
Real-Time Trajectory Generation for the Cooperative Path Planning
of Multi-Vehicle Systems1

Feng-Li Lian2 and Richard Murray
California Institute of Technology

Pasadena, CA 91125, USA
{fengli,murray }@caltech.edu

Abstract

This paper discusses a Cooperative Path Planning (CPP) de-
sign methodology for multi-vehicle systems and a Nonlin-
ear Trajectory Generation (NTG) algorithm. Three scenar-
ios of multi-vehicle tasking are proposed at the CPP frame-
work. The NTG algorithm is, then, used to generate real-
time trajectory for desired vehicle activities. Given system
dynamics and constraints, the NTG algorithm first finds tra-
jectory curves in a lower dimensional space and, then, pa-
rameterizes the curves by the B-spline basis. The coeffi-
cients of the B-splines are further solved by the sequen-
tial quadratic programming to satisfy the optimization ob-
jectives and constraints. The NTG algorithm has been im-
plemented to generate real-time trajectories for a group of
cooperative vehicles in the presence of changing missions
and constraints.

1 Introduction

For large-scale autonomous vehicle systems, several dis-
tributed, hierarchical decompositions of controller algo-
rithms have been proposed to overcome the problems in
design complexity and computational limitation. The key
feature of decomposing large-scale vehicle systems into
a hierarchical architecture is that it translates a compli-
cate controller design problem into several computation-
ally tangible control sub-problems. A multi-layer plan-
ning, assessment, and control architecture of distributed
semi-autonomous forces with collective objectives has been
studied in the Mixed Initiative Control of Automa-teams
(MICA) of DARPA. Conceptually, the MICA hierarchy in-
cludes Operations and Resources Supervisory for resource
planning and human interaction, Team Composition and
Tasking (TCT) for specifying group-level tasks, Team Dy-
namics and Tactics (TDT) for tasking team activities, Co-
operative Path Planning (CPP) for generating feasible vehi-
cle missions, and Vehicle Dynamics and Control. Planning
and Control algorithms are accordingly designed to achieve

1Research supported in part by DARPA MICA program, Sharon Heise,
Program Manager.2 Corresponding author. Currently with Department of
Electrical Engineering, National Taiwan University, Taipei, 106, Taiwan.
E-mail: fengli@ccms.ntu.edu.tw

functional goals specified at each layer [1].

Based on the above-mentioned hierarchies, a complex, dif-
ficult control problem can be properly decomposed into
several sub-problems. Individual control algorithms can,
then, be systematically designed to fulfill the sub-problem
goals of one specified hierarchy, and the overall goal can be
achieved by proper decomposition and construction tech-
niques. For example, in a vehicle-routing case, one upper-
layer controller might plan a grouping sequence of avail-
able vehicles and an assignment of feasible routes, and then
generates an optimal activity plan for individual vehicles.
Based on the planned activity received from the upper layer,
the controller at lower layer is responsible for generating
feasible trajectories in real time for each vehicle to follow.
Therefore, multiple vehicles can utilize available resources
and individually follow their own trajectories to achieve the
overall system goal.

At the vehicle action planning layer, the CPP layer of
MICA, one of the challenging problems is to plan and fol-
low a trajectory in the presence of uncertainty and limited
information. Limited information is due to the distributed
nature of a multi-vehicle system and the range limitation of
vehicle sensing and communication capabilities. To effec-
tively control such systems, a two-degree-of-freedom de-
sign technique with a feedforward compensator and a feed-
back controller, as shown in Fig. 1, may be adopted. Based
on the pre-defined goal, the feedforward compensator gen-
erates a nominal trajectory for the feedback controller to
follow and produce proper actuation to the system input.
Furthermore, the trajectory should be generated in real time
and customized for the changes in mission, condition, and
environment.

In this paper, we focus on the discussion of the design archi-
tecture and trajectory generation for cooperative vehicles at
the CPP layer of MICA. The proposed CPP design architec-
ture considers three scenarios of grouping and cooperation
of unmanned air vehicles (UAV) flying from home base(s)
to target(s) to deploy munitions and back. Based on desired
missions and available information, the real-time trajectory
is generated by the Nonlinear Trajectory Generation (NTG)
algorithm that has been developed at Caltech [2, 3]. This pa-
per consists of five sections, including the Introduction sec-

Richard Murray
2002 Conference on Decision and Control



�����������


���������

��������


��������

�������

�������

�������
������� �� �

��

�
��������
����������

Figure 1: Two Degree of Freedom Design.

tion. Section 2 describes the problem setup at the CPP layer.
Section 3 outlines key components of the NTG algorithm.
Section 4 presents the integration of the NTG algorithm into
the CPP framework by providing an illustrative example of
design procedures and trajectory generation. Summary and
future directions are provided in the final section.

2 Problem formulation at CPP layer

In this section, we describe the problem formulation of the
CPP layer of the MICA hierarchy. At the upper layer, the
TCT controller plans and teams available resources such
as vehicles and munitions to achieve specified group-level
tasks. Taking the teaming results from the TCT controller as
input, the TDT controller then generates a timing sequence
of team activities. At the bottom, the CPP controller accepts
the activity sequence from the TDT controller and gener-
ates feasible missions such as sets of waypoints and actions
at these waypoints for individual vehicles. Operator com-
mands and environmental uncertainty as well as the con-
straints of teaming and activity precedence, coordinated ac-
tions, and vehicle dynamics are also considered at the CPP
layer. Hence, the controller design at CPP is to generate
cooperative trajectories of one vehicle or a group of vehi-
cles to support the planned activities as determined by the
TDT controller. In the following, three scenarios of vehicle
activities are discussed first, and the trajectory generation
algorithm will be described in the next section.

Fig. 2 shows a scenario of UAV tasking from home base(s)
(B) to target(s) (T). This scenario considers the case where
multiple vehicles are commanded to accomplish designated
activities. The target position and the designated action at
the position is simply instructed by an upper-level command
unit such as a TDT controller. After taking off from their
home bases, UAVs need to compute real-time trajectories
based on available information such as the target position,
and the states of other UAVs and other adversarial entities
and their threatening factors. As shown in Fig. 2(a),rS de-
notes the safety region of the UAV andrI represents the
range of available sensing and communication information.
For simplicity, we only consider the distance measures in
two dimensional space. Having a relative distance larger

��

�

�

��

��

��

�� ��

����

����

(a) (b)

Figure 2: The scenario of UAV tasking from home base(s) (B) to
target(s) (T). rS: safety radius,rI : information radius,
rT : target detection radius.

than rS, the UAV can safely fly without causing any dam-
age. Hence, in order to succeed the desired missions, this
constraint should be strongly imposed. On the other hand,
rI might be a combination of sensing capability to detect
its neighboring environment, and communication capabil-
ity of obtaining information from its neighboring vehicles.
In general,rS< rI , otherwise, the UAV might collide with
other units before it detects them or is informed by other
units. Similarly, the target unit has a working radius ofrT

that denotes a feasible detecting range if the target has a
radar system or a threatening range if the target has a defen-
sive capability.

In this case, three UAVs might be instructed by the same
activity command, and need to fly together in a designated
formation. Hence, the CPP controller at each individual
UAV should generate a set of feasible, real-time trajectories
which guarantee the group of vehicles to fly in the desig-
nated formation. A designated formation should keep the
relative distance of any two UAVs be larger thanrS for col-
lision avoidance and smaller thanrI for information sharing.
Similar to the first case,rT should be further considered
when the group of UAVs are flying within the adversarial
area.

In the next section, we describe the problem setup of the
NTG algorithm. The integration of the NTG algorithm and
the proposed CPP tasking will be presented in Section 4.

3 The NTG algorithm

In this section, we first outline the NTG algorithm and then
describe its constructing techniques in detail. For a given
system dynamics and a set of state and input constraints,
and to minimize a pre-specified cost function, the NTG al-
gorithm first makes use of the differential flatness property
to find a new set of outputs in a lower dimensional space
and then parameterizes the outputs by the B-spline basis
representation. The coefficients of the B-splines are fur-
ther solved by a sequential quadratic programming solver



to satisfy the optimization objectives and constraints. Fi-
nally, the trajectories for the vehicle controller to follow are
represented by the B-spline curves with the obtained coef-
ficients. In the following, we summarize the constructing
techniques of the NTG algorithm presented in [2, 3]

Consider a nonlinear control system described as follows:

ẋ = f (x,u), (1)

wherex∈ Rn are the states,u∈ Rm are the inputs, and all
vector fields and functions are assumed to be real-analytic.
The states and inputs in system (1) is also assumed be to
constrained by the following inequalities:

lb0 ≤ ψ0(x(t0),u(t0)) ≤ ub0,
lb f ≤ ψ f (x(t f ),u(t f )) ≤ ubf ,
lbt ≤ ψt(x(t),u(t)) ≤ ubt ,

(2)

where there areN0 initial constraints,Nf final constraints,
and Nt trajectory constraints, andlb’s and ub’s are their
lower and upper bounds, respectively. In the UAV example,
initial and final constraints might be imposed by the home
base and target locations, and the trajectory constraints are
induced from flight formation and adversarial environment.
The problem is then to find a trajectory of system (1) that
minimizes the following cost function:

J = φ0(x(t0),u(t0))+φ f (x(t f ),u(t f ))+
∫ t f

t0
L(x(t),u(t))dt, (3)

whereφ0(·, ·) andφ f (·, ·) are the costs associated with the
initial and final locations, respectively, andL(·, ·) is the in-
stant cost at timet.

The first step of the NTG algorithm is to determine a feasi-
ble set of outputs such that system (1) can be mapped into
a lower dimensional output space. That is, it is desirable to
find a set of outputsz= {z1, ...,zq} of the form:

z= G(x,u,u(1), ...,u(r)), (4)

such that(x,u) can be completely determined byz and its
derivatives, i.e.,

(x,u) = H(z,z(1), ...,z(s)), (5)

whereu(i) andz(i) denote theith time derivative ofu and
z, respectively. A necessary condition for the existence of
such outputs can be found in [4] and such systems are called
differentially flat systems. If no flat outputs exist or one can-
not find them,(x,u) can be still be completely determined
by the following reduced-order form:

(x,u) = H1(z,z(1), ...,z(s1)),0 = H2(z,z(1), ...,z(s2)). (6)

In this case, an additional trajectory constraint needs to be
included into the set of constraints (2).

Once a particular set of outputs are chosen, they are further
parameterized in terms of the B-spline basis as follows [5]:

zj(t) =
p j

∑
i=1

Bi,k j (t)C
j
i for the knot sequencet j ,

�� � � ������ �	
��	��
 ������� ��	��	����

�� �� ��	��	���� ������� �		������

��	��	����

������	����

��� �� �
��� � �

��� ���

Figure 3: A B-Spline representation ofzj(t).

where Bi,k j (t) are theith B-spline basis function for the

output zj(t) with polynomial orderk j , C j
i are the coeffi-

cients of the B-splines. A B-spline representation ofzj with
additional uniformly distributed breakpoints is pictured in
Fig. 3. The total number of coefficients,p j , can be com-
puted byp j = l j(k j−mj)+mj , wherel j denotes the number
of knot intervals,mj is the number of smoothness condition
at the knot point.

After the outputs have been parameterized in terms
of the B-spline curves, the cost function (3) and
constraints (2) can also be re-formulated in terms
of the coefficients of the chosen outputs; that is,
J(x,u) → F(y) and {ψ0(·, ·),ψ f (·, ·),ψt(·, ·)} → c(y),
wherey =(C1

1, ...,C
1
p1
,C2

1, ...,C
2
p2
, ...,Cq

1, ...,C
q
pq)∈ RM, M =

∑q
i=1 pi . Note thatc(y) might also include the additional

trajectory constraints as a result of not choosing a set of flat
outputs. Hence, the problem can be formulated as the fol-
lowing nonlinear programming form:

min
y∈RM

F(y) subject to lb ≤ c(y)≤ ub.

In NTG, the coefficients, i.e.,y, of the B-spline curves are
further solved by a sequential quadratic programming pack-
age, called NPSOL [6], to satisfy the optimization objective
F(y) and the constraints onc(y). Finally, the state and input
trajectories can be described in terms of these coefficients,
and are fed into the feedback controller.

4 An illustrative example of flight formation

In this section, we use the scenario of flight formation of
different UAVs to describe the integration of NTG algorithm
into the MICA-CPP framework. As shown in Fig. 2, three
UAVs are tasking from their home baseB to targetT. For
the ease of presenting the design procedure, in this example,
we consider a simplified 2-D UAV dynamics described as
follows:

ẋi = ui
x, andẏi = ui

y, i = 1,2,3, (7)

wherexi andyi are the coordinate of UAVi , andui
x andui

y
are its corresponding inputs.

Furthermore, trajectory and input constraints are expressed



100 105 110 115 120

100

105

110

115

120

X

Y

Figure 4: Flight formation of three UAVs.

as follows:

rS ≤
√

(xi −x j)2 +(yi −y j)2 ≤ rI ,
ui

lb:x,y ≤ ui
x,u

i
y ≤ ui

ub:x,y,
(8)

wherei, j = 1,2,3, i 6= j, and the first inequality is for col-
lision avoidance and obtaining information from its neigh-
boring UAVs. The goal is assumed to task UAVs to the tar-
get by using minimal fuel and close formation. Hence, one
choice of the cost function is as follows:

L(x,u) = ∑
i 6= j

αi j
p

[√
(xi −x j)2 +(yi −y j)2− r12

]2

+
3

∑
i=1
αiR

p

[√
(xi −xi

R)2 +(yi −yi
R)2− r iR

]2

+
3

∑
i=1
αi

u(u
i
x +ui

y)
2, (9)

whereα’s are weighting factors,(xi
R,y

i
R) is the reference

trajectory specified by the upper-layer activity controller.

For this system, it is easy to find one set of flat outputs,
zk,k = 1, ...,6 such thatxi = z2×i−1, yi = z2×i and ui

x =
ż2×i−1, ui

y = ż2×i . For each outputzk, we let ‘the number
of intervals of knot points’, ‘the degree of smoothness at
each knot point’, and ‘the polynomial degree’ be 4, 3, 6,
respectively. Hence, the number of coefficients of each out-
put is 15 (= 4(6−3)+3), that is,zk(t) = ∑15

i=1Bi,6(t)Ck
i and

y = (C1
1, ...,C

1
15, ...,C

6
15) in the nonlinear programming for-

mulation.

One simulation study of different flight formations of three
UAVs in two-dimensional space is shown in Fig. 4. Their
base point is at (100,100) and multiple target points are

located at (110,100), (120,100), (120, 110), (120, 120),
(114,114), and (107,107). Hence, there are seven segments
in the planning horizon. This group of UAVs change their
flight formation at every target point and the sequence of
the seven flight formations are ”B”, ” |”, ” B”, ” \”, ” B”,
”/”, ” B”. That is, three UAVs first fly from (100,100) to
(110,100) by using the ”B” formation and change to the ”|”
formation at (110,100), and so on. In each segment, the
simulation time is 5 seconds and 21 breakpoints are used.
Different flight formations are coded by specifying differ-
ent cost functions, but the constraint set remains the same.
Collision avoidance during one formation or the changing
of two formations is coded within the constraint set. In the
beginning of each segment, the NTG algorithm is used to
solve the optimal values of the coefficients of the flat out-
puts. The flying trajectory of each UAV is then constructed
by the coefficients solved and their associated B-spline ba-
sis. Note that the exchanging of the UAV states needed in
the NTG algorithm is performed only once when the flight
formation changes.

5 Summary and future work

In this paper, we described the hierarchical design of large-
scale multi-vehicle autonomous systems and discussed the
scenario of vehicle tasking at the CPP layer of MICA. Based
on a pre-designed vehicle activity, the trajectory for each ve-
hicle to follow is then generated by the NTG algorithm. The
constructing techniques of NTG was discussed in detail, and
the integration of NTG into the MICA-CPP framework was
also presented by an illustrative example of flight formation.
In addition to the spatial constraints presented in this paper,
our future work will focus on modifying the NTG algorithm
and formulation to further incorporate temporal constraints
such as activity coordination.

References
[1] Mixed Initiative Control of Automa-teams program
of DARPA at http://dtsn.darpa.mil/ixo/mica.asp

[2] M. B. Milam, K. Mushambi, and R. M. Murray. A
new computational approach to real-time trajectory genera-
tion for constrained mechanical systems.2000 Conference
on Decision and Control, Dec. 2000.

[3] N. Petit, M. B. Milam, and R. M. Murray. Inversion
based constrained trajectory optimization.2001 IFAC sym-
posium on Nonlinear Control Systems Design, 2001.

[4] M. Fliess, J. Levine, P. Martin, and P. Rouchon.
Flatness and defect of non-linear systems: Introductory
theory and examples.International Journal of Control,
61(6):1327-1360, 1995.

[5] C. de Boor. A Practical Guide to Splines. Springer-
Verlag, 1978.

[6] P. Gill, W. Murray, M. Saunders, and M. Wright.
User’s Guide for NPSOL 5.0: A Fortran Package for Non-
linear Programming. System Optimization Laboratory,
Stanford University, California, USA.




