
Just-in-time synthesis for reactive motion planning with temporal logic

Scott C. Livingston Richard M. Murray

Abstract— The cost of the great expressivity of motion plan-

ning subject to temporal logic formulae is intractability. Recent

advances in sampling-based methods seem to be only applicable

to “low-level” control. The problem of realizing “high-level”

controllers that satisfy a temporal logic specification does not

readily admit approximations, unless the notion of correctness

is relaxed as might be achieved with probabilistic variants of

temporal logics. In this paper, we argue that not all possible

environment (uncontrolled) behaviors need to be explicitly

planned for, but rather short-time strategies can be generated

online while maintaining global correctness. We achieve this by

separating feasibility from controller synthesis, using metrics

from the underlying continuous state space to ensure short-time

strategies chained together provide globally correct behavior.

I. INTRODUCTION

One major class of approaches to motion planning is that
of cell decompositions which ultimately permits reasoning
over a discrete abstraction of an otherwise continuous and
dynamically constrained problem [1]. In the case of static
obstacles, cell decomposition makes path planning a graph
search problem while providing guarantees about occupancy
of and navigation among cells. Thus, a plan over the graph
is executed by steering among these cells.

Beyond moving from an initial configuration to a goal
region, we may wish to automatically generate motion plans
that cause more sophisticated robot behavior [2]. For in-
stance, synthesize a controller that surveys critical rooms in
a building while ensuring battery levels are sufficient. Such
“task-level” problems may be expressed in temporal logic
formulae. Current research attempting to address this general
problem can be roughly grouped according to whether a
discrete abstraction is used, and whether the environment is
deterministic or uncertain (possibly adversarial). A notable
example not using a discrete abstraction is [3]; Karaman and
Frazzoli present a sampling-based method to realize a µ-
calculus formula in a static environment. Based on earlier
results for steering linear systems on polytopic partitions
[4], Kloetzer and Belta present a method for realizing linear
temporal logic (LTL) formulae defined in terms of the cells
in such a partition [5]. Considering robots moving in the
plane, Kress-Gazit et al. present a method for realizing a
class of LTL formulae in the presence of an adversarial
environment [6]. A critical component in their work is a
synthesis algorithm for computing strategies [7] that solve a
game expressed in temporal logic.

Here we are concerned with synthesizing controllers that
are correct despite an adversarial environment. The environ-

S.C. Livingston and R.M. Murray are with the California Institute
of Technology, Pasadena, CA. slivingston@cds.caltech.edu and
murray@cds.caltech.edu.

ment is “adversarial” in a robust control sense, i.e., a solution
must work against a set of possibilities, and there is uncer-
tainty as to which will actually be encountered. We assume
the robot has available to it a discrete abstraction, and that
uncontrolled environment actions can be expressed in terms
of this abstraction. Viewed as a synthesis problem where all
variables have finite domains, realizing such “reactive” LTL
formulae has been shown to be intractable [8]. However, an
important fragment of LTL known as Generalized Reactivity
of rank 1 (GR(1)), can be realized in polynomial time in
the number of states [7], [9]. The basic framework is that
of a game between the robot system and its environment,
with possible moves expressed through safety properties, and
robot goals expressed as liveness formulae. A specification
is realized by construction of a strategy, which can be
represented as a finite automaton.

The present work is not the first to consider an ap-
proach motivated by receding horizon control. In [10], a
decomposition of states and appropriate augmentation of the
specification allow a sequence of short-horizon problems to
be solved. However, a major limitation in that work is the
need to perform the decomposition manually. So, in some
respects, the present work can be regarded as an attempt
at formalizing the notion of and automating computation
of horizon in [10]. In [11], the authors define a potential
function over a product of the transition system and an
automaton recognizing a given linear temporal logic formula,
such that local “rewards” can be gathered while still making
progress down the gradient. An important difference with the
present work is that no notion of an adversarial environment
appears in [11].

In robotics, a strategy synthesized for a discrete abstraction
is implemented by attaching continuous controllers to system
“moves” in the game. Thus the robot is controlled as a
dynamical system, while input is selected based on a “high-
level” view of the state. This notion of implementability is
important in relating the continuous and discrete views of the
problem; see [12] or [13] for details. Though perhaps not
obvious from the above description, synthesizing a global
strategy is impractical for complex environments and large
configuration spaces. A global strategy must account for
every possible environment (uncertain, uncontrolled) action,
in every possible robot configuration. As in other approaches
that rely on an initial discretization, reactive synthesis over
a discrete abstraction also suffers from “the curse of dimen-
sionality.”

Motivated by modern techniques from symbolic model
checking [14], we present a decomposition of the problem
of motion planning with GR(1) specifications into

2013 International Conference on Robotics and Automation (ICRA)
http://www.cds.caltech.edu/~murray/papers/lm13-icra.html



TABLE I
SEVERAL LINEAR TEMPORAL LOGIC (LTL) OPERATORS

� “next”

⇤ “eventually”
⇤ “always” (safety)

⇤ ⇤ “infinitely often” (liveness)
|= “satisfies”

1) feasibility checking, and
2) online short-horizon strategy generation.

Our approach ensures that the chaining together of short-
horizon strategies preserves global correctness. Put differ-
ently, combining local strategies results in a run through
a feasible global strategy. We show that a metric on the
robot configuration space can be used to provide sufficient
conditions for infinitely often achieving system goals using
only local control strategies.

II. PRELIMINARIES

A. Temporal logic and GR(1)

Our notation mostly follows that of [7], with extensions to
address robot configuration spaces. We omit some details on
temporal logic, and instead refer the reader to [14] for general
treatment. Let V be a set of variables, each of which has some
finite domain of possible values, dom v. We assume that
V = X [ Y , where X is a set of environment (adversarial,
uncontrolled) variables, and Y is a set of system (controlled)
variables. The system variables Y are obtained from the
configuration of the robot. Thus while being “controlled,” the
dynamics of the robot constrain how values of these variables
may change. For instance, instantaneous teleportation across
a map is physically impossible. It will be convenient to refer
to the set of all possible states as �. Thus

� = ⇥v2V dom v

where ⇥ denotes Cartesian product. Restrictions to possible
states of a subset of variables are denoted by a subscript. For
example, �X is all possible environment states. Given a state
s 2 �, its projection onto a subset of variables is denoted
with a downward arrow, e.g., s +X is the “environment part”
of the state s.

The robot and its environment interact in a game. The
sequence � of their moves is called a play, written

� = s
0

s
1

s
2

. . . (1)

where s
0

, s
1

, s
2

, . . . 2 � are states occurring at discrete time
steps. The rules for evolution of a game and the desired
winning conditions are specified in linear temporal logic
(LTL). A summary of relevant operators is shown in Table I.
We consider here formulae of the type Generalized Reactivity
of rank 1 (GR(1)) [7], [9]. A GR(1) specification is of the

form
0

@✓
env

^⇤ ⇢
env

^
^

j

⇤ ⇤ Jenv

j

1

A

=)
 
✓
sys

^⇤ ⇢
sys

^
^

i

⇤ ⇤ J sys

i

!
(2)

where ✓
env

and ✓
sys

are propositional formulae describing
initial conditions, ⇢

env

and ⇢
sys

are transition rules, and
J e

=

�
Jenv

j

 m

j=1

and J s
= {J sys

i }ni=1

are goals of the en-
vironment and system, respectively.
✓
env

, ✓
sys

, Jenv

j , J sys

i are defined over X [ Y and at
particular state s are either True or False. For ✓

env

satisfaction is denoted by s |= ✓
env

, and similarly for the
other formulae. ⇢

env

is defined on X [ Y [ �X , and
⇢
sys

on X [ Y [ �X [ �Y . The � operator refers to
the value of variables at the next time step. Thus given a
state s, ⇢

env

specifies the possible environment moves. After
an environment (uncontrolled) move is taken, the possible
system (robot) responses are provided by ⇢

sys

. Hence, the
combined environment and system moves form the next state
s0, where (s, s0 +X ) |= ⇢

env

and (s, s0) |= ⇢
sys

Summarizing the above, an execution � = s
0

s
1

s
2

. . . is
said to satisfy a GR(1) specification ', denoted � |= ', if

1) s
0

|= ✓
env

^ ✓
sys

;
2) (si, si+1

) |= ⇢
env

^ ⇢
sys

for i = 0, 1, . . .; and
3) states satisfying J sys

i occur infinitely often, for all
system goal conditions in J sys, or at least one en-
vironment goal Jenv

j is indefinitely blocked.
The left half of expression (2) is an assumption on how

the environment will behave. For instance, as a matter of
fairness we may assume a street intersection will eventually
be clear. Or, we may assume that a charging station will
eventually furnish the robot power for its battery. The right
half of expression (2) is what must be guaranteed behavior
by our controller. For instance, an office robot must infinitely
often visit the printer room to service requests. Note that if
the left half of expression (2) (assumption) is violated, then
desired properties of the synthesized controller are no longer
guaranteed.

B. Safety graphs

Using the transition relations ⇢
env

and ⇢
sys

appearing in
expression (2), a graph is naturally formed as follows.

Definition 1: Let ' be a GR(1) specification. The graph
G' = (�, E) with edge set defined by

E = {(s, s0) 2 �⇥ � | (s, s0) |= ⇢
env

^ ⇢
sys

} ,

is called the safety graph for '. A state s 2 � for which
s |= ✓

env

^ ✓
sys

is called initial.
Any execution � that satisfies a specification ' corresponds
to an infinite path through the safety graph G', given
that environmental assumptions are met. (For simplicity of
presentation, we avoid a game graph formulation [15].)

For completeness, we include some standard definitions
when working with such graphs.



Definition 2: Let  be a propositional logic formula on
variables V . The set of satisfying states is

Sat( ) = {s 2 � | s |=  } . (3)
Definition 3: Let s 2 � be a state in the graph G' =

(�, E). The set of states reachable in one transition (time
step) is

Post(s) = {s0 2 � | (s, s0) 2 E} . (4)

Let N be a positive integer. The set of states reachable from
s in at least 1 transition and at most N is defined recursively

Post

N+1

(s) = Post

N [
�
s00 2 � | 9s0 2 Post

N
(s) : (s0, s00) 2 E

 
, (5)

where Post

1

(s) := Post(s).
Definition 4: Let s 2 � be a state in the graph G' =

(�, E). The set of all possible environment actions is

EnvPoss(s) = {s0 +X | (s, s0 +X ) |= ⇢
env

} .
Note that reachability above depends on unpredictable

environment actions. Thus we might wish to restrict the
computation of PostN to a subset of states.

Definition 5: Let T ✓ � be a set of states in the graph
G' = (�, E), and let s 2 T . The restricted reachable set is
defined recursively by

Post

N+1

T (s) = Post

N
T [�

s00 2 T | 9s0 2 Post

N
T (s) : (s0, s00) 2 E

 
, (6)

where N is a positive integer, and Post

1

T (s) := Post(s)\T .

C. Strategy synthesis

Given a GR(1) specification ', the synthesis problem is to
find a strategy realizing '. Beginning from any initial state
in G', such a strategy must visit a state for each of the goals
in J sys infinitely often, despite any permissible environment.
One approach [9] to find such a strategy is to

1) compute a fixed point of sets in the graph G' for which
the system is “winning”, i.e., can guarantee satisfaction
of all goals infinitely often, and

2) use the intermediate values from the fixed point com-
putation to construct a finite automaton representing a
global winning strategy.

For nontrivial problems, synthesizing a global strategy is
computationally intensive and may suffer robustness issues
in practice. A key observation for the present work is that
realization (step 2 above) is hard, while feasibility checking
(step 1) is amenable to symbolic methods, as we now outline.

Consider the goal J sys

i . A fixed point computation on the
graph G' initializes with

T i
1

:= Sat(J sys

i ). (7)

Until a fixed point is reached, iterate

T i
k+1

:= T i
k [

�
s 2 � | 8s0 +X2 EnvPoss(s),

9s0 +Y : ((s, s0) |= ⇢
sys

) ^
�
s0 2 T i

k

�  
. (8)

Intuitively, each iteration k of equation (8) finds states
from which the robot controller can reach a state in T i

k
no matter what the environment does. A similar notion, for
instance, is computation of “backwards reachability” despite
disturbances. Equations (7) and (8) provide reachability
without ensuring that it can be done infinitely often. This
and inclusion of environment goals J env can be achieved
by a µ-calculus formula as shown in [7].

Deciding whether there exists a strategy for a specification
of the form (2) is performed by computing the set of winning
states T and verifying that all initial states are in T . All steps
of the fixed point computation can be performed symboli-
cally, i.e., using ordered binary decision diagrams (OBDDs),
which have been demonstrated to concisely represent state
sets and transition rules in practice [14]. Roughly, an OBDD
of the set T describes the indicator function �T , which is
defined by

�T (s) =

(
1 if s 2 T,
0 else,

where s 2 �. Given an OBDD representation of �T and a
state s, we can efficiently query whether s is in T .

III. PROBLEM SETTING AND SOLUTION METHOD

A. State metrics

Most of the above formalism is standard in model check-
ing and reactive synthesis, as studied in theoretical computer
science. However, we are interested in controlling robots that
evolve in a state space having more structure than a finite
automaton. In particular, a metric is usually available.

Let V
meas

✓ V be the set of variables that have a metric
on their domain. Precisely, v 2 V

meas

if

(dom v, rv)

is a metric space. The metric is rv : dom v ⇥ dom v ! R.
With some abuse of notation, for each v 2 V

meas

, we extend
the domain to include all of � as follows. For s, t 2 �, project
to s +{v}, t +{v}2 dom v to compute rv(s, t). For example,
if y 2 Y is the robot configuration, while V includes system
flags that have no metric, then we can use ry(s, Sgoal

) to
measure distance to a region of goal states from the current
state by computing the Euclidean distance between s +{y}
and the goal.

Using these component metrics, distances may be com-
puted between any two states s, t 2 � by

r(s, t) =
X

v2Vmeas

rv(s, t), (9)

We require that every state not satisfying J sys

i has nonzero
distance to Sat(J sys

i ). If this is not the case, the distance
function can be extended by using the discrete metric on
some or all of the remaining variables v 2 V \ V

meas

.
Explicitly,

rv(s, t) =

(
0 if s = t,
1 else.



We can now define the distance to goal states and thus
obtain a potential-like function for steering. Let ' be a GR(1)
specification (cf. expression (2)), and let J sys

i 2 J sys be a
goal condition for the robot to meet infinitely often. Recall
that Sat(J sys

i ) is the set of states in the safety graph G' at
which J sys

i is satisfied.
Definition 6: Let s 2 �, and let r be as in equation (9).

The distance to goal J sys

i is

distgi(s) = min

t2Sat(Jsys
i )

r(s, t).

B. A sufficient horizon

For clarity, our treatment below focuses on reaching a
single robot (system) goal J sys

1

. Extension to the general
case is sketched at the end of this section. We assume the
winning set T has already been computed by some method
(such as the fixed point computation of [7]) the result of
which is its indicator function �T . For example, as outlined
in the previous section, �T may be represented by an ordered
binary decision diagram resulting from a symbolic fixed
point iteration.

Since the distance function r on states can be computed
from the current state, the goal distance distg (from Def-
inition 6) provides the basis for a sufficient condition on
horizon length in generating local strategies. Before this can
be presented, we define two quantities to be computed at
each fixed point iteration (equation (8)).

Remark 1: Let k be a positive integer. Define T
0

:= ;.
Then the set of new points added to the winning set T at
step k is Tk\Tk�1

. The shortest guaranteed path length from
any state in Tk \ Tk�1

to the goal set is k � 1.
Remark 2: From finiteness of the safety graph G' and

monotonicity of the fixed point iteration in equation (8), it
follows that the fixed point will be achieved in finitely many
steps. Call the index at which the fixed point is achieved k⇤.
So, Tk⇤+1

\ Tk⇤ = ;.
Remark 3: Let s 2 T . Then there is a unique k 2

{1, . . . , k⇤} such that s 2 Tk \ Tk�1

For each k 2 {1, . . . , k⇤}, the minimum and maximum
values taken by distg on Tk \ Tk�1

are denoted Mink and
Maxk, respectively. Precisely,

Mink := min

s2Tk\Tk�1

distg(s)

Maxk := max

s2Tk\Tk�1

distg(s).

Note that these quantities can be found iteratively as the fixed
point iterations are computed.

Suppose that the fixed point is achieved at iteration k⇤ � 2.
(Otherwise, the problem is trivial because the winning set is
just the goal, i.e., the robot can only correctly occupy goal
states.)

Theorem 1: Let N be a positive integer such that for each
k 2 {2, . . . , k⇤}, there exists l where k � l  N and for all
l0  l

Maxl0 < Mink . (10)

Algorithm 1 Compute sufficient horizon N

Require: specification of the form ⇤ J sys

1

.
1: N := 1

2: for k = 3, . . . , k⇤ do

3: for l = k � 2, . . . , 1 do

4: if Maxl � Mink then

5: Nk := k � l
6: end if

7: end for

8: if Nk > N then

9: N := Nk

10: end if

11: end for

Let s 2 Tk \ Tk�1

, and let

t⇤ := argmint2Post

N
T (s) distg(t). (11)

Then t⇤ 2 Tq \ Tq�1

for some q < k.
Proof: If distg(t⇤) = 0, then by definition t⇤ |= J sys

1

,
thus q = 1 and we are done. Thus take distg(t⇤) > 0.
By construction of N (see equation (10)), there exists ls 2
{k�N, k�N +1, . . . , k� 1} such that Maxl0s < Mink for
l0s  ls. Observe that k 6= q because, from the fixed point
iteration defining the sets T

1

, T
2

, . . . , Tk⇤ , Post

N
T (s) \ Tls

is nonempty, hence distg(

ˆt) < distg(ŝ) for ŝ 2 Tk, ˆt 2
Post

N
T (s) \ Tls .

Suppose to the contrary that k < q. Again by construction
of N , there exists lt⇤ 2 {q�N, q�N + 1, . . . , q� 1} such
that Maxl0

t⇤
< Minq for l0t⇤  lt⇤ . Now consider the two

possible cases.
Case 1. ls  lt⇤ . But then it follows that Maxls < Minq .
As observed earlier, there exists ˆt 2 Post

N
T (s) \ Tls , hence

distg(

ˆt) < distg(t⇤), whence a contradiction (since t⇤ was
the supposed minimum).
Case 2. ls > lt⇤ . Combining the various inequalities con-
cerning indices above, we have

k �N < q �N  lt⇤ < ls  k � 1 < q � 1.

In particular, k�N < lt⇤ < k� 1. Similarly to as observed
in Case 1, there exists ˆt⇤ 2 Post

N
T (s) \ Tlt⇤ , so it follows

that distg( ˆt⇤) < distg(t⇤), whence a contradiction.
Remark 4: The horizon N in Theorem 1 is bounded

because the winning set is bounded, hence for sufficiently
large N , PostNT (s) \ Sat(J sys

j ) 6= ; for any s 2 T .

C. Algorithms

Theorem 1 provides that a horizon of length N , where
N satisfies the various hypotheses of the theorem, suffices
to always find a state that is strictly closer to the goal
set. Algorithm 1 provides a method for computing N that
satisfies these hypotheses. Informally speaking, N > 1

allows for finite move sequences away from goal states (so
that states reached during the sequence are in Tk \Tk�1

sets
that do not satisfy equation (10)), as may be required, say,
to avoid collision with a dynamic obstacle. Combined with a
winning set indicator �T , we have the basis for short-horizon



online synthesis algorithms. Based on these ingredients, in
Algorithm 2 we propose an elementary method, dubbed
“Single-step short-horizon.”

The basic operation of Algorithm 2 is as follows. During
each time step, first observe the action of the environment.
For instance, this could be a movement by a dynamic
obstacle, or the signalling of a “low battery” flag. The
previous state and the present environment action imply, in a
way easily computable from the given GR(1) specification,
a collection of possible robot actions. From here, the set of
states that might be reached within a horizon of N may be
computed. The state with minimum goal distance is found
over this reachable set, restricted to be a new minimum-
distance state if the current state has been visited before.
Intuitively, the motivation for memory-based restriction is to
prevent environment-forced cycles in which the robot never
reaches its goals. The robot action constituting the first step
on the shortest path is then taken, and the process repeats.

Note that Algorithm 2 contains a subroutine call,
ShortPath, for computing the shortest path between states
in a graph. ShortPath takes three arguments because the
current environment action s0X restricts the set of possible
next states for any path from s to t⇤.

Theorem 2: Let ' be a specification of the form ⇤ J sys

1

.
Controlling the robot under Algorithm 2 realizes '. That is,
any execution under Algorithm 2 is globally correct with
respect to '.

Proof: It suffices to show that a given state will lead to
a state that is strictly closer to the goal set in finitely many
steps, since then by induction we obtain the result, i.e., a state
satisfying the goal conditions is guaranteed to be reached in
finitely many steps.

Let s 2 T , and let s0 2 T be the next state reached after
one loop of Algorithm 2. First observe that for all time steps,
the robot (system) remains in the winning set T because, by
its very construction, no matter what action the environment
takes, there will be a possible robot action from which the
next state s0 is indeed in T . Let k and q be the indices such
that s 2 Tk \ Tk�1

and s0 2 Tq \ Tq�1

, respectively.
We wish to show that the case of k  q can only occur

finitely many times. Suppose to the contrary. Because of the
finite memory MEM for visited states, each time a state is
repeated, a new target state t⇤ is selected. However, the set
Post

N
T (s) is finite, and thus removing an additional element

from it each time s is visited will in finitely many steps
cause all possible robot actions to be tried from s. But by
construction of the winning set T , at least one of these
actions must lead to a state strictly closer to the goal, whence
a contradiction.

The treatment above can be extended to the general case,
including multiple system and environment goals as follows.

1) Use our method proposed for each system goal, where
the sets T

1

, T
2

, . . . are now intermediate sets from the
computation of µY in equation (2) of [7] (also see [9]).

2) Take horizon N to be the maximum among all system
goal horizons.

3) During online execution, alternate pursuit of each

Algorithm 2 Single-step short-horizon strategy
Require: specification of the form ⇤ J sys

1

.
1: s any initial state
2: MEM ; //finite memory, for tracking visited states
3: repeat

4: Read s0X //sense environment action
5: if s 2 MEM.keys then

6: R MEM[s]
7: else

8: R ;
9: MEM[s] ;

10: end if

11: t⇤  argmint2Post

N
T (s)\R distg(t)

12: MEM[s] MEM[s] [ {t⇤}
13: s  ShortPath(s, s0X , t⇤)[1] //take first step on

shortest path to t⇤

14: until s 2 Sat(J sys

1

)

system goal. I.e., first seek a J sys

1

-state; once one is
reached, then seek a J sys

2

-state, etc.
Algorithm 2 can be extended for use with full GR(1)
specifications by skipping line 12 if one of the environment
goals is not satisfied. This ensures that from a particular
state, the environment cannot eliminate all options (i.e., cause
Post

N
T (s) \MEM[s] to become empty) by not being fair.

IV. A SIMULATION EXAMPLE

We illustrate the proposed method by an example of driv-
ing to goal positions in “gridworlds” with dynamic obstacles.
A “gridworld” is just a rectangular subset of R2 that has
a uniform cell decomposition, where we assume the robot
dynamics allow steering between adjacent cells (thus forming
a 4-connected grid). Simulation experiments described in this
section are implemented as part of an extension of the GR(1)
strategy synthesis tool “gr1c”.1 Binary decision diagrams for
symbolic model checking are provided by the CU Decision
Diagram package by Fabio Somenzi and contributors.2

An intuitive motivation for receding-horizon-like methods
is that robot behavior in the next few time steps should be
unaffected by things that are sufficiently “far away.” In the
present work, we studied this in the case of a nondetermin-
istic adversary who is described by linear temporal logic.
To see how the horizon computed by our method allows
such separation, consider the setting shown in Figure 1. It
is a 4-connected grid of size 32 ⇥ 8 with goal positions at
opposite corners (marked by G). The robot is to infinitely
often visit both G cells—as in a simple surveillance task—
while avoiding collisions with two moving obstacles. The
first obstacle can move by at most one cell per time step,
though it is restricted to the gray region of rows 1 and 2.
The second obstacle is entirely similar to and independent
from the first; it is restricted to rows 14 and 15.

1
http://scottman.net/2012/gr1c

2
http://vlsi.colorado.edu/⇠fabio/CUDD/



Fig. 1. Layout of the example. The possible positions of two dynamic
obstacles are indicated by the two regions of gray cells, i.e., rows 1 and
2; and rows 14 and 15. The goal positions for the robot are indicated by
the letter G. As a fairness condition, the obstacle in each gray region must
infinitely often return to the cell labelled with E.

From Algorithm 1 and using the 1-norm to compute
distance between the robot position and the goal, the horizon
N is computed to be 10. This same horizon is found if either
obstacle is excluded. In other words, Algorithm 1 provides
the same sufficient planning horizon to guarantee collision
avoidance whether we have one or two obstacles in the
setting of Figure 1. Given the separation of the gray regions,
one may expect this result.

V. CONCLUSION AND FUTURE WORK

We have presented a sufficient condition for selecting
the horizon in motion planning with specifications from the
GR(1) fragment of linear temporal logic. This permits divid-
ing the problem into two parts: winning set computation, and
(online) short-horizon strategy synthesis. This separation is
crucial because often �T , the winning set indicator function,
is efficiently executed and symbolically represented, e.g.,
using ordered binary decisions diagrams. We also provided
an algorithm for on-the-fly strategy generation based on this
horizon.

Though our example is simple enough to achieve good
performance with the 1-norm, generally the distance function
on states may be more sophisticated, e.g., based on naviga-
tion functions from [16], which wrap around static obstacles
and may lead to small sufficient horizons in cluttered spaces.

Experiments with the proposed algorithm using such metrics
and on robot hardware will be addressed in future work.

Another topic of future work is to study how a sufficient
horizon may be described in terms of local graph structure
from the GR(1) specification. Put differently, the discrete
abstraction of a task-level planning problem provides its own
notion of distance: (possibly weighted) path length in terms
of number of edges in a game graph. In the present work,
we studied how a metric on states, e.g., from the underlying
continuous dynamical system, can inform online strategy
generation. Future work will investigate the interaction of
these continuous and discrete views of distance to goals.

ACKNOWLEDGMENTS

This work is partially supported by the Boeing Corpora-
tion.

REFERENCES

[1] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006. [Online]. Available: http://planning.cs.uiuc.edu/

[2] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J.
Pappas, “Symbolic planning and control of robot motion: Finding
the missing pieces of current methods and ideas,” IEEE Robotics &
Automation Magazine, pp. 61–70, March 2007.

[3] S. Karaman and E. Frazzoli, “Sampling-based motion planning with
deterministic µ-calculus specifications,” in Proceedings of the 48th
IEEE Conference on Decision and Control (CDC), Shanghai, China,
2009, pp. 2222–2229.

[4] L. Habets and J. van Schuppen, “A control problem for affine dynam-
ical systems on a full-dimensional polytope,” Automatica, vol. 40, pp.
21–35, 2004.

[5] M. Kloetzer and C. Belta, “A fully automated framework for control
of linear systems from temporal logic specifications,” IEEE Trans. on
Automatic Control, vol. 53, no. 1, pp. 287–297, February 2008.

[6] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal logic-
based reactive mission and motion planning,” IEEE Transactions on
Robotics, vol. 25, no. 6, pp. 1370–1381, 2009.

[7] Y. Kesten, N. Piterman, and A. Pnueli, “Bridging the gap between
fair simulation and trace inclusion,” Information and Computation,
vol. 200, pp. 35–61, 2005.

[8] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,”
in Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL ’89. New York,
NY, USA: ACM, 1989, pp. 179–190.

[9] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive(1)
designs,” in In Proc. 7th International Conference on Verification,
Model Checking and Abstract Interpretation, ser. Lecture Notes in
Computer Science, vol. 3855. Springer, 2006, pp. 364–380. [Online].
Available: http://jtlv.sourceforge.net/

[10] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
control for temporal logic specifications,” in Proceedings of 13th In-
ternational Conference on Hybrid Systems: Computation and Control
(HSCC’10), 2010.

[11] X. C. Ding, C. Belta, and C. G. Cassandras, “Receding horizon
surveillance with temporal logic specifications,” in Proceedings of the
49th IEEE Conference on Decision and Control (CDC), December
2010, pp. 256–261.

[12] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete
abstractions of hybrid systems,” Proceedings of the IEEE, vol. 88,
no. 7, pp. 971–984, July 2000.

[13] P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic
Approach. Springer, 2009.

[14] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press,
2008.

[15] E. Grädel, W. Thomas, and T. Wilke, Automata, Logics, and Infinite
Games: A Guide to Current Research, ser. Lecture Notes in Computer
Science. Springer, 2002, vol. 2500.

[16] E. Rimon and D. E. Koditschek, “Exact robot navigation using
artificial potential functions,” IEEE Transactions on Robotics and
Automation, vol. 8, no. 5, pp. 501–518, October 1992.


