
Moving bounding boxes and incremental synthesis for dynamic obstacles

Scott C. Livingston Richard M. Murray

Abstract— While the use of formal synthesis for robotics
problems in which the environment may act adversarially
provides for exact—rather than probabilistic—correctness of
controllers, such methods are impractical when the adversary
can move freely in a large portion of the workspace. As is
well-known, this is due to exponential growth in the state
space with the addition of each new problem variable. Fur-
thermore, such an approach is overly conservative because
most configurations will not be reached in typical runs. Rather
than entirely abandon the discrete game view, we propose a
combined method that ensures exact satisfaction of a given
specification, expressed in linear temporal logic, while providing
a lower bound on robot-obstacle distance throughout execution.
Our method avoids explicit encoding of the moving obstacle
and thus substantially reduces the reactive synthesis problem
size, while allowing other nondeterministic variables to still
be included in the specification. Our approaches centers on
modeling obstacle motion as changes in the presence of a
virtual static obstacle, and performing incremental synthesis
in response. The algorithm is tested in application to a planar
surveillance task.

I. INTRODUCTION

Any practical robot will face interaction with uncertain
obstacles while attempting to complete its task. The nature
of this uncertainty varies from the unknown, fixed layout
of static (non-moving) obstacles, as addressed by vanilla
occupancy grids [1], to the trajectories of goal-oriented,
interacting crowds of people [2]. In the present work we
are concerned with task completion in the midst of moving
obstacles, where the task is specified formally in the GR(1)
fragment of linear temporal logic, and the dynamic obstacles
are assumed to have bounded speed. Such task specifications
are known as reactive synthesis problems in the theoretical
computer science literature [3], or nondeterministic games
against nature in the planning literature [4]. An exact so-
lution is required, meaning that any move by the adversary
must be accounted for, and thus exponential complexity in
the number of problem variables is unavoidable without fur-
ther assumptions. The situation is no better in the continuous
setting. Considering instead the continuous dynamics that
are usually abstracted by a discrete game view, it has been
shown that motion planning for a rigid body among moving
obstacles is PSPACE-hard, even when the trajectories of
these obstacles are known a priori [5].

Much previous work concerning formal methods in
robotics includes a dynamic obstacle, where “dynamic ob-
stacle” is taken to mean an uncontrolled object that can
change its position in the workspace, and against which

S.C. Livingston and R.M. Murray are with the California In-
stitute of Technology, Pasadena, CA. Email address of S.C.L. is
slivingston@cds.caltech.edu.

Fig. 1. Illustration of the presented covering box method. The green circle
is a dynamic obstacle, the light blue region surrounding it is a virtual static
obstacle. The robot (red circle) modifies its strategy as if the virtual obstacle
was discovered online. It is attempting to reach the two yellow stars, as
specified in its task formula '.

collisions must be avoided. Of course, “must” is relaxed to
a probabilistic notion in some instances. Several examples
involving straigtforward application of GR(1) synthesis in
which the moving obstacle is explicitly encoded in the
GR(1) task formula are given by Kress-Gazet et al. [6]. The
limitations of explicit encoding of obstacles are addressed
by a state space decomposition in the receding horizon
approach of Wongpiromsarn (again, using GR(1) synthesis
for strategy construction) [7]. In a problem involving tracking
of nondeterministic moving targets, which is similar to the
setting of dynamic obstacles, Özay and collaborators exploit
parallel structure in the problem and propose a method for
distributed synthesis to cope with a large discrete state-space
[8].

In light of the computational complexity of the exact prob-
lem, a major family of alternatives is probabilistic methods.
Restricting our attention to those involving a formal task
specification, perhaps the work closest to the present is that
of [9], in which the authors present a method that combines
the strategy automaton from GR(1) synthesis with probabilis-
tic obstacle tracking, the output of which is made suitable
for direct input to the automaton by a safety threshold. A
growing body of literature focuses on probabilistic model
checking techniques and relies on synthesis for Markov
decision processes. In [10], the authors cope with uncertainty
about a dynamic environment by formal language learning.
To avoid state explosion, Wongpiromsarn and collaborators
propose a method that incrementally accounts for more states
from the models of dynamic obstacles [11], improving the

Submitted, 2014 Internatioanl Conference on Robotics and Automation (ICRA)
http://www.cds.caltech.edu/~murray/papers/lm14-icra.html

solution depending on computational resources.
Our contributions are summarized as follows. In Sec-

tion III, we present a substantial extension to the algorithm
of [12] that allows strategy modification across goal nodes,
thus obtaining a sort of monotonicity. In preparation for the
algorithm, we also examine the structure of a graph derived
from the strategy automaton that may be of independent
interest for online formal synthesis algorithms in robotics.
In Section IV, we present a method for collision avoidance
with moving obstacles while completing a formally specified
task. Our method is based on virtual static obstacles that
change position slowly with time. Preliminary experiments
validating the presented methods are described in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

We now describe the two basic components of a problem
instance: the task formula ' and the dynamical model of
moving obstacles. The task formula is expressed in the
GR(1) fragment of linear temporal logic (LTL), which is
an extension of Boolean (propositional) logic for count-
ably infinite time sequences [13]. Recall that a Boolean
logic formula can include “and” ^, “or” _, “negation” ¬,
and “implication” =) operators, combined with atomic
propositions that evaluate to either True or False. Temporal
logic is useful for describing robot tasks because one can
unambiguously express desired behaviors, e.g., recurring
surveillance or responsiveness to external flags. While there
are many temporal operators in the syntax of LTL, only
“eventually” ⇤ and “always” ⇤ are crucial in this paper.
For a general introduction to LTL and relevant theory, consult
e.g., [14]. An LTL formula ' that can be written as

✓

env

^⇤ ⇢

env

^
0

@
m�1^

j=0

⇤ ⇤ env

j

1

A

=) ✓

sys

^⇤ ⇢

sys

^

n�1^

i=0

⇤ ⇤ sys

i

!
(1)

is said to be a GR(1) formula [15], provided the subfor-
mulae have the following structure. Let X and Y be sets
of variables, referred to respectively as “environment” and
“system” variables. A valuation is an assignment of values
to these variables, and the sets of all possible values for
each are ⌃X and ⌃Y , respectively. ✓

env

is a Boolean formula
written in terms of X [Y that specifies initial conditions.
⇢

env

is a Boolean formula in terms of X [Y [�X , where
�X denotes values of environment variables at the next
time step. Thus, ⇢

env

is sometimes called the environment
transition rule because it describes how the adversary may
move, given a particular valuation of X [Y . The temporal
operator ⇤ is written before ⇢

env

to indicate that it must hold
at each time step, i.e., the transition rule always applies.
Finally, the subformulae

env

j are liveness conditions that
the environment is assumed to satisfy infinitely often (hence
the use of “⇤ ⇤”). Notice the parallel structure in (1). ✓

sys

and

sys

0

, . . . ,

sys

n�1

are analogous to the similarly named
subformulae on the left-side of the implication. However,

⇢

sys

is predicated on X [Y [�X [�Y; again it can be
regarded as a transition rule, but now it describes how the
system (robot) may move, given the current valuation and
the move that the environment is about to take. The left-side
of the equation is often called the “assumption” because it
restricts how the uncertain environment may behave, while
the right-side is called the “guarantee” because it specifies
behavior that is to be realized.

As a small example of a GR(1) formula, consider

⇤ ⇤ door open =) ⇤ ⇤ visit bedroom.

It has one environment variable, door open, that is True

whenever the door to a bedroom that is under surveillance is
open. Given this door is always eventually open, expressed
on the left-side of the formula, the robot is to recurringly visit
the room, as indicated on the right-side of the formula. Of
course, this is a description of the task, not its solution. More
generally, given a GR(1) formula ', one may algorithmically
construct a finite automaton that accepts as input valuations
of X and selects (outputs) valuations for Y such that the
resulting sequence satisfies '. A finite automaton A =

(V, �, L) is a triple where V is a set of nodes, � ✓ V⇥⌃X⇥V

is a transition function, and L : V ! ⌃X ⇥ ⌃Y is a node
labeling, or output function, of A. (u, e, v) 2 � is also
denoted by �(u, e) = v. A finite automaton under which
all sequences of valuations for X [Y satisfy ' is said to be
winning. A finite automaton that conforms with (obeys) the
transition rules of ' is called a strategy automaton.

Given any Boolean formula , the set of states from ⌃X ⇥
⌃Y that satisfy it is denoted [[]]. An equivalent game graph
can be obtained from the transition rules in a GR(1) formula
', and the notation of [[·]] can be extended to µ-calculus
formulae concerning this graph. The reader is directed to
[12] for an introduction relevant to our current setting and
to [16] for a more general introduction.

In the context of a robot system architecture, the strategy
automaton plays the role of the task-level controller, or what
is occasionally named the finite-state machine. In addition to
governing intrinsically discrete variables, such as whether a
camera captures photographs, the strategy automaton selects
movements in the physical workspace. The continuum of
a workspace is mapped to a discrete representation, such
as a cell decomposition [4], with adjacent cells labeled as
connected if there exist controllers to steer between them.
The relationship between navigation on a finite graph and
in the actual workspace is made precise by bisimulations,
sometimes called discrete abstractions [17]; for an introduc-
tory treatment, consult [18]. In this paper we tacitly assume
the availability of an appropriate abstraction, allowing our
treatment to be entirely in terms of discrete objects. A
concrete example involving planar mobile robots appears in
Section V.

The second major part of a problem instance is the
dynamics model for the moving obstacles. In this paper we
consider only random walks with single integrator dynamics.
Each obstacle has the shape of a circle with radius �. The
set of points making up the body of the obstacle is called O,

which we also use simply to refer to that obstacle; its center
point is x. The moving obstacle has trajectories satisfying

ẋ = u, |u(t)|  1, (2)

where x(t) 2 R2, |·| is the (Euclidean) 2-norm, and u is a
piecewise constant function of time, changing at most once
per second. The choice of unit bound on input in (2) is
to simplify the presentation by normalizing with respect to
maximum speed. Such a model is conservative because in
general obstacles will not be able to move instantaneously in
any direction. Futhermore, it is easy to see that (2) implies a
reachability horizon for each time step. Sampling with period
1, the obstacle motion follows x(t+1) = x(t)+u(t), hence

|x(t+ 1)� x(t)|  1.

If the discretization of the workspace is appropriately chosen,
then we can, possibly conservatively, model the obstacle as
being able to move by at most one cell per time step. In
this paper, while not required for the results, we assume an
axis-aligned uniform grid partition of the plane for simplicity
of presentation. The consequence of modeling the obstacle
motion in this way is that our method can be ensured to work
against obstacles with motion more constrained than (2). In
terms of LTL, a random walking obstacle will eventually
always (⇤ ⇤) visit every cell, assuming the workspace is
topologically connected. Thus we have obtained a fairness
constraint that the obstacle will not block doorways, etc.,
without having to explicitly encode it into the task formula
', as in previous work.

Summarizing the setting, we are given a workspace W ✓
R2, a finite partition of it, a task formula ' in the form of
(1) specifying what the robot must do in W , possibly in the
presence of other discrete variables included in X [Y , and
one or more moving obstacles O

1

, . . . ,Ok in W .

III. PATCHING ACROSS GOAL STATES

Let ' be a task formula, and let A = (V, �, L) be a winning
strategy automaton for it. A limitation of the algorithm
presented in [12] is that nodes in A corresponding to goal
satisfaction cannot be removed. When some of the goals

sys

0

, . . . ,

sys

n�1

depend on robot position in the workspace
W , it can easily occur that a wandering obstacle transiently
covers goal states that would be reached under A. Nonethe-
less, the algorithm of [12] has been shown to successfully
incorporate discovered positions of static obstacles, and thus
we are motivated to extend it so as to be robust against
more types of uncertain moving obstacles. Furthermore,
our development here achieves a certain monotonicity with
respect to approaching global re-synthesis as the portion of
A that is mended increases.

To begin, define the edge set of a strategy automaton to
be

E = {(u, v) 2 V ⇥ V | 9e 2 ⌃X , �(u, e) = v} . (3)

As an alternative to the input-oriented definition of �, we
may now view A as a directed graph (V,E). Recall from

[12] that we may obtain during strategy synthesis a reach
annotation

RA : V ! {0, . . . , n� 1}⇥ Z

at no extra computational complexity, up to a constant factor.
For any node v 2 V , the first element RA

1

(v) is said to
be the goal mode of v. Intuitively, upon reaching the node
v, automaton A is pursuing a state that satisfies sys

RA1(v)
.

Whether it is actually making progress toward that goal is
indicated by the second element RA

2

. If RA

2

decreases
across an edge (u, v) in A (i.e., RA

2

(v) < RA

2

(u)), then
strict progress is made. Otherwise one of the environment
liveness conditions env

0

, . . . ,

env

m�1

in (1) is being blocked.
When the goal sys

i of the current mode i being pursued is
reached, the goal mode is incremented (modulo n) until an
index j is found such that sys

j is not satisfied at the current
state. Such a transition corresponds to an edge (u, v) 2 E

where RA

1

(u) = i and RA

1

(v) = j.
In order to see the structure of plays under A in terms of

reaching goal states, first partition the set of nodes according
to goal mode, i.e.,

Vi = {v 2 V | RA
1

(v) = i} , (4)

and then define an edge set over this partition by
ˆ

E = {(Vi, Vj) | 9u 2 Vi, 9v 2 Vj : (u, v) 2 E} . (5)

Note that ˆ

E is well-defined because V

0

, V

1

, . . . , Vn�1

are
mutually disjoint. From the description of reach annotation
RA above, it should be clear that edges in ˆ

E correspond to
satisfaction of task goals sys

0

, . . . ,

sys

n�1

because across any
such edge, the mode RA

1

changes.
It is natural to ask what structure the directed graph⇣
{V

0

, V

1

, . . . , Vn�1

} , ˆE
⌘

has, given its construction from
(1) and a winning strategy automaton equipped with reach
annotation RA. While exploring this further is the topic of
future work, it turns out that this graph is a chain for many
tasks in robotics, as we now show. By construction of RA,
if the goal mode changes by more than 1, then more than
one goal must be satisfied upon reaching that node during
any play. A weaker result sufficient for our purposes is the
following.

Remark 1: If there exists an edge (u, v) 2 E such that

|RA
1

(v)� RA

1

(u) mod n| > 1,

then there exist goal indices i, j such that [[sys

i]]\[[sys

j]] 6= ;.
Typically the goals in a robot task are disjoint. For a small

example, consider surveillance of several locations in an
office building; the robot cannot simultaneously occupy mul-
tiple locations at once, and therefore the corresponding goal
conditions sys

0

, . . . ,

sys

n�1

in (1) are disjoint. This remains
true even if discrete (non-locative) variables are introduced
into the task formula ', provided that position variables are
combined with the other variables by conjunction, e.g., go
to that room and capture a photograph. In Boolean logic
notation, this property is expressed by

sys

i ^ sys

j ⌘ False for all i 6= j, (6)

or in terms of sets of states, [[

sys

i]] \ [[

sys

j]] = ; for all
distinct pairs of indices i, j. This is exactly the contrapositive
of Remark 1.

Therefore, for any robot task satisfying (6), it follows from
Remark 1 that the graph

⇣
{V

0

, V

1

, . . . , Vn�1

} , ˆE
⌘

can only
have edges of the form (Vi, Vi+1

) or (Vi, Vi�1

), where index
arithmetic is modulo n. Hence it is easy to see that any cycle
either has length 2 or n. (It is immediate from the definition
of ˆ

E in (5) that there cannot be self-loops, i.e., cycles of
length 1.)

Finally, it is common in GR(1) synthesis algorithms to
construct a finite automaton that pursues each system goal
in the order originally given in the task formula [19]. While
there has been work addressing how reordering of these goals
can improve performance in application to robotics [20],
such reorderings can be made before invoking a synthesis
algorithm (as a “black box”). Without loss of generality,
we can assume that system goals are pursued in order, as
appearing in the task formula '. To see this, notice that
mode i only concerns pursuit of a particular goal sys

i —
satisfaction of a different goal sys

j , j 6= i, en route will
not affect the current mode. Combining this with previous
observations, the following lemma is proven.

Lemma 2: The graph
⇣
{V

0

, V

1

, . . . , Vn�1

} , ˆE
⌘

is a sub-
graph of a chain.

Note that the lemma states “subgraph of a chain” because
a winning strategy automaton can block one of the envi-
ronment liveness conditions env

j of (1), possibly causing
a node Vi to have no outgoing edges. A practical example
is a strategy in which the robot blocks the doorway, thus
preventing the door from closing as may have been assumed
to always eventually happen.

We are now ready to present our extension to the au-
tomaton patching algorithm of [12]. Let A = (V, �, L) be a
strategy automaton that is winning with respect to the GR(1)
task formula '. Let ¯

N ✓ ⌃X ⇥ ⌃Y be a set of discrete
states, e.g., corresponding to a ball in the robot workspace,
over which the strategy from A must be changed. A change
is required because a new task formula '0 was obtained due
to modification of the transition rules (cf. (1)). Using the
inverse of the node labelling function L, we can find sets of
nodes that must be replaced and partition them according to
goal mode. Precisely, for each i = 0, 1, . . . , n� 1, define

Ni =
�
u 2 V | L(u) 2 ¯

N ^ RA

1

(u) = i

.

Clearly, Ni ✓ Vi, and indeed, this set is equivalently
expressed by Ni = L

�1

(

¯

N) \ Vi. Regarding the sets
N

0

, N

1

, . . . , Nn�1

as vertices in a graph, a new edge set
ˆ

EN is constructed similarly to ˆ

E in (5). Since each Ni is a
subset of Vi, it is easy to see that an edge is in ˆ

EN only if it
is in ˆ

E. Therefore it follows from Lemma 2 that the graph⇣
{N

0

, N

1

, . . . , Nn�1

} , ˆEN

⌘
is also a subgraph of a chain.

Thus, there are three possibilities for each part of this
graph, and we treat them separately. We now summarize
the steps for modifying the automaton A to recover cor-
rectness with respect to the modified task formula '

0 by

changing behavior over the states in N . A formal statement
is given in Algorithm 1, where we make use of a subroutine
Reach'(A,B) that solves a reachibility game using the tran-
sition rules from ': from any initial state in A, reach some
state in B. This subroutine is straightforward to implement,
and there are various methods for doing so. We assume it is
done symbolically (i.e., in terms of sets of states) with a µ-
calculus fixed point iteration similar to that in [12], to which
the reader is referred for details. That is, Reach'(A,B) is
a µ-calculus formula, and thus [[Reach'(A,B)]] denotes the
fixed point set of states. Whatever reachability technique is
chosen, the crucial properties are that [[Reach'(A,B)]] ✓ A

and from any initial state in [[Reach'(A,B)]], there exists a
strategy to drive the play to a state in B, or to block one of
the environment liveness conditions in '.

Before examining the three possibilities for⇣
{N

0

, N

1

, . . . , Nn�1

} , ˆEN

⌘
, observe that any edge in

ˆ

EN corresponds to a robot goal being reached, i.e.,
(Ni, Ni+1

) corresponds to an action by the automaton
A in which a

sys

i -state is visited and the goal mode is
incremented, modulo n. The first possibility is that this
graph is itself a chain; this is equivalently stated as the case
where there is transition into a goal state for each of the
goals. Motivated by practical rarity, in this case we simply
perform global re-synthesis of the strategy automaton A for
the modified task formula '0.

For the remaining two possibilities, the graph⇣
{N

0

, N

1

, . . . , Nn�1

} , ˆEN

⌘
is not itself a chain. However,

recall that it is a subgraph of a chain, and therefore each
of the sets Ni is either isolated (i.e., without ingoing or
outgoing edges) or part of a finite sequence of edges of
the form (Ni�1

, Ni) , . . . , (Ni, Ni+1

). An example of this
is given in Figure 2. In the former case, the nodes of A in
Ni can be replaced without changing the goal mode i. This
is achieved in two steps. First, find all nodes in Ni that
have an ingoing edge in E (recall (3)) from a node outside
Ni, and call the set of state labels of these nodes Entry

i.
(Recall that state labels of automaton nodes are provided by
L, and Ni is a set of nodes.) Similarly, find all nodes in Ni

that have an edge going out of Ni, and call the result Exiti.
Note that Entryi,Exiti ✓ ⌃X ⇥⌃Y . A substrategy suitable
for patching A is found by solving Reach(Entry

i
,Exit

i
).

In the latter case, let I be a subset of {0, 1, . . . , n � 1}
indexing the nodes Ni that form a finite sequence of edges in
ˆ

EN . We create a new substrategy by solving a sequence of
reachability games. To begin, let the initial index in I be i, so
that I = {i, i+1, . . . , i+(|I|�1)}, where index arithmetic is
modulo n. The sets of nodes EntryI and Exit

I are created in
a manner similar to the previous case, except that EntryI ✓
L(Ni) and Exit

I ✓ L(Ni+(|I|�1)

). Beginning at the end
of this sequence, first solve Reach'([[

sys

i+(|I|�1)�1

]],Exit

I
).

This method terminates either when [[

sys

i+(|I|�1)�1

]] is ob-
tained, or when a fixed point occurs. In the former case,
let Bi+(|I|�1)�1

:= [[

sys

i+(|I|�1)�1

]], and in the latter case,
let Bi+(|I|�1)�1

be the intersection of the fixed point
with [[

sys

i+(|I|�1)�1

]]. Note that, having been obtained from

Fig. 2. Example of the graph
⇣
{N0, N1, N2} , ˆEN

⌘
of sets of affected

nodes, over which patching will occur. The workspace is shown above
this graph, with a light blue circle indicating states over which re-planning
should occur. In this case, there are three system goals: sys

0 , sys
1 , sys

2 ,
which correspond to positions g0, g1, and g2, respectively, in the workspace.
Note that the gray curves indicate possible paths, whereas A is actually
a strategy and thus could lead to many different paths. Nodes in A that
correspond to pursuit of sys

2 -states are not affected by the change set N
in this example. Hence, N2 = ;, and the N2 vertex is isolated in the above
figure. By contrast, there is an edge from N0 to N1, indicating that a goal
state is reached by an edge affected by the change set N . Thus, in terms of
Algorithm 1, the index set I0 will have two elements, and the substrategy
corresponding to that edge will reach a sys

2 -state en route to the Exit set.

Reach(), it is possible to reach Exit

I from any initial state
in Bi+(|I|�1)�1

. Now, another reachability game is solved:
Reach'([[

sys

i+(|I|�1)�2

]], Bi+(|I|�1)�1

). As in the previous
step, store the result to Bi+(|I|�1)�2

. This process is repeated
until Bi is computed. If Entry

I ✓ Bi, then strategies for
each of the reachability games are chained together so that
the resulting strategy automaton can drive the actual game,
which is governed by transition rules in ', from any initial
state in Entry

I to some state in Exit

I , while visiting robot
goals sys

i ,

sys

i+1

, . . . ,

sys

i�(|I|�1)�1

en route. Otherwise, the
algorithm aborts with failure.

In terms of Algorithm 1, if substrategy construction suc-
ceeds for each element I of the partition of indices, then
the resulting substrategies in Patches can be patched into
the original automaton A

0 in an entirely similar manner as
for singleton I in the algorithm of [12].

IV. BOUNDING BOXES FOR MOVING OBSTACLES

The original motivating context is completion of a high-
level task in the midst of moving obstacles. As described
in Section I, inclusion of all possible moves by a dynamic
obstacle leads to exponential explosion in the number of
discrete states, and solving classical motion planning among
moving obstacles of known trajectories in a continuous
setting is PSPACE-hard. GR(1) synthesis, being an exact
game graph solution method, is thus impractical for dynamic

Algorithm 1 Patching with goal states
1: INPUT: GR(1) formula ', strategy A, reach annotation

RA, modified formula '0, neighborhood ¯

N ✓ ⌃X ⇥⌃Y
2: OUTPUT: set of tuples (A

j
,Entry

j
,Exit

j
, Ij) with

partial reach annotation RA

j

3: Patches := ;
4: N := L

�1

(

¯

N)

5: for all i = 0, 1, . . . , n� 1 //Sort by goal mode do
6: Ni := {u 2 N | RA

1

(u) = i}
7: end for
8: ˆ

EN := {(Ni, Nj) | Ni ⇥Nj \ E 6= ;}
9:  := 0

10: I

0

:= {0}
11: for all i = 0, 1, . . . , n� 1 //Partition indices do
12: if (Ni, Ni+1 mod n) 2 ˆ

EN then
13: I := I [{i+ 1 mod n}
14: if i = n� 1 then
15: I

0

:= I

0

[I //Merge first and last index sets
16:  := � 1

17: end if
18: else
19:  := + 1

20: end if
21: end for
22: for all j = 0, 1, . . . , do
23: B := Exit

j

24: Set Aj to nil

25: Set i such that Ij = {i, i+1, . . . , i+|Ij |�1} mod n.
26: for all offset = |Ij |� 2, |Ij |� 3, . . . , 0 do
27: C := [[Reach'0

([[

sys

i+offset

]], B)]]

28: if C = ; then
29: abort //Failed to find a substrategy
30: end if
31: Compute strategy A

j
C!B to reach B from C.

32: Merge A

j
C!B into A

j .
33: B := C //Prepare for next loop iteration
34: end for
35: C := [[Reach'0

(Entry

j
, B)]]

36: if Entryj * C then
37: abort //Failed to find a substrategy
38: end if
39: Compute A

j
Entry

j!B
to reach B from Entry

j .
40: Merge A

j
Entry

j!B
into A

j .
41: Patches := Patches [(A

j
,Entry

j
,Exit

j
, Ij)

42: end for
43: return Patches

obstacle avoidance. Instead of explicitly encoding possible
obstacle movement as an environment variable in the task
formula ', we treat it separately as follows.

The basic idea of our approach is to cover the dynamic
obstacle with a larger, virtual static obstacle. Changes to the
static layout of the workspace are easier to treat because, in
terms of the discrete abstraction, they only affect reachability
of robot states ⌃Y and are easily encoded by changing the

Fig. 3. Random gridworld of size 64⇥ 64 with 0.2 block density.
10 positions for surveillance are indicated by small red stars, and the initial
robot position is magenta cross (near the center).

transition rules ⇢
sys

in the task formula ' (recall (1)). This
setting is illustrated in Figure 1, where the green dynamic
obstacle is covered by a square with side length 2r.

When the dynamic obstacle is first detected, a virtual static
obstacle is created to cover it. If this virtual obstacle would
also cover the robot, then a notch is made so that the strategy
automaton, once updated, will direct motion away.

V. SIMULATION EXPERIMENTS

The algorithm presented in Section III was implemented in
the C programming language as part of gr1c1. Preliminary
simulation experiments were conducted using large random
layout gridworlds generated with TuLiP

2, the latter also
providing a Python interface to the patching routines in
gr1c. All of this will soon be released open source.

An example of a randomly generated gridworld is shown
in Figure 3. The test setting consists of a nominal strategy in
which the robot infinitely often visits all goal positions and a
random walking obstacle that can move by at most one cell
per time step.

VI. FUTURE WORK

Despite now being able to patch any part of a strategy
automaton, rather than only nodes in-between goals, the
algorithm is still not complete. That is, it can abort and
“fall back” on global re-synthesis even when a local solution
exists. Future work will address whether incompleteness is
unavoidable, and if so in the general case (likely), whether
this limitation carries over to discrete abstractions obtained
from manifolds relevant for robotics, e.g., R2 and SE(2).

A second topic of future work is treatment of other moving
obstacle dynamics. For instance, an obstacle constrained by
unicycle dynamics and bounded inputs could allow a virtual
static obstacle that is narrow compared with those found in
this paper.

1
http://scottman.net/2012/gr1c

2
http://tulip-control.sf.net

ACKNOWLEDGMENTS

This work was partially supported by the Boeing Corpo-
ration.

REFERENCES

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The MIT
Press, 2006.

[2] P. Trautman, “Robot navigation in dense crowds: Statistical
models and experimental studies of human robot coop-
eration,” Ph.D. dissertation, California Institute of Technol-
ogy, Pasadena, California, USA, 2012. [Online]. Available:
http://resolver.caltech.edu/CaltechTHESIS:05182013-191132413

[3] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,”
in Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL ’89. New York,
NY, USA: ACM, 1989, pp. 179–190.

[4] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006. [Online]. Available: http://planning.cs.uiuc.edu/

[5] J. Reif and M. Sharir, “Motion planning in the presence of moving ob-
stacles,” in Foundations of Computer Science, 26th Annual Symposium
on, October 1985, pp. 144–154.

[6] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal logic-
based reactive mission and motion planning,” IEEE Transactions on
Robotics, vol. 25, no. 6, pp. 1370–1381, 2009.

[7] T. Wongpiromsarn, “Formal methods for design and verification of
embedded control systems: Application to an autonomous vehicle,”
Ph.D. dissertation, California Institute of Technology, 2010. [On-
line]. Available: http://resolver.caltech.edu/CaltechTHESIS:05272010-
153304667

[8] N. Ozay, U. Topcu, T. Wongpiromsarn, and R. M. Murray, “Distributed
synthesis of control protocols for smart camera networks,” in Interna-
tional Conference on Cyber-physical Systems, 2011.

[9] B. Johnson, F. Havlak, M. Campbell, and H. Kress-Gazit, “Execution
and analysis of high-level tasks with dynamic obstacle anticipation,” in
Proceedings of the 2012 IEEE International Conference on Robotics
and Automation (ICRA), Saint Paul, Minnesota, USA, May 2012, pp.
330–337.

[10] Y. Chen, J. Tumová, and C. Belta, “LTL robot motion control based on
automata learning of environmental dynamics,” in Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA),
Saint Paul, Minnesota, USA, May 2012, pp. 5177–5182.

[11] T. Wongpiromsarn, A. Ulusoy, C. Belta, E. Frazzoli, and D. Rus,
“Incremental temporal logic synthesis of control policies for robots
interacting with dynamic agents,” Tech. Rep., March 2012. [Online].
Available: arxiv.org/abs/1203.1180

[12] S. C. Livingston, P. Prabhakar, A. B. Jose, and R. M. Murray,
“Patching task-level robot controllers based on a local µ-calculus
formula,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), Karlsruhe, Germany, May 2013,
pp. 4573–4580.

[13] E. A. Emerson, Handbook of theoretical computer science (vol. B):
formal models and semantics. MIT Press, 1990, ch. Temporal and
modal logic, pp. 995–1072.

[14] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press,
2008.

[15] Y. Kesten, N. Piterman, and A. Pnueli, “Bridging the gap between
fair simulation and trace inclusion,” Information and Computation,
vol. 200, pp. 35–61, 2005.

[16] E. A. Emerson, C. S. Jutla, and A. P. Sistla, “On model checking for
the µ-calculus and its fragments,” Theoretical Computer Science, vol.
258, pp. 491–522, 2001.

[17] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete
abstractions of hybrid systems,” Proceedings of the IEEE, vol. 88,
no. 7, pp. 971–984, July 2000.

[18] P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic
Approach. Springer, 2009.

[19] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar,
“Synthesis of reactive(1) designs,” Journal of Computer and System
Sciences, vol. 78, pp. 911–938, May 2012.

[20] G. Jing and H. Kress-Gazit, “Improving the continuous execution of
reactive LTL-based controllers,” in Proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA), Karlsruhe,
Germany, May 2013, pp. 5419–5425.

