.

[4] T. Wongpiromsarn, “Formal methods for design and verification of
embedded control systems: Application to an autonomous vehicle,”
Ph.D. dissertation, California Institute of Technology, 2010.

[5] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete
abstractions of hybrid systems,” Proceedings of the IEEE, vol. 88,
no. 7, pp. 971–984, July 2000.

[6] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J.
Pappas, “Symbolic planning and control of robot motion: Finding
the missing pieces of current methods and ideas,” IEEE Robotics &
Automation Magazine, pp. 61–70, March 2007.

[7] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Transactions
on Automatic Control, vol. 53, no. 1, pp. 287–297, February 2008.

[8] S. Karaman and E. Frazzoli, “Sampling-based motion planning with
deterministic µ-calculus specifications,” in Proceedings of the 2009
IEEE Conference on Decision and Control (CDC), 2009, pp. 2222–
2229.

[9] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
control for temporal logic specifications,” in Proceedings of 13th In-
ternational Conference on Hybrid Systems: Computation and Control
(HSCC’10), 2010.

[10] B. Johnson and H. Kress-Gazit, “Probabilistic analysis of correctness
of high-level robot behavior with sensor error,” in Proceedings of
Robotics: Science and Systems, Los Angeles, CA, USA, June 2011.

[11] M. Lahijanian, J. Wasniewski, S. B. Andersson, and C. Belta, “Motion
planning and control from temporal logic specifications with prob-
abilistic satisfaction guarantees,” in Proceedings of the 2010 IEEE
International Conference on Robotics and Automation (ICRA), May
2010, pp. 3227–3232.

[12] X. C. Ding, S. L. Smith, C. Belta, and D. Rus, “LTL control in
uncertain environments with probabilistic satisfaction guarantees,” in
Proceedings of 18th IFAC World Congress, 2011.

[13] A. Stentz, “The focussed D* algorithm for real-time replanning,”
in Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), August 1995.

[14] L. Lamport, “The temporal logic of actions,” ACM Transactions on
Programming Languages and Systems, vol. 16, no. 3, pp. 872–923,
May 1994.

[15] Y. Kesten, N. Piterman, and A. Pnueli, “Bridging the gap between
fair simulation and trace inclusion,” Information and Computation,
vol. 200, pp. 35–61, 2005.

[16] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive(1)
designs,” in In Proc. 7th International Conference on Verification,
Model Checking and Abstract Interpretation, ser. Lecture Notes in
Computer Science, vol. 3855. Springer, 2006, pp. 364–380. [Online].
Available: http://jtlv.sourceforge.net/

[17] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model Checking.
MIT Press, 1999.

[18] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press,
2008.

[19] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray,
“TuLiP: A software toolbox for receding horizon temporal logic
planning,” in Proceedings of 14th International Conference on Hybrid
Systems: Computation and Control (HSCC’11), 2011. [Online].
Available: http://tulip-control.sourceforge.net

[20] http://gephi.org/, “Gephi: open-source software for network visualiza-
tion and analysis,” September 2011.


