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Abstract— We consider the problem of synthesizing robot
controllers to realize a task that unpredictably changes with
time. Tasks are formally expressed in the GR(1) fragment of
temporal logic, in which some of the variables are set by an
adversary. The task changes by the addition or removal of
goals, which occurs online (i.e., at run-time). We present an
algorithm for mending control strategies to realize tasks after
the addition of goals, while avoiding global re-synthesis of the
strategy. Experiments are presented for a planar surveillance
task in which new regions of interest are incrementally added.
Run-times are empirically shown to be favorable compared to
re-synthesizing from scratch. We also present an algorithm for
mending control strategies for the removal of goals. While in
this setting the original strategy is still feasible, our algorithm
provides a more satisfying solution by “tightening loose ends.”
Both algorithms are shown to yield so-called reach annotations,
and thus the control strategies are easily amenable to other
algorithms concerning incremental synthesis, e.g., as in previous
work by the authors for navigation in uncertain environments.

I. INTRODUCTION

The classical view of formal synthesis is as a two-step
process, in which one first specifies a task formally in linear
temporal logic (LTL) and then constructs a finite-memory
strategy to ensure that the specification is met, despite any
external inputs [15] (also cf. the original statement in [5]
concerning this two-part view). The resulting strategy usually
takes the form of a finite-state machine (or automaton;
precise definitions are given in Section II), which can be
deployed with confidence of correctness provided the task
does not change and all environmental assumptions remain
valid. While this approach is often viable for digital commu-
nication protocols, as studied in the computer-aided verifica-
tion literature, it clearly is not in robotics, where uncertainty
and evolving task details are commonplace. This distinction
in prerequisites for success between “pure” computer algo-
rithms and deployed robotics systems is demonstrated well
by comparing the optimal search algorithms A* and D* [17].

Early uses of correct-by-construction control synthesis in
robotics thus required strong restrictions against possible
sensing or actuation uncertainty [12], [11], [10]. As a pre-
cursor to recent work concerning relaxations of these re-
strictions, the degradation of such “perfect-world” controllers
in the presence of sensing uncertainty is explored in [9].
Examples of relaxations considered in recent work include
weakened time synchronization requirements in distributed
applications [4], online changes to the workspace cell de-
composition [14], and mapping of initially unknown planar
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workspaces (assuming perfect localization) [16], [19]. In
this paper we are concerned with exact methods, though
we note that there is extensive work concerning Markov
decision processes subject to (probabilistic) temporal logic
specifications.

Besides uncertainties arising from hardware for sensing
and actuation and due to missing details (e.g., maps) about
the workspace of the robot, the task itself may be a source
of uncertainty. In this paper, a task can be uncertain in the
sense that it is not entirely fixed before deployment. Note
that this is not merely a problem of resolution at which the
task is described: we hope to automatically obtain correct-
by-construction controllers and thus we are constrained to
framing the task requirements in a way amenable to relevant
formal synthesis algorithms. A basic part of most robot
architectures is the supervisor, a finite-state machine that
governs action selection at the level of tasks: “go here”, then
“if A is present, then release probe f .” While there is always
a granularity at which the task can be expected not to change
during execution, we argue that this granularity may be too
coarse to yield useful supervisors. For example, Sarid and
collaborators have described an algorithm for realizing a task
that is quantified over rooms of certain types (classroom or
office) [16]. They consider a mapping application and thus
the locations and types of rooms are a priori unknown. Their
approach is distinct from the first algorithm in the present
paper because strategies must be newly entirely created upon
discovery of each new entity (room).

Relevant prior work includes Ding et al. [6], which de-
scribes a method for realizing a task expressed as an LTL
formula while capturing transient rewards that are discovered
online. While in the present paper we focus on online
adjustments to the task formula itself, [6] presents a method
for ensuring a task (or LTL “specification”) is satisfied while
allowing for temporary excursions for reward collection.

In this paper, we are concerned with reactive tasks, which
can also be viewed as two-player zero-sum games. Here, we
mean “reactivity” in the sense used throughout the formal
methods literature [15], rather than the sense commonly used
in robotics (e.g., as in “reactive motion control”, like in [6]).
I.e., synthesis results in strategies that guarantee correctness
when facing any adversarial environment, subject to fairness
assumptions. This is distinct from control synthesis that
seeks to find a controller such that all executions under that
controller meet a specification in the absence of an adversary,
as in [6] and elsewhere.

The paper is organized as follows. In Section II we
outline relevant background material and provide definitions
crucial in the present work. This is followed by problem
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statements concerning online goal additions and removals.
Solutions to the problems are presented in separate parts.
First, in Section III, we present and analyze an algorithm for
mending strategies for the addition of new goals. Second,
in Section IV, we describe what is, informally speaking, the
inverse operation: removal of goals online. Finally, simula-
tion experiments are presented in Section V, followed by
a physical validation involving localization, mapping and
surveillance in Section VI. An extended version of this paper
including proofs is available as a technical report [13].

II. PRELIMINARIES AND PROBLEM FORMULATION

We briefly introduce linear temporal logic (LTL), labeled
transition systems and the notion of formal synthesis, mostly
to fix notation. For introductions to these topics, the reader
is directed to [2] and [8].

Let X be a set of environment variables, and Y a set
of robot (or system) variables. Assignments of values to
these variables are called discrete states, or simply, states.
The set of all discrete states is denoted by �. We assume
that each variable has a finite domain, i.e., in each state
it can only be assigned one of finitely many values. If
an arbitrary ordering is assigned to the variables X [ Y ,
then � becomes the product of the variable domains, and
states are ordered tuples. The restriction of � to a subset of
variables is indicated by a subscript of that set, e.g., the set
of environment states is �X .

LTL builds on propositional (Boolean) logic to describe
properties of infinite sequences. The crucial temporal opera-
tors for the present work are ⇤ (“always”), ⇤ (“eventually”),
and � (“next”). E.g., the Boolean formula (or state formula)
x = 1 asserts that the variable x takes the value 1. Notice
the lack of assertion about when it will happen. The LTL
formula ⇤(x = 1) asserts that for all time x = 1. ⇤(x = 1)
asserts that a state will eventually be reached where x = 1.
�(x = 1) is true if x = 1 at the next time step. Repeatedly
reaching states where x = 1 is expressed by ⇤ ⇤(x = 1).

In this paper, a task is an LTL formula over variables in X
and Y . A task is usually provided together with a dynamical
systems model of a robot and a workspace that is labeled
with some of the system variables.

We focus on task formulae from the fragment GR(1) [3].
These are of the form

✓env ^⇤ ⇢env ^

0

@
m�1̂

j=0

⇤ ⇤ env
j

1

A

=) ✓sys ^⇤ ⇢sys ^
 

n�1̂

i=0

⇤ ⇤ sys
i

!
(1)

which is said to be of an assume-guarantee form. ✓env and
✓sys are initial conditions determining states from which
solution trajectories can begin. On the left-side of the impli-
cation of (1), ⇢env is a formula written in terms of X [Y [
�X , where �X indicates environment variables at the next
time step. Intuitively, ⇢env constrains how the environment
can move given the current state, and as such, it is often

called a transition rule. Taken together with the ⇤ operator
applied to it, ⇤ ⇢env is a safety formula that the environment
is assumed to satisfy. The right-side is analogously defined
but must be guaranteed in the sense that we want to construct
a controller realizing it. The system can move based on the
current state and the anticipated environment move, since
⇢sys is written in terms of X [ Y [�X [�Y

Having now shown the form in which tasks are formally
expressed, note that throughout the paper, “goals” or “robot
goals” refer to formulae  sys

i appearing on the right-side of
(1). In the present work, we do not consider specifications
in which the only feasible solutions drive the environment to
a dead-end. (Such cases are irrelevant for the present work
since liveness conditions and goals are then immaterial.)

Let ' be a GR(1) formula. A strategy automaton for '
is a triple A = (V, �, L), where V is a finite set of nodes,
L : V ! � is a state labeling, and � : V ⇥ �X ! V is a
partial function that determines successor nodes in A given
inputs from the environment (i.e., states of X variables). We
abbreviate terminology by also referring to A as a “strategy”
or “automaton”. Note that A may be regarded as a directed
graph (V,E), where the edges E are obtained from � by
enumerating over possible environment moves from each
node, as provided by the LTL formula '. With this graph
perspective of automaton A, for any node v 2 V , the
successor and predecessor sets of v are defined in the obvious
way, and denoted Succ(v) and Pre(v), respectively. A path
is a finite sequence hv1, v2, . . . , vKi of elements from V such
that (vk, vk+1) 2 E for k 2 {1, . . . ,K � 1}.

Denote the set of nonnegative integers by Z+. Given '
of the form (1), a state s is said to be a i-system goal if s
satisfies  sys

i .
Definition 1 (modified from [14]): A reach annotation on

a strategy automaton A = (V, �, L) for a GR(1) formula ' is
a function RA : V ! {0, . . . , n� 1}⇥ Z+ that satisfies the
following conditions. Write RA(v) = (RA1(v),RA2(v)).
Given p < q, the numbers between p and q are p+1, . . . , q�
1, and if q  p, then the numbers between p and q are
p+ 1, . . . , n� 1, 0, . . . , q � 1.

1) For each v 2 V , RA2(v) = 0 if and only if L(v) is a
RA1(v)-system goal.

2) For each v 2 V and u 2 Succ(v), if RA2(v) 6= 0, then
RA1(v) = RA1(u) and RA2(v) � RA2(u).

3) For any path hv1, v2, . . . , vKi such that RA2(v1) =
· · · = RA2(vK) > 0, there exists an environment goal
 env
j such that for all k 2 {1, . . . ,K}, L(vk) does not

satisfy  env
j .

4) For each v 2 V and u 2 Succ(v), if RA2(v) = 0, then
there exists a p such that for all r between RA1(v) and
p, L(v) is a r-system goal, and RA1(u) = p.

Reach annotation was introduced in [14]. A summary of key
results for the present work is that a reach annotation can be
computed during synthesis in constant time (i.e., does not
affect asymptotic complexity), it always exists when there
is a strategy automaton, and providing one is sufficient to
obtain correctness.

Note that the ordering of system goals is arbitrary but



fixed. In other words, if a function satisfies Definition 1
after permuting the goal modes, then we can immediately
construct a reach annotation from it using the permutation.
It can be shown that any function that is a reach annotation
up to a permutation of the order of goal modes has the same
properties as a reach annotation.

It is well-known that initial conditions in ' lead to a
set of nodes in the strategy automaton that are not in a
strongly-connected component. In other words, these nodes
are transiently occupied in all plays, i.e., there is always a
finite time horizon after which they can never be returned
to, under any play. While one can always ensure that such
a prefix of nodes is present, in practice strategy sizes can
be reduced by incorporating this prefix so that it is not tran-
sient. Throughout this paper, we assume such a compression
has not been performed. This assumed form of the given
strategy automata is crucial for correctness results proven in
Sections III-C and IV-C.

Let ⇣ be a Boolean formula. The set of states satisfying
it is denoted Sat(⇣). Conversely, let S be a set of discrete
states. The Boolean formula that is satisfied precisely on S
is denoted �S . It should be clear that Sat(�S) = S and
�Sat(⇣) = ⇣.

Let A and B be sets of states, and let ' be of the form (1).
The reachability game from A to B, denoted Reach'(A,B),
is the reactive LTL formula

�A ^⇤ ⇢env ^

0

@
m�1̂

j=0

⇤ ⇤ env
j

1

A =) ⇤ ⇢sys ^ ⇤�B .

Intuitively it provides the same transition rules and liveness
(environment) assumptions as ', amid the task of reaching
some state in B from any initial state in A. When realizable,
it admits strategies of a similar form to strategy automata
together with an abbreviated form of reach annotation [14].

In this paper we make use of an objective function on
discrete states, which we take to measure distance (but see
discussion in Section III-B). This could arise, for instance,
from a discrete abstraction on the workspace and continuous
robot dynamics [1], [18]. Since in the scope of the present
work we do not need anything else from the underlying
dynamical system, we do not present how such abstractions
can be obtained and instead refer only to “discrete states”
throughout the paper. Finding discrete abstractions in general
settings is a topic of current research in the hybrid control
systems community.

We are now ready to state the problems solved in this
paper. Let ' be a GR(1) formula, as in (1), and let A =
(V, �, L) be a strategy automaton that realizes '.

Problem 1: Given a Boolean formula ⇣, defined over the
same variables as ', find a strategy automaton realizing '0,
the extension of ' that includes ⇤ ⇤ ⇣, or determine that '0

is unrealizable.
Problem 2: Given an index i 2 {0, 1, . . . , n � 1}, find

a strategy automaton realizing '0, the formula obtained by
deleting ⇤ ⇤ sys

i from ', or determine that '0 is unrealiz-
able.

III. ADDING GOALS

Intuitively, Problem 1 concerns a task in which a goal, i.e.,
a desirable state that must be visited by the robot infinitely
often, is to be added. Note that in practice if one goal
can be added, we would expect it possible for more to be
requested. Iterating the statement of Problem 1 provides the
more general problem of incremental addition of a sequence
of new goals ⇣1, ⇣2, . . .. Obviously traditional methods are
still applicable here: upon receiving a request to add ⇣,
we can simply discard the entire original automaton A and
synthesize for '0 from scratch. However, in some cases we
can reduce the time and amount of computation required, as
demonstrated empirically in Section V.

A. Overview
Before presenting the algorithm, we provide a conceptual

overview of it. Let ' be a GR(1) formula with n goals (cf.
(1)), and let A = (V, �, L) be a strategy automaton realizing
it. Let ⇣ be a Boolean formula over the same variables as
'. Omitting initial conditions and transition rules, which are
unchanged from ', the new task formula '0 in terms of
environment liveness and robot goals is

m�1̂

j=0

⇤ ⇤ env
j =)

 
n�1̂

i=0

⇤ ⇤ sys
i ^⇤ ⇤ ⇣

!
. (2)

Recall from Section II that there is a reach annotation
RA for A, and that RA1 gives the mode for each node.
(Recall RA1 denotes the first number in the pair RA(v)
for automaton nodes v 2 V .) Roughly speaking, from any
v 2 V , the strategy is seeking to reach a state that satisfies
 sys
RA1(v)

, i.e., a state satisfying the goal with index RA1(v).
Being a correct realization, A ensures that such a state will
be reached, provided the environment is fair, at which step
the mode of the current automaton node is incremented
modulo n. Call the set of nodes where the desired goal
is reached GRA1(v). We can thus broadly view the strategy
automaton as moving among node subsets Gi in which task
' goals are reached. The crux of our algorithm is to find
which of the existing goals is nearest to the new goal ⇣ and
then to insert a substrategy that visits ⇣-states after Gi⇤ where
 sys
i⇤ is that nearest goal. The major steps of the algorithm

are as follows.
1) Suppose that we are given a function on pairs of

discrete states, which we later call Dist(). Compute
this function over ⇣-states paired with  sys

0 -states, then
paired with  sys

1 -states, etc.
2) For the original robot goals,  sys

i⇤ and  sys
i⇤+1 (index

arithmetic is modulo n), find all nodes in the strategy
automaton that are meant to reach it, i.e., satisfy that
goal and are the consequence of pursuing that goal or
any other within the range of goals met at that node.
Call these sets Gi⇤ and Gi⇤+1, respectively.

3) Solve a reachability game from Gi⇤ to ⇣-states.
4) Let H be the set of ⇣-states actually reached in the

previous step. Solve a reachability game from H to
Gi⇤+1.



Fig. 1. Illustrative deterministic example for Algorithm 1. On the right
side is a uniform grid discretization of a floor. The original task is to visit
cells (0, 1) and (1, 0) infinitely often, and a strategy automaton realizing
this is shown on the left. Nodes are referred to by integers. E.g., the topmost
node is v1. The new cell to visit repeatedly is (0, 0).

5) Delete existing paths in A from Gi⇤ to Gi⇤+1, and
append strategies from the two previous reach games
in sequence in their place.

A small illustration of our approach in a trivial, determin-
istic 3⇥ 2 gridworld is Figure 1. The setting in Figure 1 is
deterministic because there is no adversarial environment; the
robot simply moves among cells as on a 4-connected grid.
The original task is to visit (0, 1) and (1, 0) repeatedly. An
automaton A realizing it is given on the left-side of Figure 1.
The new goal ⇣ is cell (0, 0), the reaching of which requires
that we either modify A or create an entirely new one. In
this illustration, our algorithm proceeds basically as follows.

1) The existing goal cells (1, 0) (index 0) and (0, 1)
(index 1) are equidistant from the new goal (0, 0). Thus
we arbitrarily select the first, i.e., i⇤ = 0.

2) Clearly G0 = {v3} and G1 = {v1}.
3) The reachability game to go from L(G0) = {(1, 0)}

to the set of ⇣-states (i.e., {(0, 0)}) is obviously solved
by a two-node strategy that moves one cell up.

4) A similar two-node strategy solves the reachability
game from (0, 0) to L(G1) = {(0, 1)}.

5) In the original automaton, the old node v4 would have
been visited after G0. It is now deleted, and replaced by
the strategies found in the previous two steps, applied
in sequence.

B. Algorithm
Our method for online addition of goals is given in

Algorithm 1. Details on several parts of it follow.
• Line 3: The “distance” function Dist may be more ap-

propriately called an objective function since its purpose
is to decide which of the original goals should provide
a branching-off point to pursue ⇣-states in the sub-
strategies. Thus it can be any heuristic, not necessarily
one based on physical distance. When goals correspond
to waypoints in a robot workspace, Euclidean distance
is a natural heuristic. In our experiments described in
Section V, we use a 1-norm to good effect. Note that

our results do not depend on Dist having any particular
properties. E.g., we could always select i⇤ := 1.

• Lines 4–16: Intuitively, Gi⇤ is the set of nodes where
the robot satisfies the task goal  sys

i⇤ and intended to
do so. The complicated conditional statement compares
changes in the mode, given by RA1, with i⇤ to find
when this occurs. Recall the definition of reach annota-
tion RA from Section II.

• Lines 21, 27: If one of the reachability games is
infeasible, then abort. Note that in general it does not
follow that the addition of goal ⇣ has rendered the task
unrealizable. Consult analysis in Section III-C.

• Line 29: Delete original nodes whose use is now re-
placed by the substrategies found in previous steps. The
transition function � is also updated accordingly.

• Lines 29–32: The final steps are to assemble a new
strategy automaton A0 and a reach annotation RA0 for
it by mending the original with substrategies Ai⇤!⇣ =
(Vi⇤!⇣ , �i⇤!⇣ , Li⇤!⇣) and A⇣!i⇤+1 found by this step
in the algorithm. The new labeling L0 : V 0 ! � is built
directly from the components,

L0(v) :=

( L(v) if v 2 V,
Li⇤!⇣(v) if v 2 Vi⇤!⇣ ,

L⇣!i⇤+1(v) otherwise,
(3)

for v 2 V 0, where it is important to notice that the
component node sets are disjoint, i.e., V 0 is a disjoint
union of V , Vi⇤!⇣ , and V⇣!i⇤+1. RA0 is defined in a
similar manner,

RA0(v) :=

( RA(v) if v 2 V,
RAi⇤!⇣(v) if v 2 Vi⇤!⇣ ,

RA⇣!i⇤+1(v) otherwise.
(4)

We omit details concerning the creation of �0. It is
straightforward but tedious (details for a similar process
are in [14]).

C. Results
Here we summarize correctness of Algorithm 1. Proof of

this and demonstration of its incompleteness given in [13].
Theorem 2: Let A = (V, �, L) be a strategy automaton re-

alizing a GR(1) formula ', and which has a reach annotation
RA. Let ⇣ be a Boolean formula over the same variables as
', and let '0 be the extension of ' to include ⇣ as a goal. If
Algorithm 1 returns a strategy automaton A0 = (V 0, �0, L0)
and a map RA0, then they are correct with respect to '0, i.e.,
A0 realizes '0 and RA0 is a reach annotation for A0.

The new task formula '0 is strictly harder than the original
in the sense that any behavior by the robot that meets the
new formula necessarily also meets the original, which is
intuitively expected given the only change is the addition of
a goal to be visited infinitely often. The following remark
summarizes this observation.

Remark 3: Any play that is correct with respect to '0 is
correct with respect to '.
The previous remark can also be alternatively expressed in
terms of language containment, i.e., L('0) ✓ L(').



Algorithm 1 Append a new goal ⇣
1: INPUT: automaton A = (V, �, L), reach annotation RA,

distance function Dist, Boolean formula ⇣
2: OUTPUT: augmented automaton A0 and reach annota-

tion RA0

3: i⇤ := argmini=0,1,...,n�1 Dist ( sys
i , ⇣).

4: Gi⇤ := ;
5: for all v 2 V do
6: for all u 2 Pre(v) do
7: if

�
RA1(u) < RA1(v)
^RA1(u)  i⇤ ^ RA1(v) > i⇤

�

_
�
RA1(u) > RA1(v)
^ (RA1(u)  i⇤ _ RA1(v) > i⇤)

�
then

8: if RA2(u) = 0 then
9: Gi⇤ := Gi⇤ [ {u}

10: else
11: Gi⇤ := Gi⇤ [ {v}
12: end if
13: break //Skip to next iteration of outer for-loop
14: end if
15: end for
16: end for
17: Construct the set Gi⇤+1 in an entirely similar manner to

Gi⇤ , but now for the goal mode i⇤ + 1.
18: if Reach'0(Gi⇤ , Sat(⇣)) is realizable then
19: Synthesize strategy automaton Ai⇤!⇣ for the reacha-

bility game Reach'0(Gi⇤ , Sat(⇣)).
20: else
21: abort
22: end if
23: Set G⇣ to all nodes in Ai⇤!⇣ that do not have outgoing

edges.
24: if Reach'0(G⇣ , Gi⇤+1) is realizable then
25: Synthesize strategy automaton A⇣!i⇤+1 for the reach-

ability game Reach'0(G⇣ , Gi⇤+1).
26: else
27: abort
28: end if
29: V := V \ RA�1

1 (i⇤ + 1)
30: V 0 := V [ Vi⇤!⇣ [ V⇣!i⇤+1

31: Set L0 and �0 consistent with appending Ai⇤!⇣ and
A⇣!i⇤+1 to A.

32: Define RA0 on V 0 so that it agrees with RA on V ,
RAi⇤!⇣ on Vi⇤!⇣ , and RA⇣!i⇤+1 on V⇣!i⇤+1.

IV. REMOVING GOALS

Problem 2 is like an inverse of Problem 1. An initial
task has been made simpler by removing one of the goals
that was to be repeatedly visited. For example, this could
mean that a region of interest in a surveillance task has been
permanently discarded. While it indeed suffices to continue
using A without modification (consult analysis in Section IV-
C), this could be wasteful in long- or indefinitely-running
robots, where even if the difference in the number of goals
added and deleted remains bounded, the strategy automaton

Algorithm 2 Remove an existing goal  sys
i

1: INPUT: automaton A = (V, �, L), reach annotation RA,
deleted goal index i

2: OUTPUT: pruned automaton A0 and reach annotation
RA0

3: Construct the sets Gi�1, Gi+1 in an entirely similar
manner as in lines 4–16 of Algorithm 1.

4: Synthesize strategy automaton Ai�1!i+1 for the reach-
ability game Reach'0(Gi�1, Gi+1).

5: V := V \ (RA�1
1 (i) [ RA�1

1 (i+ 1))
6: V 0 := V [ Vi�1!i+1

7: Define L0, �0 consistent with previous line.
8: Define RA0 to agree with RA on V and RAi�1!i+1 on

Vi�1!i+1.

itself will grow without bound. Besides, we are practically
motivated by keeping strategies succinct when possible.
Algorithm 2 solves Problem 2 by pruning the given initial
strategy automaton while recovering a reach annotation.

A. Overview
Before presenting the algorithm and proving properties

about it, we provide a conceptual overview. Let ' be a GR(1)
formula with n goals (cf. (1)), and let A = (V, �, L) be a
strategy automaton realizing it. Let i 2 {0, 1, . . . , n � 1}
be the index of the goal removed from the original task
formula. Omitting initial conditions, transition rules, and
the environment liveness assumptions, which are unchanged
from ', the new task formula '0 in terms of robot goals is

⇤ ⇤ sys
0 ^ · · · ^⇤ ⇤ sys

i�1 ^⇤ ⇤ sys
i+1 ^ · · · ^⇤ ⇤ sys

n�1.
(5)

Recall from Section II and the discussion in Section III-
A that the modes provided by the first part of the reach
annotation RA1 indicate the robot goal RA1(v) currently
being pursued from any automaton node v. This permits
viewing the set of nodes as being partitioned according to
mode. Thus, if we wish to remove the goal  sys

i from the
task, we can delete nodes with mode i and mode i+ 1, and
replace them with a substrategy that seeks  sys

i -states from
the loose ends.

B. Algorithm
Our method for online removal of goals is given in

Algorithm 2. Details on several parts of it follow.
• Line 4: This reachability game always has a solution,

i.e., is realizable. Consult the analysis in Section IV-C.
• Line 5–8: The patching process here closely follows

that used in Section III-B, and thus we omit explicit
instructions.

C. Results
Here we summarize correctness and completeness of Al-

gorithm 2. Proofs are in [13].
As alluded to earlier, after removing a robot goal, the

synthesis problem becomes easier in a sense made precise
by the following remark. (Compare it with Remark 3.)



Fig. 2. Random 32⇥32 gridworld problem instance. Goal cells to be visited
infinitely often are indicated by red stars, the initial position is marked by
a magenta plus-sign, and there are two moving obstacles, which are free to
move within gray cells and must always eventually return to the cell with
a green times-sign (one per gray region).

Remark 4: Any play that is correct with respect to ' is
correct with respect to '0.

Lemma 5: The reachability game Reach'0(Gi�1, Gi+1),
appearing on line 4 of Algorithm 2 is always realizable, i.e.,
there is at least one substrategy solving it under the transition
rules of '0

Theorem 6: Let A be a strategy automaton realizing '
with reach annotation RA. Let i 2 {0, 1, . . . , n� 1} be the
index of the goal  sys

i to be deleted from ', yielding the new
task '0. Then A0 returned by Algorithm 2 on these inputs
realizes '0, and RA0 is a reach annotation.

Theorem 7: Algorithm 2 is complete, i.e., if '0 is real-
izable, then Algorithm 2 will find a strategy automaton A0

realizing it.
Note that no guarantees are provided about the optimality

of strategy automata obtained from Algorithm 2. However, it
is easy to ensure that the pruned strategy A0 goes from goal
with index i � 1 to that of index i + 1 in at most as many
steps than if we did nothing (i.e., if we kept the original A).

V. NUMERICAL EXPERIMENT

Implementations of methods described in this paper are
provided in gr1c (http://scottman.net/2012/gr1c). A Python
interface together with infrastructure for repeating the ex-
periments described here will soon be distributed with TuLiP
(http://tulip-control.org) [20].

A. Methods

Random 4-connected grids—called “gridworlds”—of size
32 ⇥ 32 were randomly generated to contain blocks at a
density of 0.2. An initial system goal is randomly placed
in gridworld, together with 1 or 2 moving obstacles, as
illustrated in Figure 2. A nominal control strategy is then
obtained. Then, 9 additional system goals are randomly
placed in an empty cell. Upon addition of each new goal,
Algorithm 1 and global re-synthesis are each applied. Dist()
is implemented as the 1-norm.

Fig. 3. Mean run-times for 19 trials of solving randomly generated
gridworlds like that depicted in Figure 2. The base task includes one moving
obstacle and a single robot goal cell, to be repeatedly visited. Random
new goal cells are incrementally added, to reach a final total of 10 robot
goals. Upon each goal addition, Algorithm 1 is applied, and re-synthesis
(solving from scratch) is also performed. The lower sequence of points are
for patching times, whereas the upper sequence is for re-synthesis times.

Fig. 4. Mean run-times for 17 trials of solving randomly generated
gridworlds like that depicted in Figure 2, for the case of two moving
obstacles. Compare with Figure 3.

B. Results

For the case of one moving obstacle mean times (over
19 trials) of global re-synthesis and patching are shown in
Figure 3. For the case of two moving obstacles mean times
(over 17 trials) of global re-synthesis and patching are shown
in Figure 4.

C. Discussion

In the case of incremental addition of goals, it is apparent
from Figure 3 that the rate of increase in time required to
append a substrategy using Algorithm 1 is slower than the
rate of increase in global re-synthesis times. This difference
suggests that the marginal cost of parsing and manipulating
larger strategy automata, as in major steps of Algorithm 1
is much smaller than the marginal cost of constructing and
solving an additional goal as part of global re-synthesis. In
terms of asymptotic computational complexity, this empirical
observation is not theoretically surprising because the two
reachability games solved as part of Algorithm 1 (to reach
new goal states and then return to the original strategy
automaton) have lower alternation numbers than the full
GR(1) synthesis problem [3], [7].



Fig. 5. Illustration of a run in which the presented method for online
goal additions was validated. The right panel shows the robot with mounted
range finder and a large static obstacle nearby. The middle panel shows
an occupancy grid with cell length of 5 cm. The left panel is a gridworld
conservatively built from the lower half of the occupancy grid. Gridworld
size is 32⇥ 32 with cell length of 20 cm.

The impressive performance gain shown in Figure 3 is
somewhat lessened in Figure 4. The only difference between
the two settings is the number of moving obstacles. This may
be due to the exponentially increasing (global) problem size
with the addition of each environment variable, so that for
small numbers of system goals, as in this experiment, im-
provements in speed achieved by our method are dominated
by nondeterminism imposed by the adversarial game.

VI. PHYSICAL VALIDATION

Based on the same implementation used in the simulation
experiments described in the previous section, we success-
fully deployed Algorithm 1 on a differential drive robot
equipped with a Hokuyo laser range finder In summary,
we use ROS (www.ros.org) packages providing on-board
odometric estimates (wheel encoders and accelerometer of
the Kobuki mobile base) together with the ROS gmapping
package to proceed in two steps. First, an occupancy grid of
the surrounding area is built. After a fixed period of time, we
take a snapshot of the map and overlay a coarse gridworld
on it, marking cells as blocked if occupancy probability
is above a threshold. The robot then begins surveillance
by initializing with three random points of interest (system
goals) and visits them infinitely often. New points of interest
are randomly added every 30 seconds. A depiction of the
setting is shown in Figure 5. The floor space has an area
of 6.7 m ⇥ 7.3 m. The initial map-building duration was 7
minutes (420 seconds).

VII. CONCLUSION AND FUTURE WORK

In this paper we considered tasks expressed in the GR(1)
fragment of LTL, and presented methods to tractably cope
with changes to the task due to the addition or removal
of robot goals provided incrementally, online. Future work
will include long-running physical experiments, based on
the preliminary validation described in the present paper. As
remarked in Section III-B, none of the results depend on the
function Dist. An important topic for future work is studying
whether an appropriately chosen Dist can iteratively lead to
an optimal solution.
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