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Abstract

Successful high-speed autonomous navigation requires integration of tools from robotics, control

theory, computer vision, and systems engineering. This thesis presents work that develops and

combines these tools in the context of navigating desert terrain.

A comparative analysis of reactive, behavior-based, hybrid, and deliberative control archi-

tectures provides important guidelines for design of robotic systems. These guidelines depend

on the particular task and environment of the vehicle. Two important factors are identified

which guide an effective choice between these architectures: dynamic feasibility for the vehicle,

and predictability of the environment. This is demonstrated by parallels to control theory, illus-

trative examples, simulations, and analysis of Bob and Alice—Caltech’s full-scale autonomous

ground vehicle entries in the 2004 and 2005 Grand Challenge races, respectively.

Further, new model-based methods are developed for constructing and maintaining estimates

of terrain elevation and road geometry. These are demonstrated in simulation and in fully

autonomous operation of Alice, including accurate detection and tracking of the centerline of

desert roads at speeds up to 5 m/s. Finally, Alice’s navigation architecture is presented in full

along with experimental results that demonstrate its capabilities.
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Chapter 1

Introduction

This thesis is concerned with developing and analyzing the mathematical, algorithmic, and

systemic tools needed to provide increased autonomy for robotic systems. Broadly, such tools are

needed for both semi- and fully autonomous systems and have applications in a variety of areas

including underwater exploration; disaster rescue and recovery; human and cargo transport;

military transport and reconnaisance through land, sea, and air; assistive robotics; and planetary

exploration.

The tools developed in this thesis are applied in particular to high-speed autonomous ground

navigation, a field that has built upon decades of research in a number of fields including control

theory, robotics, artificial intelligence, computer vision, dynamical systems, systems engineering,

and mechanics.

This thesis focuses on two important considerations in the design of systems for high-speed

autonomous navigation: dynamic feasibility and predictability. For the purposes of this work,

high-speed is defined as in the range 5–15 m/s, depending on terrain. Testing was performed in

low-structure desert environments, primarily over unimproved desert roads.

1.1 Motivation

Autonomy is a keystone for technological advancement in many commercial, military and human

exploration endeavors, and the ability for a vehicle or robot to successfully navigate through

its environment is essential feature for many of such endeavors. Specific and immediate goals

underscore the need for such advancement:

• In 2001, Congress set as a goal that “one-third of the operational ground combat vehicles

of the Armed Forces” will be unmanned by the year 2015.1 In 2003, it authorized defense
1National Defense Authorization Act for Fiscal Year 2001 (S. 2549, Sec. 217)
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agencies to provide “cash prizes in recognition of outstanding achievements . . . designed to

promote science, mathematics, engineering, or technology education.”2

• Since January 2004 to the time of this writing, NASA’s Spirit and Opportunity rovers

have been exploring and collecting science data on the Martian surface, primarily through

remote control from the (Earth’s) ground and through partial autonomy. In 2009, a much

larger and more capable rover called the Mars Science Laboratory is planned for exploration

of Mars. The degree of autonomy on this rover will have a dramatic impact on the ability

of this rover to efficiently collect scientific data [29, 30].

Successfully meeting ambitious goals such as those of unmanned military transport and

interplanetary exploration requires technological advancements and improved fundamental ca-

pabilities in research areas of robotics, control theory, computer vision, and systems engineering.

To spur innovation and development toward the goal stated above for ground combat vehicles,

DARPA sponsored two races for autonomous ground vehicles through the Mojave and Nevada

deserts, called the DARPA Grand Challenge. Caltech entered vehicles in each of these races,

which serve as the primary testbeds and examples for the work presented here, which is generally

applicable to autonomous navigation on Earth as well as Mars.

1.2 Themes

There are, of course, many considerations for the design of any autonomous system. The impor-

tance of such considerations depends on the specific properties of the system and requirements

of the task at hand. Two central themes emerge from a thoughtful analysis of these considera-

tions: dynamic feasibility properties of the system, and predictability properties of the situated

environment in which the system operates.

1.2.1 Dynamic Feasibility

Dynamic feasibility refers to a family of issues in control including stability, constraints on system

state, input constraints, and constraints imposed by the dynamics of the system itself. These

issues are embedded in the concept of flight envelopes in aircraft flight and of reachability spaces

in control and dynamical systems, which is the set of states that are achievable by a dynamical

system in some specified time. The relative importance of dynamic feasibility is related to the

operating condition of the system and how close the aircraft is to operating at the edge of the
2National Defense Authorization Act for Fiscal Year 2003 (H.R. 4546, Sec. 2374b)
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flight envelope. Generally, dynamic feasibility increases in relative importance the closer the

system is to the edge of the operating envelope.

For some systems and autonomous tasks, dynamic feasiblity is not a major concern. For

example, in navigating a two-wheeled robot at slow speeds in an uncluttered environment, the

operating conditions of the system and task are such that the robot can safely stop and take time

to determine the best course of action. For unmanned aircraft, which are open-loop unstable,

stopping is not an option, but the vehicle may be able to cruise while determining the best

course. For both examples, if the low-level control (motor control for the robot or servo control

for the unmanned plane) can be trusted to provide stability and a sufficient “flight envelope”

exists for the specified task, dynamic feasibility is not as significant a concern in deciding the

proper course of action.

The nature of the environment has a big impact on the importance of dynamic feasibility

in accomplishing a robot task. Consider giving our hypothetical two-wheeled robot and (small)

unmanned plane the same task of navigating an indoor corridor with turns to take a photograph

of a target at the end while avoiding hitting the walls. Clearly, it is a greater challenge for

the plane to accomplish this task; traveling too slowly will cause it to stall and crash, and

traveling too quickly might make it difficult or impossible to make the turns. Spatial constraints

of the environment and temporal constraints of the vehicle dynamics combine to make dynamic

feasibility an essential consideration for certain tasks.

1.2.2 Predictability

Predictability refers to the degree to which a system can completely and accurately model its sur-

roundings at the current time and into the future, and it is the primary important consideration

for deciding the appropriate methodology for a wide variety of robotic tasks.

Consider the example of the previous section. Navigating the same hallway while there are

people wandering it provides an even greater challenge to both of our vehicles. Two approaches

can help our vehicles in their attempt to satisfy this more difficult task. One is to equip them

with complete spatio-temporal motion models of the people in the hallways, from the beginning

to the end of the experiment, and instruct the vehicle to avoid people based on this model.

Another is to equip them with fast and accurate sensing to rapidly and accurately detect the

locations of all of the people in the hallway at any given time.

Clearly, the complete motion model is preferable if it is guaranteed to perfectly reflect the

state of the people in the hallway at all times in the interval of interest. With this guarantee,
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fast, accurate, and global sensing is not necessary; it only provides a sliver in time of what is

already available in the model! Further, while probably sufficient for the robot, the sliver might

not be enough information for the plane to satisfy the spatio-temporal constraint of avoiding

the people.

In reality, of course, the guaranteed complete motion model is unavailable. If the first option

is to be pursued, the motion model must be constructed, completely or partially, based on a

history of sensor measurements. If the system is highly predictable, then this approach is more

appropriate for allocation of sensing and computational resources. The second option, to act

based solely on the current sensory data, is the appropriate course if the system is not predictable

at all.

In most real-world applications, there is neither zero nor perfect predictability, and practical

decisions must be made regarding whether and how to model the vehicle, sensors, and environ-

ment. Additional important decisions regard how far into the past one should go to use sensory

data and how far into the future to plan the vehicle’s actions.

1.2.3 Bridging of Disciplines

Successful high-speed autonomous navigation requires development and integration of tools from

control theory, robotics, computer vision, and systems engineering. Risking oversimplification,

each of these fields brings a strength that is largely neglected in the others:

• Control theory deals with modifying the behavior of dynamical systems, and provides a

huge body of theory and experimental results in stability, performance and robustness of

constrained systems that have adequate mathematical models.

• Robotics provides a wealth of experience and literature in mapping and navigation for mo-

bile robots, especially for low-speed operation in real-world environments using uncertain

sensory data.

• Computer vision is the enterprise of enabling machines with the ability to sense, detect,

recognize and understand the elements of the environment, especially through processing

of images.

• Systems engineering is a structured design and development process for complex, interdis-

ciplinary engineered systems.

Developing reliable systems for high-speed autonomous navigation suggests the need to de-

velop and apply tools from these disciplines outside of their historical scope. For example,
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• much of the early research in robotics has been indoors and at slow speeds, reducing the

need for considerations of stability and dynamical constraints;

• a large portion of control theory assumes certain environmental conditions, or that uncer-

tainties can be simply modeled; and

• a great deal of computer vision deals with understanding of scenes instantaneously, and

do not consider motion models of the camera or the environment.

To be sure, there is much past and current research in each of these fields that do not make these

simplifying assumptions. The intersection and integration of these provide the “hard” problems

of tomorrow’s research. This thesis represents a starting point for such integration.

1.3 Contributions and Organization

The major contributions of this thesis can be summarized as

• a comparative exploration of different control architectures for high-speed autonomous

robots, informed by the DARPA Grand Challenge;

• new, model-based, predictive techniques for LADAR-based road following in particular

and environment estimation in general; and

• detailed description of Caltech’s two entries in the 2004 and 2005 DARPA Grand Challenge,

focused on software architecture, technical implementation and overall performance.

The thesis is organized as follows: chapter 2 presents a principled comparison of the major

architectures for robot navigation and provides results that illustrate the relative merits of the

different approaches, in the context of the themes presented above, through simulation and real-

world examples. Chapter 3 presents experimental results of new methods for dynamic model-

based estimation of terrain elevation and road geometry. Chapter 4 presents the system design

and experimental results from Alice, autonomous ground vehicle finalist in the 2005 DARPA

Grand Challenge. A thesis summary and discussion of future research directions are presented

in chapter 5.
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Chapter 2

System Architectures for
Autonomous Navigation

Design and implementation of any robotic or control system involves decisions about how to take

the sensory data of the system and compute an input to the system that enables it to achieve the

desired task, within acceptable tolerances of stability, performance, and robustness. For simple

control systems, these decisions have been well analyzed and a wealth of theoretical and practical

research exists for solving such design problems, e.g., for linear single-input single-output (SISO)

control systems.

Many real-world research problems in robotics and controls rely on heavily multi-input,

information-rich architectures in order to operate effectively in complex, dynamic, and uncer-

tain environments. This typically involves taking very large amounts of raw sensory data and

processing them down to a small number of actuation commands. For example, a robot well

equipped with image, state sensing, and range detection sensors might have access to on the

order of one gigabit (230 bits) per second of raw data, and it might send actuation commands at

a rate on the order of one kilobit (210 bits) per second. This represents a remarkable reduction

in data by a factor of one million, equivalent to halving the data rate twenty times in the process

of computing the desired control.

The choices between different approaches to this sensory convergence problem are often

made without careful consideration, in large part because there are no formal guidelines (and

few informal ones) for making these decisions. The goals of this chapter are (1) to clearly define

the major alternative approaches in robot control architectures, (2) to present several impor-

tant considerations for choosing between them, (3) to provide metrics and a methodology for

comparing robot architectures and systems, and (4) to provide real-world case studies, thought

experiments, and a mathematical framework for illustration of the relative merits of different

control architectures in the context of autonomous navigation. This discussion should clarify
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the fundamental differences between different architectures and provide a reference for future

research bridging control theory and robotics. Illustrative real-world examples are drawn from

the field of entrants in the 2004 and 2005 DARPA Grand Challenge races for autonomous ground

vehicles.

2.1 Primary Robot Architectures for Navigation

Specifying a robot architecture imposes constraints on the solution to the robot task at hand

[34]. This is advantageous and often necessary for tractability and implementation, but it is

important to consider the implications of such constraints on the achievable performance from

the system. Whether differences in approaches are significant in terms of the performance of

the robot depends on several factors including vehicle speed, constraints, stability, and task

difficulty and complexity.

There are four predominant approaches to designing robot control architectures, each of

them with unique advantages and disadvantages. The fundamental differences between them lie

in the manner in which a large amount of sensory data is reduced to a small set of actuation

decisions. These four architectures are reactive control, deliberative control, hybrid control, and

behavior-based control.

In the late 1960s and 1970s much of the artificial intelligence and robotics research was done

in a model-based way and was demonstrated in simulated “blocks” worlds; the predominant

approach was to represent the environment completely and explicitly [10, 50]. This top-down

deliberative control approach relies on perfect models of the environment for perfect completion

of robot tasks and reasonably accurate models of the environment for effective completion of

robot tasks.

Through the 1980s, the robotics research pendulum swung significantly away from this

model-based approach and toward reactive control approaches that connected sensor signals

directly to actuators and behavior-based control methods that connected such reactive systems

in parallel. This swing away from deliberative control was in large part due to the influence

of Rodney Brooks in his attempts to bring a more balanced approach to artificial intelligence

[9, 10]. His influence, along with that of Braitenberg’s Vehicles [7], led to an explosion in research

in bottom-up behavior-based control approaches.

Current research tends to be more balanced between the different control approaches, but

too often proceeds without clear principles for the choice of control architecture used. This
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Figure 2.1. Robot control spectrum from purely reactive to purely deliberative control. Position
along the spectrum is characterized by the horizon length of past measurements and horizon
length of future plans.

chapter clarifies the fundamental properties of, and distinctions between, these approaches so

that informed and principled decisions can be made regarding the design of robot architectures.

Fig. 2.1 summarizes the essential properties of the reactive and deliberative extremes of the

robot control spectrum. Moving toward the deliberative end of the spectrum means increasing

use and dependence on internal models of the environment and on reliable localization. Moving

toward the reactive end means increased focus on computing robot action based on current

sensory signals.

The degree to which a given robot control architecture is reactive or deliberative is directly

related to how far into the past sensory measurements are fused in order to represent the

environment. This horizon into the past is denoted Ts here and is measured in seconds. Because

purely reactive systems immediately connect current sensory signals to actuation, there is no

memory built based on a history of sensory measurements, and Ts is effectively zero. Purely

deliberative systems require complete environment models, and in the extreme they build such

models over the entire history of measurements (Ts → −∞). Practical implementations of
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deliberative architectures build models based on a finite but relatively large Ts.

Similarly, reactive and deliberative architectures are distinguished by how much time into

the future actions are planned, denoted Tp. Purely reactive architectures plan only the current

action, so for these Tp is zero. Purely deliberative control in the extreme is equivalent to infinite

horizon optimization, where Tp →∞. The horizons Tp and Ts provide two primary metrics for

evaluating the degree to which a robot control system is reactive or deliberative.

Robot control architecture design in practice typically combines both reactive and delibera-

tive elements, and there are different ways in which this can be done. Two primary methods for

combining reactive and deliberative components are hybrid methods and behavior-based meth-

ods.

Reactive, deliberative, hybrid, and behavior-based control architectures are described in de-

tail through the rest of this section. The next sections (sections 2.2 and 2.3) present connections

to control theory and a mathematical framework for describing these architectures, respectively.

Section 2.6 provides a qualitative comparison of architectures, and section 2.4 presents a frame-

work and illustrative examples for quantitative comparison of architectures.

2.1.1 Reactive Control

Definition 2.1.1. Reactive control architectures are those that connect sensory data directly

to actuation commands without internal models of the environment or explicitly planning or

evaluating between alternative actions.

The reactive control approach is summarized by Matarić as “Don’t think, react!” [36]. It

provides a direct pathway between sensors and actuators without the expense of maintaining a

model of the environment and without planning actions into the future. It “lives in the now” in

the sense that it does not organize a past history of measurements and does not evaluate between

possible future states and actions. As such, this approach tends to minimize the computational

burden and latency associated with mapping and planning.

Rodney Brooks advocated in the early 1990s for designing systems composed of such reactive

components, arguing that “explicit representations and models of the world simply get in the

way” and that it is better to “use the world as its own model” [10] in designing artificially

intelligent systems. Inspiration that provides circumstantial support for this viewpoint comes

from biological systems, where behavior such as insect flight is fairly well believed to be a reactive

process [21].
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Figure 2.2. Prototypical reactive architecture diagram. Sensory signals are directly converted
to actuation commands without internal representation or planning.

It is quite possible, in fact, that biological systems have evolved such reactive components—

along with the requisite sensing and actuation—because fast sensor-to-actuator processing is a

necessary ingredient for their survival. The field of neuroethology provides a basis for studying

the neurology and physiology of such animal behavior. It is clear that humans are not purely

reactive beings, though, given their capacity for spatial skills and reasoning, and so it is clear that

reactive systems are not the complete path to understanding and emulating human intelligence.

Fig. 2.2 depicts the structure of a reactive control system, characterized by the immediate

convergence of sensory data for rapid computation of the system’s control signal. In insect flight,

this phenomenon is referred to as sensorimotor convergence or visuomotor convergence [21].

2.1.2 Deliberative Control

Definition 2.1.2. Deliberative control architectures are those that build a unified model of the

environment using a history of sensory data and choose between different future actions by

evaluating them against that model.

Deliberative control is characterized by the maintenance of an explicit model of the environ-

ment and planning future state and events based on this model. An appropriate analogy is a

person making use of a physical map to decide how to navigate through a city to a destination,

updating that map as new aspects of the environment are discovered.

In this approach, it is useful to distinguish between two types of sensors used to determine

the state of the environment – including the state of the robot with respect to it, or vice versa.

These two types are exteroceptive sensors and proprioceptive sensors, terms borrowed from
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Figure 2.3. Prototypical deliberative architecture diagram. Mapping and planning comprise
the defining characteristics of this architecture. Robot action is computed directly from the
planning output.

animal physiology. Exteroceptive sensors are those that receive stimuli originating from outside

the body; robot examples include laser detection and ranging (LADAR), radio detection and

ranging (RADAR), monocular vision, and stereo vision. Proprioceptive sensors refer to those

receiving stimulus originating inside the body; robot examples include inertial sensing using

accelerometers and gyroscopes, temperature sensors, and odometric sensors.

Fig. 2.3 depicts a standard deliberative control architecture, in which a history of measure-

ments from all sensors is gathered to update a single map of the environment. The vehicle

pose (position and orientation) is determined with respect to this map, and planning is done to

choose a suitable or best action through this environment.

Deliberative control as described above calculates robot action directly from the planning

output. This is a feedforward approach to robot control, in which uncertainty in the vehicle

dynamics and changes in the environment are handled exclusively through regularly recomputing

new plans for the vehicle to execute. This approach typically requires accurate models of vehicle

dynamics and fast replanning for stable and high-performance navigation.

A basic feature of deliberative control is optimization, since the planning component chooses

between a set of possible actions to pick the best one. The parameterization of the possible

options for optimization is a choice; much of the robotics literature frames this optimization

as a choice over a finite set of options, which could be small or large. However, continuous

parameterizations are also possible and may find more optimal solutions.
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Figure 2.4. Prototypical hybrid architecture diagram. This architecture combines a high-level
deliberative component for computing plans and a low-level reactive component for tracking
these plans.

Path planning is a central research topic in deliberative control, and significant research con-

tributions in this area have been made by researchers in both robotics and control theory. In the

control and dynamical systems community, recent advancements have been made in computing

and algorithms for optimal path planning that handle real-time dynamic and spatial constraints

in the form of receding horizon control [42]. These results leverage a combination of ideas from

control theory and tools for constrained nonlinear optimization, and can be tailored for high-

speed autonomous navigation, where dynamic real-time constraints and stability considerations

must be taken into account to avoid system failures such as crashes and rollover.

2.1.3 Hybrid Control

This strictly deliberative control approach of section 2.1.2 relies on accurate models of the vehicle

and environment for high performance. In real-world applications there is always uncertainty in

these models. Environment map uncertainty is inherent due to imperfect sensing and approxi-

mate map representations, and vehicle models are necessarily approximate due to the complexity

of detailed modeling of vehicle-terrain interaction.

Feedback control provides an effective means to manage and compensate for model uncer-

tainties in vehicle dynamics, by computing actuation based on the error between the desired

plan and the current vehicle state. The combination of high-level planning with such low-level

tracking is an example of synthesizing reactive and deliberative components, and is called hybrid
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Figure 2.5. Behavior-based architecture diagram. Reactive and/or deliberative components
(behaviors) are connected in parallel, and robot control is computed from the outputs of these
behaviors.

control [36].

Definition 2.1.3. Hybrid control architectures are those that combine high-level deliberative

planning with low-level tracking of the desired plan.

Fig. 2.4 depicts the organization of a hybrid control architecture. It is identical to the delib-

erative control architecture of fig. 2.3 with the addition of the low-level tracking component. The

use of low-level reactive control in hybrid architectures is important when there is uncertainty

in the models used to perform the high-level planning. The fundamental role of this low-level

feedback control is to compensate for such uncertainty, and the degree to which reactive control

elements are important is proportional to this uncertainty. Important connections of this hybrid

approach to inner-outer loop control design are discussed in section 2.2.

2.1.4 Behavior-Based Control

The other major approach for combining reactive and deliberative elements for autonomous

navigation is behavior-based control. Behavior-based architectures are commonly associated with

robotics and artificial intelligence research [4, 10]. They consist of a set of behaviors that each

seek to achieve distinct goals. An example set of behaviors might include waypoint following,

obstacle avoidance, road following, and rollover prevention.

Definition 2.1.4. Behavior-based control consists of a number of goal-based behaviors that

connect sensory data to robot action. These behaviors can be reactive or deliberative, and

robot control is computed as some function of the outputs of all behaviors.
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The output of each of the behaviors must be combined in order to compute a single set

of robot actions at any given time. One leading method for doing this synthesis is with an

arbiter framework. The arbiter takes votes from each behavior over a parameterized space

of commands, takes a weighted average of the votes, and selects the best command from the

weighted average. This approach is presented in a formal framework in section 2.3, and [48]

is a comprehensive reference. Another popular method for combining behavior outputs is to

prioritize the behaviors and to choose the behavior output to command the robot based on the

current operating condition. This behavior switching method is called subsumption and was

first presented by Brooks [8].

Behavior-based robotics is historically associated with purely reactive behaviors, that is,

those that do not maintain an explicit internal representation of the environment. However,

behavior-based research can and often does include behaviors in which an internal state is

maintained based on some subset of sensory data [35, 48]. Fig. 2.5 represents a behavior-based

robot control architecture, where some of the behaviors fi might be reactive and others might

be deliberative. Behavior-based architectures combine these different components in parallel,

rather than the serial nature of hybrid architectures.

A central challenge in either form of behavior-based robotics is to understand and manage the

interaction between different individual behaviors in order to exhibit desired overall performance.

This is especially difficult when inertial and dynamic effects are significant in the face of state

and input constraints. The examples of section 2.6 illustrate this consideration.

2.1.5 Recap: Methods of Convergence

The architectures presented above differ in the manner in which they condense the large amount

of sensory data to a small amount of control data. This process is referred to as convergence.

Reactive systems perform convergence immediately and without intermediate representation,

and therefore may perform poorly if the information required for effective completion of the

robot task is not provided all at once (and continuously).

Deliberative systems condense all of the sensory data into an intermediate representation,

and the vehicle’s action is decided based on that representation. This places a heavy burden on

the sensor fusion task and the maintenance of faithful state estimates and maps.

Behavior-based systems perform convergence in two stages. The first combines data from

(potentially multiple) sensors into single behaviors, and the second combines commands or

functions of commands. These behavior-based systems can be said to be primarily performing
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command fusion rather than the sensor fusion of deliberative systems.

Another alternative for behavior-based systems with deliberative behaviors is so-called utility

fusion [47], in which behaviors evaluate over future states of the system and an arbiter determines

a temporally consistent sequence of actions to achieve those states. A final, as yet not fully

explored, option for deliberative behaviors is to evaluate over paths and perform path fusion in

the arbiter to determine vehicle control. It is unclear what advantages this approach might have

over deliberative methods.

2.2 Robot Architectures and Control Theory

Robotics and control theory are closely related fields. Some of the rich set of tools in control

theory and dynamical systems see daily use in commercial robotics. For example, PID control

is employed in almost every motor used in robotics applications, and a lot of results in control

of nonholonomic kinematic systems fall in the overlap between research in control and robotics.

Developments in each field have interesting connections with each other, some of which present

a rich source of further investigation. In fact, the robotic architecture approaches presented

above have direct analogs in the language of control and dynamical systems.

Remark 1. The reactive approach of robotics is equivalent to the notion of control computation

via state feedback or output feedback for dynamical systems.

Consider the linear system described by eqns. (2.1). Here x ∈ Rn is the state of the system,

u ∈ Rm is the input to the system, and y ∈ Rp is the output of the system. Pure state feedback

for control (to the origin) of such a system is described by u = Kx or u = Ky, where K takes

the appropriate dimension. In the case of state feedback, an estimation process constructs an

estimate of the state, x̂, based on the measurement y.

ẋ = Ax + Bu

y = Cx + Du
(2.1)

The state feedback controller is reactive in the sense that it is simply computing the output

based on the current state of the system, without maintaining or using any internal memory for

the control computation, and without evaluating and choosing over potential future states of

the system.

In controls parlance, the state feedback controller is an example of static feedback, because
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there are no dynamics associated with the control computation. In dynamic feedback control,

the controller itself possesses dynamics and updates an internal state vector used in control

computation. Such a dynamical system can be viewed as something more akin to deliberative

control, although the internal model does not represent the geometry of the environment.

The deliberative control framework is equivalent in controls to pure receding horizon control,

where plans are made out to some finite time horizon, and vehicle control is computed directly

from these plans. As the horizon extends to infinity, the local optimal control problem becomes

a global optimization; this is exactly analogous to global D* graph search methods in robotics.

In control theory as well as robotics, uncertainty in vehicle dynamics and in the environment

can affect navigation performance for purely deliberative systems. In robotics, coupling such

high-level planners with low-level reactive control is a type of hybrid robot control. This is

equivalent to the “two degree of freedom” design approach that couples an outer trajectory

generation loop with inner feedback control to the trajectory. This approach is illustrated in

fig. 2.6.

2.3 A Mathematical Framework for Planning Architectures

A mathematical framework is presented here to provide tools for analysis of the comparative

qualities of reactive, behavior-based, hybrid, and deliberative control. The framework is pre-

sented from the perspective of dynamical systems and control theory, but gives some useful

insights into the design of architectures for autonomous navigation.

In all of the presentation below, the path planning and execution is presented in the context
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of a system with dynamical description

xk+1 = f(xk, uk)

yk = g(xk).
(2.2)

Generally speaking, the state vector xk will encode the state of the vehicle as well as the state

of the world. Both state vector and measurement vector might be very high dimensional, e.g.,

encoding hundreds of individual state elements and measurements. In addition to the dynamic

constraints represented by eqns. (2.2), constraints on the input and state of the system are

generally also present, as well as constraints that couple the state and input:

xk ∈ X

uk ∈ U

g(xk, uk) ≤ 0.

In a behavior-based system, the set of behaviors can be interpreted as evaluating a cost

function over the space of input values uk. Let this cost function for behavior i be denoted

CBi = CBi(xk, uk).

In general, a behavior might evaluate over the set of input values, {ui}i=k+N−1
i=k , from the current

time out to some future time k+N−1. The solution that minimizes CBi as N →∞ is the globally

optimal strategy for the vehicle with respect to that behavior. Computing such a solution is

computationally intractable except in special cases; for example, if the system described by

eqns. (2.2) is linear, the cost CBi is quadratic in the state and input, and constraints are absent,

then the linear quadratic regulator is the optimal strategy for controlling the state of the system

to the origin. Note that constraints as described by eqns. (2.3) can be included as regions of

infinite cost.

Reactive systems by definition do not maintain an internal representation of the environment,

but rather connect only the current measurements available to actuation according to the cost

function CBi .
1 Additionally, since reactive systems do not evaluate over future possibilities in

the state and input space, the behavior cost is also only evaluated for inputs at the current time

i = k. In words, reactive behaviors have no express notion of either history or memory, nor
1Though the cost function as stated does not include the measurements, in reactive behaviors the current

measurement set can be written as a subset of the state vector that does not have any modeled dynamics.
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of future possibility. This is a particular limitation of reactive behaviors, especially in the case

where there are important dynamical constraints that need to be considered in the operating

envelope of the controlled system.

Generally, behaviors in a behavior-based system can be deliberative as well as reactive, both

encoding a representation of the environment as well as evaluating over future possible states

of the vehicle depending on the input applied. The output of all of the behaviors must be

combined in some intelligent way for the vehicle to decide which input commands to send to the

vehicle. A common way of doing this is the arbiter framework, which is described above and also

presented in several papers in the literature, including the distributed architecture for mobile

navigation (DAMN) as presented by Rosenblatt ([47, 48]), experimental testbeds including the

Intelligent Vehicle Safety Technologies DARPA Grand Challenge entry [26], and for autonomous

navigation of the Mars exploration rovers Spirit and Opportunity [18, 31]. A common approach

for the arbiter is to combine the costs evaluated from all of the behaviors with a weighted

average:

CB(uk) =
∑

i

αi CBi(xk, uk).

The process of combining the outputs of behaviors in this way can be interpreted as command

fusion as opposed to sensor fusion [48]. The control applied by the arbiter is in this case the

result of taking the minimum of the combined cost:

u∗k = min
uk∈U

CB(uk). (2.4)

Deliberative planning and control strategies, on the other hand, are essentially a sensor fusion

approach as opposed to command or utility fusion. With a deliberative approach, instead of the

cost being encoded in a distributed fashion, it is encoded centrally in a map of the environment.

In the design for Alice, the map is a spatially encoded constraint set where each cell encodes

the maximum speed at which any part of the vehicle can traverse the cell. The cost is evaluated

over a family of continuously parameterized paths and the lowest cost path is chosen from this

family.

The deliberative strategy for navigation can be written as

{u∗i }i=k+N−1
i=k = min

{ui}∈UN
CD

(
{ui}i=k+N−1

i=k

)
. (2.5)
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Side-by-side consideration of eqn. (2.4) and eqn. (2.5) indicate that both are essentially

performing an optimization over the (parameterized) space of input values to the vehicle. The

fundamental difference between the two approaches is that the deliberative approach uses a

longer horizon length for its optimization. The deliberative approach can optimize both vehicle

state and input values out to a significant horizon that is on the order of the sensing range,

which allows it to take advantage of all of the sensory data available. The behavior-based

arbiter approach collects votes over the input space for only the current time step. Compared

to the deliberative approach, this can lead to sequences of commands that are suboptimal or

even dynamically infeasible.

Since optimizing over a longer horizon is known to provide a more globally optimal solution

while satisfying dynamic constraints, one might be tempted to say that the deliberative approach

is always superior. However, there are practical limitations of large-scale optimization that

might make the deliberative approach difficult to implement efficiently, as compared to reactive

or behavior-based strategies. Further, in those situations where there is high uncertainty in

environment models, plans may be optimal with respect to the model but suboptimal with

respect to the environment itself.

2.4 Quantitative Architecture Analysis

This section provides a framework for analysis of different robot control architectures and metrics

for dynamic feasibility and predictability that can help guide this analysis.

The overall performance of an autonomous system is given by its ability to perform its given

tasks. For autonomously navigating robots, the most fundamental task is to quickly and safely

travel from a start position to a goal position. Total mission performance with regards to this

task can be evaluated using metrics such as percent mission success, mission duration, and

average mission speed.

A difficulty with formal design of robot architectures is that the map between detailed system

parameters (such as sensor rate or actuation speeds) and overall performance is both unknown

and high-dimensional. This difficulty motivates the identification of salient intermediate metrics

that we can relate to overall performance for a given control strategy. Such intermediate metrics,

which depend on factors of the environment and of the vehicle, can be assigned to the previously

identified concepts of predictability and dynamic feasibility (a.k.a. agility).
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2.4.1 Predictability Metrics

As stated previously, predictability reflects a robot’s ability to completely and accurately model

the environment. Notionally, predictability will scale inversely to the complexity of the environ-

ment and directly with the vehicle’s mapping ability, i.e.,

P ∼ mapping ability
environment complexity

.

Mapping ability can be assessed by comparing estimated maps of the environment with a

map containing the “true” state of the environment. Examples of such comparisons are presented

in figs. 2.7 and 2.8. Fig. 2.7 shows the map obtained by Alice in an early section of the 2005

DARPA Grand Challenge and the presumed ground truth based on the speed limits provided

by DARPA in the route description. The difference between actual and estimated speeds is zero

for most cells in the map because the Alice’s estimated maximum driving speed over this terrain

is greater than the DARPA-imposed speed limit. The greatest deviation appears in the cells for

which no range data has been returned, through which Alice is programmed to drive slowly.

Several metrics are available for evaluating the quality of the mapping. One such metric is

the integrated and normalized error over all the N cells in the region of interest I,

J =
1
N

∑

(i,j)∈I

∣∣∣L∗(i, j)− L̂(i, j)
∣∣∣ , (2.6)

where L∗ is the actual value at that location in the map (e.g., of maximum traversable speed

or of elevation) and L̂ is the estimated value. For the region presented in the rightmost plot of

fig. 2.7, the metric above evaluates to 0.55 cm/s average absolute error.

Fig. 2.8 shows the output of the same system at a later part of the 2005 Grand Challenge

course. The mapping metric of eqn. (2.6) for this map evaluates to 44.2 cm/s average absolute

error. Knowledge of additional circumstances leading up to this state provides insight into the

factors affecting predictability. In the case of both fig. 2.7 and fig. 2.8, no obstacles actually

existed on the interior of the route boundary in global coordinates. The appearance of obstacles

in the estimate of fig. 2.8 is due to massive state estimate drift, which critically affected the

vehicle’s mapping ability and therefore predictability. More details on this failure mode are

presented in chapter 4.

The predictability metric of eqn. (2.6) has some limitations, and alternative metrics can

be devised that more accurately reflect the considerations for predictability. In particular,
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Figure 2.7. Presumed ground truth and estimated speed map for high predictability area. These
experimental data are from an early section of Alice’s run in the 2005 DARPA Grand Challenge,
near waypoint 22 and approximately two minutes into the race. The right plot shows actual
minus estimated speeds.

environment complexity does not appear in this metric. However, environment complexity

could be interpreted as equal for the two examples presented since no obstacles appeared on the

interior of the course.

A fundamental limitation of the metric of eqn. (2.6) is that it does not take into account

the essential consideration of the past time horizon of sensory measurements. It provides only

an aggregate measure of the final mapping ability, but does not connect this aggregate measure

to specific design parameters so that these can be chosen to maximize mapping ability. Factors

such as sensor range, angular field of view, accuracy, and time horizon Ts for integration are all

important to consider in designing a system that is able to map its environment, but few formal

connections between these design variables and predictability are established. One intuitive

hypothesis is that better sensor coverage over small time scales will provide better predictability,

especially in dynamic environments. Such systems would also allow persistent sensing of static

and moving obstacles in order to better distinguish the two.
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Figure 2.8. Presumed ground truth and estimated speed map for low predictability area. These
experimental data are from the final moments of Alice’s run in the 2005 DARPA Grand Chal-
lenge, near waypoint 174 and approximately 32 minutes into the race. The right plot shows
actual minus estimated speeds.

2.4.2 Agility Metrics

Similar to predictability, agility represents an intermediate metric that can be used to inform

the choice of robot control architectures for a given task or set of tasks. Notionally, agility refers

to the ability of a vehicle to avoid an obstacle that suddenly appears in the obstacle field of

view. This ability is inherently dependent on the dynamics of the vehicle, so it is useful to begin

with a simple dynamical model of vehicle motion. One such model is

ẋ = v cos θ (2.7)

ẏ = v sin θ (2.8)

θ̇ =
v

L
tanφ (2.9)

φ̇ = ω, (2.10)

where (x, y) are the position of the vehicle’s rear axle in the plane, θ is the vehicle heading, and

φ is the vehicle steering angle. Consistent with typical cars, constraints are imposed on steering
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Figure 2.9. Illustration of maximum swerve maneuver for a range of steering rate constraints.
Paths of the center of the rear axle (solid) and the outside corner of the vehicle (dashed) are
shown for various maximum steering rates.

(φ ∈ [−φmax,φmax]) and steering rate (ω ∈ [−ωmax,ωmax]).

One possible metric for agility is the lateral distance achievable in a maximum swerve ma-

neuver from a straight steering angle. This situation is depicted in fig. 2.9. The vehicle starts at

the origin traveling at some assumed constant speed in the x-direction. At some fixed distance,

an obstacle is detected and a maximum steering rate is applied. At this fixed distance, the

maximum lateral deviation of the vehicle depends on the maximum steering rate and the vehicle

speed.

The dependence of swerve avoidance performance through a series of simulated examples

is shown in fig. 2.10. The simulations are performed on a model based on eqns. (2.7–2.10) at

various speeds and maximum steering rates for a fixed detection distance to the obstacle of 12

meters. The vertical axis depicts the maximum lateral distance that the entire vehicle (assumed

to be 2 m wide and 4.5 m long from rear axle to front) can clear for the given values of maximum

steering rate and speed.

This example clearly illustrates that agility decreases with increasing speed and increases

with increasing maximum steering rate. This suggests an alternative metric (other than the ag-
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Figure 2.10. Relationship between various factors related to agility. The ability to swerve around
obstacles of various widths is shown as a function of speed and maximum steering rate.

gregate metric of maximum lateral swerving distance) that depends on more specific parameters,

namely,

A = c
ωmax

v
, (2.11)

where c is a nondimensionalizing constant. This agility metric can also be interpreted as relating

the “time to avoid” a fixed width obstacle by swerving. A similar metric could be applied with

a time to avoid by stopping criterion by replacing ωmax with amax, the maximum longitudinal

deceleration.

A limitation of eqn. (2.11) as a metric for agility is that it does not include the significant

effect of non-zero reaction time on agility. The size of this reaction time (including sensing,

detection, mapping, and replanning) is a critical consideration for influencing a vehicle’s agility,

and other choices of metrics for agility could include this time delay as a factor.

Alice’s maximum physical steering rate was about 0.45 rad/s which, at the 9 m/s speed

limit indicated in the map of fig. 2.8, evaluates to an agility measure of 0.05 according to the

metric of eqn. (2.11). The concrete barrier that she collided with was detected by the short

range LADAR a mere 0.5 seconds before impact (midrange sensors had failed earlier and did
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not detect the barrier, and the long range sensor misregistered the location of the barrier due

to bad state estimate). The combination of limited agility with severely limited predictability

served as the downfall for a highly capable autonomous vehicle.

2.5 DARPA Grand Challenge: Case Studies

To provide practical illustrations of the differences between these two approaches, the following

sections include basic descriptions of the architectures designed and implemented for the two

vehicles entered by Team Caltech into the 2004 and 2005 DARPA Grand Challenge autonomous

vehicle races. The 2004 race entry, Bob, used a behavior-based solution to the navigation

problem, and the 2005 entry, Alice, used an hybrid approach with several novel contributions in

its implementation.

There are, of course, limitations to drawing conclusions about robot architectures solely from

the performance of these two vehicles (and others in the Grand Challenge races), but they are

useful example to illustrate and guide a comparative analysis of the two approaches. To this

end, the design of Bob’s navigation software is described in the next section along with a brief

overview of the navigation architecture for Alice.2

2.5.1 Bob: Behavior-Based Navigation

Bob is an autonomous vehicle designed and built by Caltech undergraduates for competition in

the 2004 DARPA Grand Challenge. It was built on a 1996 Chevrolet Tahoe chassis and was

equipped with computer-controlled actuation for throttle, brake, steering, and transmission.

Additionally, a suite of laser detection and ranging (LADAR) and Firewire camera sensors were

mounted on the front of the vehicle and connected to a set of computers. Bob’s navigation

software used a behavior-based architecture in the pathway from raw sensory data to actuation

commands.

Fig. 2.11 depicts the software architecture used by Bob in the 2004 Grand Challenge. Four

types of behaviors were implemented and run in a parallel architecture. Each behavior output

a quality measure (“goodness”) for a set of 15 steering commands according to the behavior’s

goals.

1. A waypoint-tracking behavior. This behavior assigned steering goodness according to how

well that steering command led the vehicle to the next waypoint at some minimum distance
2A detailed description of Alice’s navigation algorithms is presented in chapter 4, with particular focus on the

novel contributions therein.
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Figure 2.11. Summary of the behavior-based architecture implemented for Bob, Team Caltech’s
2004 DARPA Grand Challenge finalist entry (shown at right).

ahead of the vehicle.

2. An obstacle-avoidance behavior. This behavior assigned steering goodness according to

the distance over which a given steering command enabled the vehicle to avoid obstacles.

3. A corridor following behavior. This behavior interpreted the corridor boundaries as obsta-

cles and evaluated steering commands in the same way as the obstacle avoidance behavior.

4. A dynamic-feasibility behavior. This behavior assigned quality to steering actions accord-

ing to the chance of rollover given the vehicle speed and roll angle.

Each behavior evaluated a common, finite set of steering angle commands and reported the

goodness for each steering command in the set as well as a maximum safe speed according to

that behavior. An arbiter component took a weighted average goodness over the steering angles,

at 10 Hz. The arbiter selected the steering angle corresponding to the maximum goodness and

selected actuation commands to track the minimum reported safe speed at that steering angle.

Practical Lessons from Bob

Several lessons came from the experiences of designing Bob for the 2004 Grand Challenge.

• A systems engineering approach is necessary for a project of this scope.

• Emphasis should be placed on thorough and extensive testing in real-world conditions,

through a series of tests designed to demonstrate improved capabilities, ideally while re-

taining all previously demonstrated capabilities. These tests should represent realistic

goals that have quantifiable metrics.
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Figure 2.12. Simplified depiction of hybrid architecture used for navigation on Alice.

• Balance should be made between the time spent discussing versus deciding among options.

Overly ambitious goals sometimes led to choices that didn’t need to be made.

The performance of Bob in the race led to two additional conclusions. One was that thorough

testing of individual components is critical to overall success, and a second is that dynamic

feasibility considerations are necessary for high-speed operation. In particular, Bob’s obstacle

avoidance evaluated over arcs in the terrain, while rate limit constraints on the steering meant

that at higher speeds the arcs were not all feasible. In the higher speed regime, clothoids3

satisfying the initial steering angle provide paths for evaluation that better reflect the vehicle’s

capabilities.

2.5.2 Alice: Hybrid Navigation

Fig. 2.12 is a simplified depiction of the architecture used for Alice, Team Caltech’s 2005 Grand

Challenge entry. The navigation software was built around central mapping and planning mod-

ules, both hallmarks of deliberative navigation, and low-level reactive trajectory tracking. The

mapping module maintained a unified representation of the environment around the vehicle by

processing sensory data, and the planning module optimized over a parameterized family of

future vehicle paths. Alice’s navigation software is described in detail in chapter 4.

Not shown in this diagram are the various sensors, which are configured essentially along

the lines of the deliberative architecture of fig. 2.3. Also not shown are the supervisory control

components, described in more detail in chapter 4, which served as a safeguard when certain

assumptions of the deliberative model were violated. Supervisory control compensated for the

highest levels of unpredictability of our perception process, for example, when spurious obstacles

were placed in the map and falsely indicated that no route forward was possible.
3Clothoids are curves with piecewise constant rate of change of curvature.
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Practical Lessons from Alice

The experience of designing and implementing Alice for the 2005 Grand Challenge led to several

important lessons. One is that designing a system from the ground up for rapid development

and testing pays huge dividends; this was a major difference between Bob and Alice. Another is

that caution should be kept against system overdesign. A lot of effort in Alice’s design went into

developing advanced capabilities so that there was very little reliance on the RDDF (or on any

other a priori information); the mapping and planning capabilities were successful in navigating

tight obstacle fields at significant speeds where dynamic constraints are important, but these

capabilities far surpassed what was necessary for completion of the course, and in the end an

unforeseen state estimate glitch led to the vehicle’s demise on race day.

Another fundamental lesson is that there are essential differences between control architec-

tures that must be considered in the design of autonomous systems; these differences are the

subject of this chapter. A summary is that deliberative methods are necessary for some systems

in order to satisfy spatio-temporal constraints, and that behavior-based methods are useful for

dealing with uncertainty in sensing and environment models. Deliberative control methods are

superior in many cases when accurate and reliable models of the system are available and dy-

namic constraints must be satisfied, but they are fragile when model assumptions are violated.

This point underscores the need for both high-level (behavior-based) supervisory control and

low-level (reactive) trajectory control.

2.5.3 Other Teams’ Approaches

The design approach for Alice was shaped by the lessons learned from fielding a team for the

2004 Grand Challenge race, and by the shared experiences of other teams in that event, notably

the technical report published by the Red Team [52, 53] and the relative overall success of

path-centric versus behavior-based approaches.

The hybrid approaches to solving the Grand Challenge centered on building a grid-based

or obstacle-based map of the environment and performing a search through that map for an

optimal path. The field of finalists for the 2005 race partially reflected a convergence of system-

level architectures to this approach; 17 of the 23 team technical papers [5] (including those from

the five vehicles that completed the course) describe various hybrid implementations.

The top three finishing teams from Stanford and from Carnegie Mellon (Red Team and Red

Team Too) represented very similar hybrid architectures, with occupancy grid-based methods

to determine regions in the map that are and are not traversable. Two primary differences
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Figure 2.13. Distances traveled and control architectures used in the 2005 Grand Challenge
Event, based on official race results and team technical papers.

between these approaches were the gimbaling of sensors and extensive use of a priori data and

route preplanning by the Red Teams.

See fig. 2.13 for a chart of distance traveled and architecture employed for each of the race

vehicles. Based on the technical papers, three teams (Axion, Virginia Tech’s Cliff, and IVST)

implemented a primarily behavior-based navigation architecture, and Princeton University im-

plemented a purely reactive architecture. These alternative approaches are a source of valuable

experience and experimental data, and might provide some insight into the relative merits of

different approaches.

One particularly novel sensor suite implementation in the 2005 Grand Challenge attempted

to provide sufficient instantaneous coverage of the environment. Team Digital Auto Drive’s

entry employed a single package of 64 LADAR sensors arranged in a 360 degree horizontal and

20 degree vertical field of view. This sensor suite was mounted on the top of a pickup truck

cab and rotated about a vertical axis at 600 RPM. Because of this ubiquitous sensor coverage,

it was not necessary for the vehicle’s navigation software to build a model of the environment

over any significant period of time. As a result, there was more flexibility in choice of planning



30

architecture. Despite the advantage of not requiring a model of the environment, the team’s

technical report does indicate that map building took place over multiple poses of the robot;

more details of this sensor implementation and employment are available at [20].

2.6 Qualitative Comparison of Architectures

Several conclusions can be made from the recent research experiences of Team Caltech with

both behavior-based and hybrid architectures. These are not only particularly relevant to the

Caltech team’s experience in the DARPA Grand Challenge, but are also generally applicable to

research in autonomous robotic navigation. Practical considerations for

Computation

Maintaining an internal representation of the environment and performing optimization over

potential robot paths imposes a considerable cost in terms of memory and computation as

opposed to reactive behavior-based systems. A combination of efficient representations and

modern-day computing capabilities can address these costs, but at the expense of additional

system latencies. Reactive control provides an advantage in terms of system latency (as in

the example of insect flight), but it is not as “smart” in that it does not consider the future,

remember the past, or explicitly consider temporal constraints. The evolution of insect flight,

to follow the example, has been such that sensory and motor capabilities more than compensate

for these limitations for basic navigation and flight control.

Uncertainty Management

Deliberative/hybrid architectures tend to be connected in a serial nature (“sense, map, plan,

act”), and in certain environments overall performance of the vehicle can be better predicted and

managed as compared to behavior-based architectures. Because of this serial nature, the connec-

tions between components can be well defined and understood, as there are fewer components

connected to the (uncertain) environment. Uncertainty in deliberative systems is primarily

situated in the model of the environment rather than the control system, partly due to well

understood properties of optimal and feedback control systems.

In contrast, managing and understanding the interaction of behaviors in behavior-based

systems can be more difficult. In these systems, concerns about uncertainty are shifted from

the environment to the control system itself. Behaviors can sometimes have conflicting goals,
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and reactive systems often behave in a near-sighted manner without consideration for long-

term consequences. Also, behavior-based systems are sometimes characterized by “emergent”

behavior (flocking is a well-known example) that is often unexpected and at times undesirable.

This phenomenon is of particular interest in artificial intelligence research and attempts to

understand biological systems, but can lead to underperformance or failure when the emergent

behavior is undesired.

In hybrid control, action is transformed onto a representation of the environment, allowing

application of well-developed and well-understood tools in optimization and control for proficient

navigation. This makes the system easier to analyze and improve under nominal conditions.

Nominal conditions imply that the internal model of the environment and the environment itself

are sufficiently congruent. Deliberative systems can fail, sometimes catastrophically, when this

assumption is violated.

Predictability also has direct influence on the lifespan of old measurements. For low pre-

dictability environments, keeping old data does not provide much advantage due to the dimin-

ishing correlation of these measurements with an environment model. For high predictability

environments, using data backward in time for optimal estimation provides advantages analo-

gous to searching forward in time for the solution to the optimal control problem.

Development

There are some advantages to behavior-based approaches to robotic navigation. Since individual

behaviors generally connect sensory input to actuator controls, each behavior can be tested end-

to-end without requiring specific performance from other behaviors. This allows easy parallel

development that is difficult to achieve on a real vehicle in a hybrid approach unless many

essential components (mapping, planning, following) are all working together. For deliberative

systems, this issue can be mitigated through the use of simulated component operation in offline

testing.

Behavior-based systems are also generally more robust to component failure, as operation

can often continue even if some of the behaviors fail. This is a result of the generally par-

allel architecture representative of behavior-based systems as opposed to the generally serial

architecture of hybrid systems.
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Figure 2.14. Illustrative example for comparison of architectures. System starts at bottom and
chooses either left or right for each of two stages. Numbers illustrate cost of traversal.

Biological Inspiration

Another tangential but compelling advantage for behavior-based robotics in general lies in the

belief that biological systems are fundamentally best understood as behavior-based and not

primarily deliberative. Study and emulation of sufficiently complex behavior-based natural and

man-made systems is likely to provide important insights into human cognition and animal

behavior.

Optimality

A result in deliberative robotics and optimal control is that extending the planning horizon

further in the optimization leads to more globally optimal solutions. The choice of horizon, then,

is important for optimality and for ensuring that sequences of plans or actions are temporally

consistent with each other and able to conform to the spatio-temporal dynamic constraints of

the system. This is the motivation for the use of terminal cost in receding horizon control—to

help ensure that the sequence of actions approximates the globally optimal solution.

Illustrative Example: Optimization Horizon

The simplified example of fig. 2.14 solidifies the planning horizon differences between deliberative

and behavior-based architectures. This sample system has two basic choices (between left and

right) to make before reaching a goal, and each decision has an associated cost as indicated.

Two approaches are available to solve the problem of finding the best path to the goal:

1. A deliberative system would perform a search of all possible options and find the globally

optimal solution – namely, to go right and then left. The horizon in this case is two stages,

so the search space is completely covered in the deliberative approach.

2. A one-stage (reactive) behavior-based system with the two-behavior set of “go left” and

“go right” ({L,R}) will choose the appropriate immediate behavior. Such a behavior-based
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system will choose the suboptimal solution to go left and then right.

The second approach demonstrates that behavior-based control, in general, can be locally but

not globally optimal. Note that a two-stage behavior-based system with the behavior set LL

(go left twice), LR (left then right), RL (right then left) and RR (right twice) in this simplified

example is equivalent to the deliberative system, because the behavior set spans the entire

decision tree for this example problem. There are also standard ways to prune the decision tree

to arrive at a globally optimal solution with less computational burden.

Other considerations guide a complete analysis of behavior-based or deliberative control.

One is the consideration that the space of actions for a system can in general be high- or

infinite-dimensional, and control directions can be continuous rather than discrete (e.g., [−1, 1]

instead of {L,R}). In this case, regardless of control strategy, it is necessary for computational

tractability to reduce the dimensionality of the control space. Additionally, a standard strategy

for behavior-based systems is to discretize continuous behaviors, while deliberative systems can

perform optimizations on continuous-variable problems.

2.7 Methodology for Design and Evaluation of Robot Control

Architectures

As discussed above, considerations of vehicle agility and environment predictability have a great

influence on the choice of robot control architectures. Notionally, vehicle agility is a measure

that refers to the degree to which a vehicle can avoid a pop-up obstacle that appears at some

fixed distance away from the vehicle. Agility is therefore related to issues of vehicle speed and

inertia, stability, and dynamic constraints.

Predictability, on the other hand, is a measure of both the environment and of the vehicle’s

sensing capabilities, and refers to the vehicle’s ability to completely and accurately model the

environment. Predictability, then, will depend on environment complexity—including whether

dynamic elements exist in the environment and, if so, what their dynamics are—and on the

sensing and perception capabilities of the vehicle.

Fig. 2.15 illustrates regimes for autonomous navigation based on predictability and dynamic

feasibility (equivalently called agility). The inverse of these are indicated on the vertical and

horizontal axes, respectively. While these are continuous measures, the figure is divided into

four quadrants for illustrative purposes. Quadrant III represents the regime of much of “tradi-

tional” artificial intelligence research which dealt with slow-moving kinematic vehicles in highly
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Figure 2.15. Autonomous navigation regimes based on agility and predictability. Hypothesized
tendencies for dominance of more reactive and more deliberative strategies are shown.

predictable (“block world”) environments. Quadrant II represents similar vehicles in less pre-

dictable environments, and quadrants IV and I represent the extension of operation in regimes

where dynamic constraints play an important role in limiting the vehicle’s actions (e.g., in

high-speed operation where inertial effects are important). The combination of operating in

environments with low predictability and in regimes of low agility represents the most difficult

category of robot navigation.

The placement of the robot control spectrum on fig. 2.15 represents a hypothesis on the

merits of different control architectures in the different operating conditions represented in the

figure. Namely, the hypothesis is that more reactive control strategies will generally perform

better for high agility vehicles in low predictability environments, and that more deliberative

control strategies will perform better for low agility vehicles in highly predictable environments.

While, fig. 2.15 represents a qualitative guideline for design of robot architectures, it can be

used to guide a methodology for designing, synthesizing and evaluating robot control architec-

tures in order to develop concrete principles for robot control architecture design.
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This chapter concludes with a description of a proposed methodology for robot control design.

This methodology connects overall system performance with intermediate metrics such as agility,

predictability, and position on the robot control spectrum. It also addresses the need to connect

these intermediate metrics to specific design variables. The steps of this methodology are

1. Design a flexible robot control architecture that combines reactive and deliberative ele-

ments.

2. Identify parameters (such as Ts, Tp, and dependence on explicit models) that will explore

the balance between these elements.

3. Evaluate intermediate metrics such as agility and predictability against particular vehicle

tasks, using specific design parameters as variables (e.g. reaction time, vehicle speed, dy-

namic constraints, kinematic constraints, quality of state estimation, and sensor coverage

parameters).

4. Through combination of simulation and experiments, measure overall mission performance

in a variety of relevant operating conditions and mission tasks.

The process of applying the methodology above to many carefully designed experiments will

provide data that can be used to develop formal, structured principles and methods for robot

control design. Thorough investigation and development of these principles will prove valuable

for current and future designers of robot control systems.
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Chapter 3

Environment Modeling and
Prediction for Autonomous Desert
Navigation

Of central importance in most robotics applications is the ability to understand and effectively

interact with the environment in which the robot is embedded. For a large class of applications,

including all of deliberative robotics and some behavior-based approaches, this means construct-

ing and maintaining a representation of the environment for use as the robot accomplishes its

task(s). This is accomplished through the combination of sensor measurements from internal

(proprioceptive) sensors, such as odometers, gyroscopes, accelerometers, and battery monitors,

and from external (exteroceptive) sensors such as GPS, range sensors, machine vision, and tac-

tile sensors. The manner in which these sensor measurements are combined is the subject of a

large body of robotics research.

The choice of sensors and the choice of environment representation are important consider-

ations in designing robotic systems that are able to efficiently and reliably accomplish a given

task or set of tasks. The appropriate choice of sensor suite depends on the task. Following a

white line on a table or floor may only require a light-sensitive sensor, while a factory assembly

robot may require a tactile sensor, a camera, and position sensors on its arms. Similarly, differ-

ent types of tasks will require different types of environment representations. The line-following

robot may only need to know the lateral position of the white line with respect to the robot

centerline, while the factory robot may need to know the six degree-of-freedom positions and

orientations of each of the pieces it is assigned to assemble.

This chapter considers the task of building maps of the environment for the purposes of

navigation through the environment. This broadly stated problem can be further clarified by

limiting the class of environments considered for navigation. A large body of robotic navigation
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literature is devoted to navigation in indoor environments, which are typically characterized

by networks of straight, constant-width hallways separated by doorways. The comparison of

such indoor environments with outdoor environments is often made in terms of environment

complexity and structure.

The degree of structure of an environment, as it pertains to robotic navigation, refers to the

proportion and complexity of distinctly recognizable features in the environment. For example,

the simplest and most structured environment might consist of an infinite plane on which a

robot navigates. The same environment with cylindrical obstacles could be characterized by the

position (xi, yi) and radius Ri of each of the obstacles. The ability to accurately represent such

an environment with a low-dimensional state vector indicates a highly structured environment.

An environment with more of such obstacles would be considered more cluttered but equally

structured.

Indoor environments for robot navigation are often associated with the term structured; the

straight walls and doorways form the structure of distinct recognizable features in the environ-

ment. Outdoor environments are often loosely called “unstructured,” meaning that they have a

low degree of structure. In fact, some outdoor environments are quite structured. City down-

towns are composed of networks of roads lined on each side with tall buildings, analogous to

the hallways and walls of indoor environments. Other outdoor environments will have varying

degrees of structure. Areas affected by a major natural disaster are particularly unstructured,

for example, as they may consist of collapsed buildings and unorganized piles of debris.

The type of map representation desired is highly dependent on the requirements of the specific

application for which it is intended, including the degree of structure of the environment. There

have been several major approaches to the modeling component for autonomous navigation

in both indoor and outdoor applications. These can be differentiated from each other by the

manner in which the environment is chosen to be represented, in other words, the type of map

that is used.

A large body of robotic literature represents the environment as a collection of distinct

objects or landmarks in a landmark map, largely owing to the efficacy of this representation in

many solutions to the problem of Simultaneous Localization and Mapping (SLAM; see [51] for

a thorough survey, especially as applied to indoor applications). SLAM is particularly useful in

applications where accurate localization estimates are not independently available.

A second widely popular type of environment representation for mobile robotics is the oc-

cupancy grid, which is a representation of the probability that each cell in the grid is occupied.
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Formal Bayesian filtering methods have been well developed for this type of map, and it is well

suited for navigation through structured terrain such as indoor environments. Extensions of

the occupancy grid are closely related to the idea of evidence grids pioneered by Martin and

Moravec [33], and these ideas have been extended to three dimensions in the form of voxel maps,

which can provide much more accurate representations of environments at the cost of greater

memory usage.

Yet more sophisticated representations of the environment are also used for extremely accu-

rate representations of complicated 3D geometry; these are popular in the computer graphics

community for detailed modeling. An example of such sophisticated representations is the work

done in terrain reconstruction via radial basis functions. These approaches, while able to deliver

unprecedented accuracy, do so at a computational expense that makes them impractical for

real-time applications.

For high-speed navigation, maintenance of complicated three-dimensional environment mod-

els is both unnecessary and undesirable, as one of the corequisite goals must be to maintain,

process, and evaluate the map with the minimum latency possible. On the other hand, the

effectiveness of strictly 2D maps is limited for navigation in unstructured terrain, since vital

information about the surface geometry can be lost in these representations.

The modeling framework used here, the digital elevation map (DEM), represents a suitable

middle ground between these approaches. In a DEM, the terrain is represented by a Cartesian

grid, where each cell in the grid is assigned a height estimate for that cell. This is a compact

representation that is amenable to computationally fast implementation in terms of storage,

access, and evaluation. The digital elevation map is a so-called 2.5D model, since the terrain is

represented as a (generally non-smooth) surface in 3D space. This representation is unable to

accurately model features like tunnels and overhangs where the height of a given cell is multiply

defined. Vertical surfaces present another challenge for terrain modeling with DEMs; these are

commonly represented by either the average or maximum height within a cell.

This work focuses on environment modeling of outdoor, non-urban environments such as

desert terrain. The primary interest is in developing applications generally applicable to un-

structured terrain, where data association with distinct landmarks is not a requirement for

mapping algorithms. However, even in the relatively unstructured context of desert navigation,

detection and estimation of road features can provide a significant advantage in solving the

navigation problem.

The remainder of this chapter describes work done in both digital elevation mapping and
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road detection and tracking for the purposes of autonomous navigation. It is organized as

follows: section 3.1 provides an overview of some stochastic tools available for application to

this problem. section 3.2 presents results for digital elevation mapping while taking into account

sensor uncertainties. section 3.3 describes a method for detection and tracking of desert roads

as an aid for autonomous navigation.

3.1 Stochastic Methods for Robotic Mapping

Real-world sensor measurements are inherently imperfect; they are noisy and sometimes biased

and sensitive to environmental conditions such as temperature, humidity, and atmospheric ef-

fects. Sensitivity to lighting conditions is one of the main reasons that real-world application of

machine vision techniques is such a difficult research challenge. Because of this inherent limita-

tion in measurement processes, it is impossible to provide a perfectly accurate estimate of the

environment. Rather, our goal in environment estimation is to provide the best estimate possible

given all of the measurements collected. Accuracy is typically balanced against computational

complexity and efficiency in approaching this problem.

3.1.1 Bayesian Methods

Finding the best environment estimate has a direct mathematical interpretation with a founda-

tion in probability theory. Much of stochastic analysis is founded on the exposition of Bayes’

Rule, which relates the conditional and prior probabilities of stochastic events according to the

relation

P (A|B) =
P (B|A) P (A)

P (B)
.

Here, P (A|B) is a posteriori (posterior) probability of A conditional on B being true, P (B|A)

is the posterior probability of B given A, and P (X) is the prior probability of X, given no other

information.

Bayes’ rule provides the foundation in estimation theory for determining the probability

density of a state conditional on a history of indirect measurements of the state. Let A = X

represent the state of the environment as a random variable and let B = Z represent the

collection of measurements taken of the environment. The posterior probability P (Z|X) of the

set of measurements Z given an environment description X is also called the likelihood function.

The process of estimating the environment can be cast as finding the X that maximizes the
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observed set of measurements, i.e.,

X∗ = sup
X∈X

P (Z|X). (3.1)

The process and methods for solving eqn. (3.1) are collectively called maximum likelihood (ML)

estimation because they find the state X∗ that maximizes the likelihood function. Many different

such methods exist and are applicable to environment estimation and mapping, some of which

are described in the following sections.

3.1.2 Kalman Filtering Methods

Consider the linear discrete-time system

xk = Akxk−1 + Bkuk−1 + wk−1

zk = Ckxk + vk

(3.2)

where x ∈ Rn is the state vector, z ∈ Rm is the measurement vector, and u ∈ Rp is the system

input. The process noise wk and measurement noise vk are random variables assumed to have

normal distributions with zero mean and covariances Q and R, respectively.

p(w) ∼ N(0, Q)

p(v) ∼ N(0, R)

We seek a linear unbiased estimator of the state vector xk, given the system dynamics and

random-valued measurements of eqns. (3.2). Defining the estimation error at time k as ek =

xk − x̂k, the unbiased condition implies that the expected value of this quantity is zero,

E[x̂k − xk] = 0.

The Kalman filter updates the state estimate x̂k as a combination of the a priori state

estimate x̂−k , before incorporation of measurement zk, and a weighted difference between the

actual measurement zk and the predicted measurement Ckx̂
−
k , i.e.,

x̂k = x̂−k + Kk(zk − Ckx̂
−
k ). (3.3)

The Kalman filter is the optimal linear unbiased estimator in the sense that the choice of
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Kk minimizes the mean-square estimate error given by the trace of the estimate covariance,

Pk = E[(x̂k − xk)(x̂k − xk)T ].

The estimator is typically implemented in two stages, a prediction stage in which the state

estimate is propagated from x̂k−1 to x̂−k according to the system model, and a correction stage

in which the estimate is transformed from x̂−k to x̂k based on the measurement zk according to

eqn. (3.3). The prediction stage equations are

x̂−k = Akx̂
−
k−1 + Bkuk−1

P−
k = APk−1A

T + Q

and the correction equations are

Kk = P−
k CT (CP−

k CT + R)−1

x̂k = x̂−k + Kk(zk − Ckx̂
−
k )

Pk = (I −KkC)P−
k .

3.1.3 Particle Filtering

Rather than representing the probability distribution of a random variable using a parame-

terized model (the mean and covariance in the case of Gaussian distributions), particle filters

represent and maintain such distributions with a discrete set of samples called “particles.” Their

distribution implicitly represents the continuous probability distribution at time k, P (Xk, Zk),

of the state being estimated, but no continuous representation is required for the particle filter

implementation. The evolution of the particle filter is computed recursively in three steps: pre-

diction, likelihood weighting, and resampling. Particle filters represent a promising way to deal

with unpredictability by avoiding reliance on specific parametric models for system state and

measurement probability distributions.

3.1.4 Moving Horizon Estimation

Kalman filtering methods, such as those presented in section 3.1.2, take a recursive formulation

because of the assumptions of a linear model and Gaussian process and measurement noise. Their

application can lead to failure when these assumptions are violated (in a case of low predictability
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of the modeled process). As predictability decreases, the appropriate general response is greater

reliance on sensing and perception as opposed to internal models. Moving horizon estimation is

a means to do this by optimizing over a fixed history of sensor measurements to a sensor model.

For a discrete-time system of the form

xk+1 = fk(xk, wk)

yk = hk(xk) + vk,

moving horizon estimation is formulated as the sequential implementation of the following op-

timization problem (written here for the measurements up to time T ):

Φ∗
T = min

x0,{wk}T−1
k=0

(
T−1∑

k=T−N

Lk(wk, vk) +
T−N−1∑

k=0

Lk(wk, vk) + Γ(x0)

)

The optimization here has contributions from three terms. The first represents contributions

from the most recent N measurements, the second from all previous measurements, and the third

is a contribution from a priori information about the system initial condition. The second and

third terms are typically approximated by an arrival cost, which can be updated using standard

extended Kalman filter methods.

3.2 Stochastic Digital Elevation Mapping

This section provides a new computationally inexpensive approach to perception and modeling

of the environment that allows fusion of sensory range data of various types and fidelities while

explicitly taking into account a complete description of uncertainty in the range measurements.

This approach makes use of known sensor uncertainty models to create a single 2.5D digital

elevation map whose accuracy is robust to sensor noise and spurious data. This approach is

particularly suitable for real-time application in high speed and highly unstructured outdoor

environments for which reasonably accurate and timely vehicle state estimates are available.

Experimental results are presented in which LADAR range measurements and state estimates

are combined according to this approach. Additionally, qualitative comparison to other classes

of environment modeling is provided.
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Figure 3.1. Bob, Team Caltech’s entry in the 2004 DARPA Grand Challenge, provides the
test data for the results presented. Two stereovision camera pairs and a Sick LMS-2100 laser
rangefinder are shown mounted above the cab; another Sick unit is mounted on the bumper. A
Kalman filter achieves state estimates from differential GPS and IMU input data.

3.2.1 Introduction

Autonomous navigation for mobile robots has much potential in civilian, commercial, military,

and space applications, but has not yet hit its stride in terms of demonstrating robust, real-time,

high-speed operation in unstructured terrain for which there is no a priori terrain information

available. Success in such an endeavor (and, indeed, in deliberative autonomous navigation in

general), requires four fundamental contributions: localization within the environment, perception

and modeling of the environment, motion planning through the environment, and execution of

planned motion.

The combined picture of these contributions has been treated in several contexts. Kelly and

Stentz [22] have provided a thorough system-level overview of the requirements for navigation

in rough terrain, as well as a dynamical-systems oriented approach for vehicle control in such a

situation [23]. Lacroix et al. [28] have developed and demonstrated a comprehensive approach

for navigating long distances in unknown environments, suitable for autonomous planetary ex-

ploration. Bellutta et al. [6] and Stentz et al. [49] demonstrated approaches to the terrain

perception problem in particular for the Demo III XUV and PerceptOR programs, respectively.

This section considers all four of these fundamental components (localization, perception,

planning and execution), with a particular focus on the perception and modeling component,

as applied in high-speed navigation in unstructured outdoor environments. Specifically, the

goal addressed is the efficient and robust estimation of unstructured terrain given noisy state

estimates and noisy range data. Since this terrain estimate is needed for real-time motion

planning, issues of latency and throughput must be balanced with consideration for accuracy.
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Note that a natural division can be and has been made within the modeling component

between terrain estimation of the geometric properties of the environment and terrain classifi-

cation of the surface and material properties of objects or regions in the environment. While the

terrain classification problem has received various treatment in terms of both color and LADAR

classification ([6, 32]), this section is strictly concerned with the terrain estimation problem.

For a DEM map representation as described above, our problem statement reduces to the

following: Given a set of noisy range data and vehicle state estimates, estimate the terrain

surface elevation of the environment to provide an effective and efficient means for autonomous

navigation.

Several additional problem parameters will drive our approach. We will assume that reason-

ably accurate but noisy state estimates (3D location, pitch, roll, and yaw) are available to us,

and that we can coregister these state estimates with our range measurements through the cal-

ibration parameters of our sensors. We further assume that our sensors are properly calibrated

in terms of both the mounting parameters and intrinsic parameters of the sensor. The violation

of this assumption would result in misregistered maps; while there are methods to correct out

calibration error, we leave the integration of these methods as future work. Finally, by virtue of

adopting a digital elevation map approach, we are making the 2.5D world assumption; that is,

we assume that for each (x, y) cell location there exists a unique elevation, and that the actual

elevation can be mathematically described as a function, albeit not necessarily in closed form.

Violation of this assumption is tolerable; in such cases it may be impossible to show convergence,

but formal proof of convergence is not a primary goal in this problem formulation.

Approaches to 2.5D terrain surface estimation in outdoor applications typically fall within

one of two bipolar categories in terms of their treatment of uncertainty. The first approach

neglects explicit account of uncertainty by averaging over the multiple measurements that fall

within a given cell and/or discarding outliers that fit poorly the other data associated with the

corresponding terrain. The second approach typically constitutes a Bayesian formulation that

constructs an expression for the probability of a 3D surface conditional on the collection of range

measurements [56, 57]. This approach, while most appealing because of its mathematical rigor,

suffers a few drawbacks for our application. Its formulation requires either an a priori model

to which the measurements are compared, or a parametric model whose parameters can be

optimally estimated, neither of which are practical or desirable for navigation through unknown

terrain. Finally, most methods that can accommodate this problem are not computationally

efficient enough to process data as quickly and with as much throughput (on the order of
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thousands of measurements per second) as is required.

This work, then, represents the “middle ground” between these two approaches. It provides

a method to take range sensor uncertainty into explicit account in terrain estimation that is

practical for real-time implementation at high speeds and data rates. Closely related approaches,

in this respect, include those of Zhang [59], who estimates local parameters to fit a stereovision

point cloud in a given region to a plane; Kelly and Stentz [23], who use the concept of a “scatter

matrix” to represent the local geometric uncertainty in a grid; and Montemerlo and Thrun’s

recent approach [41] to accommodate sensor spatial resolution dependency on range.

This section presents an approach for 2.5D terrain estimation which is amenable to sensor

fusion, at the map level, of any number and variety of range sensors for which sensor models

can be estimated. This approach makes explicit use of a sensor model and provides an efficient

method of updating the grid cells for each range measurement. Compared to deterministic

techniques that do not consider sensor uncertainty, the main advantages of this approach are

the generation of more complete, accurate, and robust terrain estimates, along with a spatial

measure of the uncertainty in the terrain estimate, which may guide new strategies for path

planning or directing sensor attention. We exercise this new method on real field data of LADAR

range measurements that are coregistered with vehicle state estimates obtained from a moving

vehicle, and we provide these raw data for further research in terrain estimation and autonomous

navigation.

The research is presented as follows. Section 3.2.2 provides a formulation of and motivation

for our approach. Section 3.2.3 develops the mathematical preliminaries and derivation of each

of the components of our approach. A description of the experiment is given in section 3.2.4 and

results are provided in 3.2.5. Section 3.2.7 provides a summary of this work and description of

current and future work.

3.2.2 Formulation of Approach

Traditional simultaneous localization and mapping solutions use both state and range measure-

ments to update the map of the environment and the location of the vehicle in the same update.

State measurements (e.g., odometry) are used to update the locations of landmarks, and con-

versely, range measurements are associated with landmarks and used to update the estimate of

the state of the vehicle. Our approach severs the latter connection, and propagates noisy but

reliable state estimates through the usual geometric transformations to get a 3D description

of the uncertainty of each measurement that encompasses the noise in the state as well as the
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Figure 3.2. Two-dimensional schematic of a single uncertain range measurement taken from a
sensor fixed to the vehicle. Coordinate axes corresponding to the global, vehicle, and sensor
coordinate system are shown. Measurement uncertainty is depicted with a probability density
function.

range measurement. In this way, the data association problem is avoided altogether, since range

measurements are not used to update the state of the vehicle.

The approach to estimate the terrain profile is outlined below, and is depicted in fig. 3.2:

1. Construct a sensor uncertainty model from estimated raw variances in each of the state

estimate variables (easting, northing, altitude, pitch, roll, yaw) and from variances associ-

ated with the range measurement (range, azimuth, elevation).

2. Take a range measurement for which the transformation between the sensor frame and the

vehicle frame is known. This range measurement is transformed through the uncertainty

model in step 1 to achieve a 3D description of a probability density function (pdf) for the

given measurement.

3. Choose a region of cells around the mean of the pdf calculated in step 2, and calculate

updates for each of these cells.

4. Update the cells chosen in step 3 according to an appropriate set of update equations.

3.2.3 Mathematical Preliminaries

This section provides detailed derivation of one such implementation of the approach outlined

in section 3.2.2. Other implementations are possible and are likely to have their own advantages

and disadvantages. Some remarks about the particular choice of implementation are provided

in the subsections below. Subsection 3.2.3.1 describes an implementation of uncertainty model
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and range measurement pdf computation (steps 1 and 2), and subsections 3.2.3.2 and 3.2.3.3

describes a cell update method implementation (steps 3 and 4). These subsections represent the

method used to achieve the results presented in section 3.2.5.

3.2.3.1 Uncertainty Model

The following method is presented for computing the probability density function for a given

range measurement. We refer to the pose of the vehicle at any given time as the collection of

{easting, northing, altitude, pitch, roll, yaw}, denoted {x, y, z, θ, ψ,φ}, defined with respect to

some inertial reference frame. We denote the variance in the estimate of each of these quantities

as {εx, εy, εz, εθ, εψ, εφ}. These raw state variances can be provided, for example, from the internal

state of a Kalman filter state estimator or they can be estimated offline. Let the measurement

in the sensor frame be defined by its range, azimuth, and elevation, denoted {ρ,α,β}, and let

the variances in these quantities be denoted by {ερ, εα, εβ}. We use in each of our coordinate

frames the x-axis forward, y-axis right, and z-axis down convention, and define θ = ψ = φ = 0

when the vehicle is flat and pointed north. These coordinate systems are presented for clarity

in fig. 3.2.

Our goal in this section is to derive a closed-form expression for the three-dimensional proba-

bility density function of a measurement, assuming each of the variance parameters defined above

is given by Gaussian white noise. The location of a range measurement in sensor coordinates is

given by

Ms =





ρ cos α cos β

ρ cos β sinα

ρ sinβ




.

Applying the assumption of Gaussian noise (substituting ρ → ρ0 + ερ, α → α0 + εα, and

β → β0 + εβ and making a small angle approximation on the angle variances yields a description

of the noisy measurement in the sensor frame. After some algebra, this noisy measurement can



48

be written as

Ms = Ms0 + Msε =





ρ0cα0cβ0

ρ0sα0cβ0

ρ0sβ0




+ (3.4)





cα0cβ0 −ρ0sα0cβ0 −ρ0cα0sβ0

ρ0cα0cβ0 sα0cβ0 −ρ0sα0sβ0

sβ0 0 ρ0cβ0









ερ

εα

εβ





where the functions sin(·) and cos(·) are abbreviated as s(·) and c(·). Note that the expression

above is the combination of a nominal term equal to the measurement value and an uncertainty

term due to the variances in the sensor measurement. Based on (3.4), we can describe the

probability density function in the sensor frame as centered around the nominal (measured)

value with covariance given by Σ = E(MsεεT MT
s ). Our goal, however, is to get the description

of our measurement in the inertial frame in order to register it to our 2.5D map. This is

done by transforming our measurement from the sensor frame to the vehicle frame, and then

into the inertial frame. Noise in both of these transformations is accounted for by replacing

the transformation variables with a nominal value plus additive noise, e.g., x → x0 + εx or

φ → φ0 + εφ. Through this substitution, small angle linearization, and discarding of higher-

order terms, first-order statistical expressions for the measurement in the vehicle and inertial

frame can be obtained. Using the subscript syntax (·)vs to indicate the transformation from the

sensor to the vehicle, (·)0 to indicate the nominal measurement, and the prefix “ε·” to indicate

the first-order statistic, the measurement in the vehicle frame can be written

Mv = Rvs0Ms0 + Rvs0εMs + εRvsMs0 + Ts0 + εTs, (3.5)

where R and T represent the rotation and translation of the associated transformation, respec-

tively. Following the same procedure for transformation of the measurement into the inertial

(global) frame yields a similar expression for the measurement in terms of (3.5),

Mg = Rgv0Mv + εRgv(Rvs0Ms0 + Ts0) + Tv0 + εTv. (3.6)

This measurement description in the global frame is the sum of the nominal sensor measurement

(transformed to the global frame) plus a first-order term that depends upon the combined

variances from the sensor measurement itself as well as the variances that appear in both of
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the coordinate transformations. The elaboration of the algebra takes several pages and was not

performed by hand, but it does result in a closed-form expression consisting of additions and

multiplications that lends itself to very fast computation (on the order of microseconds for a

single measurement).

Through these noise propagation equations, each measurement can be described as a first-

order probability density function with mean and covariance as derived from (3.6). The ellipsoid

in fig. 3.2 represents a fixed-probability error surface as computed from one such measurement

description in the global frame.

3.2.3.2 Measurement Discretization

The explicit, computable expression for the measurement uncertainty resulting from the analysis

of section 3.2.3.1 will, in general, extend over multiple cells in a gridded map for a single

measurement. It is therefore necessary to devise an appropriate way to determine which cells

should be updated, and how they should be updated, for each measurement.

Subsection 3.2.3.3 describes the method we use to update a single cell given normally dis-

tributed cell input measurements zk that are described by their mean zm and variance σz. This

section describes the way in which a single 3D measurement and associated uncertainty model

is converted into a number of cell input measurements.

Simplifying assumptions were made about the equations presented in section 3.2.3.1 so that

the uncertainty of a single measurement can be represented by first order statistics as a multi-

variate Gaussian. The shape and orientation of the Gaussian for each measurement depends on

the direction of the sensor measurement as well as the variance in sensor range measurement and

variances in vehicle position and orientation. The measurement is parameterized by a center

µ ∈ R3 and a covariance Σ ∈ R3×3 and is represented by the equation

p(x) =
1

(2π)3/2
√

det Σ
exp

[
−1

2
(x− µ)T Σ−1(x− µ)

]

where p(x) = p(x, y, z) is the probability that the measurement actually came from a surface at

x.

With an elevation grid representation of the environment, each cell Cij in the grid can be

reasonably assigned the height distribution

pij(z) =
∫ ∫

Cij

p(x, y, z) dy dx. (3.7)
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This function cannot be considered a probability density function, however, because the total

integral of pij(z) is not equal to 1. A normalization of this function is necessary to use it as a pdf

for input to the Kalman filter update equations of section 3.2.3.3. One option for normalization

would be a scaling of the function by αij so that

αij

∫ ∞

−∞
pij(z) dz = 1.

The implementation of this method, however, has the significant drawback that the cells far

from the center of a measurement will have variances that are similar to those of the cells near

the center of the measurement. For cells far away from the measurement, the fact that pij(z)

is much smaller should correspond to a high variance associated with the measurement. A new

method is used to achieve this result; the mean µij of pij(z) is calculated and then pij(z) is

normalized by setting the standard deviation of the normalized Gaussian pdf to

σij =
1

pij(µ)
√

2π
.

Cells close to the center of the measurement, therefore, will have higher value of pij(µ) and a

lower variance. Cells far from the center of the measurement will have lower pij(µ) and hence a

higher variance.

In a practical implementation, it is necessary to decide which cells are to be updated for any

given measurement. There are options for how to specify this. One method for doing so for a

Gaussian p(x) is to update any cell whose center lies within a χ-confidence ellipse. Another is

to update those cells for which the peak probability is greater than some threshold. A third is

to choose to update the cells whose centers lie within a specified geometric shape (rectangle,

circle, ellipse). In the implementation described in section 3.2.5, this last method was used for

the sake of ease of implementation. Also for practical considerations, the integral in eqn. (3.7)

was approximated by

pij(z) ≈ p(xi, yj , z)∆x∆y

where the center of cell Cij is (xi, yj) and the resolution of the grid is specified by ∆x and ∆y.

3.2.3.3 Cell Update Equations

The update equation that governs each cell is a Kalman filter whose state is equal to the scalar

height estimate for the cell. Since there are no independent dynamics associated with the height
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of a cell, the state propagation equations are simply identity, and the height estimate is purely

a result of updates from measurements whose (x, y) coordinates land near that cell. In this

manner, cells in the map receive a flurry of updates when a series of sensor measurements pass

over it, but are otherwise unchanged. This results in an efficient means of updating cells during

high-speed navigation.

Note that this approach executes N2 one-dimensional Kalman filters, which is tantamount

to the assumption that the height of each cell is statistically independent of any other cell.

This is a drawback of the algorithm in the case where one can make some a priori assumption

about the properties of the terrain, such as how smooth it is. Rather than incorporating any

such information, adjacent cells are coupled only in that a single range measurement generally

corresponds to filter updates for a region of cells.

An abbreviated version of the Kalman filter measurement update equations (see for example

[55]) is

Kk = Pk−1H
T (HPk−1H

T + R)−1

x̂k = x̂k−1 + Kk(zk −Hx̂k−1)

Pk = (I −KkH)Pk−1.

In this formulation, the state vector is actually the scalar height of a cell, a measurement

that one can readily obtain from the geometry and uncertainty of the range measurement.

Accordingly, one can set the H term equal to unity. The error covariance P is equal to the

variance in the height estimate, σ2
h, and R is equal to the variance of the elevation measurement,

σ2
m. It can be shown from these equations that the update equations reduce to

x̂k =
σ2

hzm + σ2
zx

σ2
h + σ2

z

Pk =
σ2

hσ2
z

σ2
h + σ2

z
.

These are the equations used to update the height and variance in height for the cells that are

chosen to be updated according to the methods of section 3.2.3.2.

3.2.4 Description of Experiment

Experiments were run using Bob (fig. 3.1), an instrumented and actuated sport-utility vehicle

that served as Team Caltech’s entry in the 2004 DARPA Grand Challenge. Bob is equipped with
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Figure 3.3. Elevation map resulting from the näıve approach of replacing cell data with the
height of the new measurement if the new measurement is higher than the old.

two pair of stereovision cameras and two 2D scanning laser rangefinders mounted horizontally.

For tests of these new algorithms, simultaneous state and range data (from the cab-mounted

LADAR unit only) were taken at approximately 5 Hz, and a manually controlled path was

driven through a handcrafted course.

The course consisted of a flat dry lakebed with hand-placed obstacles at measured locations

on the course. The obstacles were cylinders approximately 1 m tall and 1 m radius, ice chests

of approximate dimension (1 × 0.5 × 0.5) m, and a vertical plywood sheet of height and width

1 m × 1 m. Although the algorithms presented here are intended for high-speed operations,

the experiments were run at moderate speeds in order to use the data to demonstrate the

effectiveness of the algorithm under controlled conditions.

While demonstrated at moderate speeds, the algorithms developed based on sections 3.2.2

and 3.2.3 are able to run at very fast rates (processing of the LADAR range measurements –

201 per scan at 5 Hz scan rate – was demonstrated in real-time with a latency of a few tens of

milliseconds on a 1.5 GHz Pentium 4 processor).
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Figure 3.4. Elevation map resulting from the new approach, which updates a small region of
cells for each measurement according to our update method (for comparison to fig. 3.3).

3.2.5 Experimental Results

The dotted lines in Figs. 3.3 and 3.4 represent the path that was taken by Bob during one data

run. The maps created in each of these figures are both 0.25 m × 0.25 m resolution and represent

the application of two different map estimation approaches. The first, näıve method processed

the data while neglecting considerations of uncertainty in the measurement. It simply replaced

the data in the map at the appropriate cell with the maximum of the measurement height and

the current height in the cell, if any. The resultant map using this method is shown in fig. 3.3.

The second approach (fig. 3.4) represents the result of the map update method presented in

section 3.2.2, with the cell containing the measurement mean and the eight cells immediately

surrounding it receiving updates for each measurement.

The resulting terrain maps in Figs. 3.3 and 3.4 are coded with intensity proportional to height.

Cells that are coded white represent no data assignments. Several qualitative comparisons can

be made from these results. First, most strikingly, the maps provided by this approach result

in much more complete terrain maps than the simpler approach, meaning that many fewer cells

remain assigned with no data. This is a direct result of updating a local region of cells for a

given measurement. Second, this new approach tends to pick out obstacles more clearly than
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Figure 3.5. A zoomed portion of figs. 3.3 and 3.4 (on the left and right, respectively) near
relative location (170, 170) m. Note that the sensor fusion method fills in the obstacle more
fully and reduces the effect of spurious measurements.

the näıve approach, as seen for example in the zoomed image in fig. 3.5. Third, the fused data

method of creating the terrain maps has a smoothing effect on the terrain estimate. This is an

expected effect of the algorithm.

Also note that for both methods of terrain estimation, registration errors are apparent for

those obstacles that are passed more than once in the course of the experiment (those in the

figures with less than about 150 m relative easting). This effect is one disadvantage of not

attempting to correct the state estimate with the range measurements, as is done in SLAM

approaches. Application-specific considerations must be made when deciding whether to pursue

this approach, which is a trade-off between potential accuracy and computation expense.

3.2.6 Multiple Sensor Considerations

The methodology above can be applied to multiple sensors, but the Gaussian noise assumption

will break down if there is miscalibration between sensors. For example, Alice’s long range sensor

had a mounting pitch of −0.0539 radians (z = −2.480 m) and our longest medium range sensor

had a pitch of −0.0803 radians (z = −2.432 m), relative to the flat ground. These correspond

to horizontal range on flat ground of ≈46 m and ≈30 m, respectively.

Consider the sensor of fig. 3.2 in two dimensions (up and forward). Also, let

• zs = the height of the sensor in global coordinates,

• (x, z) = the actual downrange and elevation of the measurement,

• (x̂, ẑ) = the estimated downrange and elevation of the measurement,
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• ρ = the range measurement from the sensor, and

• (φ, φ̂) = the actual and estimated sensor pitch.

The measurement model for this system is given by

z(φ) = zs + ρ sinφ

x(φ) = ρ cos φ

and by setting φ̂ = φ + ∆φ, the error model is

ze = z − ẑ = ρ(sinφ− sin(φ + ∆φ))

xe = x− x̂ = ρ(cos φ− cos(φ + ∆φ))

and is equivalent to

ze = −ρ cos φ ∆φ (3.8)

xe = ρ sinφ ∆φ. (3.9)

Eqn. (3.8) indicates that the sensitivity in the elevation to pitch calibration error is equal to

the downrange position; i.e., the further out the sensor points on flat ground, the more sensitive

it is to pitch miscalibration.

3.2.7 Summary and Extensions

The main contribution of this section is to provide an approach to real-time 2.5D terrain esti-

mation that explicitly uses sensor models in its formulation and includes the effect of noisy but

reliable state estimates. One such implementation of this approach was presented along with

a qualitative analysis of its performance. It is expected that other implementations of this ap-

proach will be able to show marked improvement in terrain estimation for high-speed navigation

through unknown and unstructured terrains.

This work is intended as a baseline for research into computationally inexpensive methods

of real-time digital elevation mapping appropriate for high-speed navigation. It serves as a

springboard to more mathematically formal approaches that are still amenable to processing

at high speeds and high data rates. Future work includes development of such approaches and

providing rigorous quantitative analysis and comparison of different techniques.



56

Specific potential areas for future work include the development of data-driven sensor un-

certainty models, as they may show marked improvement over the Gaussian assumption of the

measurement model. We also intend to extend this general method to sensor fusion at the map

level of multiple types of sensors, including combined stereovision and LADAR.

3.3 Road Detection and Modeling via Kalman Filtering

This section applies some previously studied extended Kalman filter techniques for planar road

geometry estimation to the domain of autonomous navigation of off-highway vehicles. In this

work, a clothoid model of the road geometry is constructed and estimated recursively based on

road features extracted from single-axis LADAR range measurements. We present a method

for feature extraction of the road centerline in the image plane and describe its application to

recursive estimation of the road geometry. We analyze the performance of our method against

simulated motion of varied road geometries and against closed-loop detection, tracking, and

following of desert roads. Our method accomodates full six DOF motion of the navigating

vehicle, constructs consistent estimates of the road geometry with respect to a fixed global

reference frame, and requires an estimate of the sensor pose for each range measurement.

3.3.1 Introduction

Estimation of road geometry is an important task for a variety of automotive applications in

intelligent transportation systems because it enables prediction and evaluation of the future path

of the vehicle. This information is particularly pertinent to driver assistance technologies that

involve detection and response to other vehicles or hazards on its path, such as adaptive cruise

control and collision warning systems.

Since road curvature parameters change as a function of distance along the road, they can

be viewed as the state and output of a time-varying process as the vehicle moves along the

road. Recursive estimation of these parameters using Kalman filtering techniques has become

a standard for road (and many other types of) estimation, and this approach has been applied

in recent years for navigation on well-structured paved roads with relatively clear boundary

markings (see for example [13, 25, 58]). Common assumptions for these environments include

planar road geometry, negligible sensor pitch and roll, and that the vehicle is traveling along the

center of the road or lane. In rural or underdeveloped areas, however, many of these assumptions

can break down, and novel feature extraction algorithms are needed. Reference [11] outlines a
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feature extraction method that finds the straight line segments in the Cartesian ground plane

which can be applied to such situations; this work presents a complementary method for feature

filtering and extraction.

This work applies recursive estimation schemes for road estimation to “off-highway” envi-

ronments, where roads are typically not painted with boundary markings and in many cases

are unpaved. Off-highway navigation presents a special challenge for road estimation due to

the rough motion of the sensor and the lack of visual structure like that found in highways and

improved roads. We therefore make no assumption that the pitch and roll of the vehicle are

negligible, but rather require a full six DOF estimate of the sensor pose. In this way, we are able

to associate inertial and range information to do road feature extraction in a global coordinate

system. The only assumption that we make about the vehicle pose relative to the road is that

features of the road lie within the sensor field of view. As in other work, we do assume planar

geometry for the road, but this assumption could be lifted with extension of the ideas presented

here.

While off-highway scenes have been studied recently using image processing and computer

vision techniques, as in [44], we have chosen to begin this work using a single axis laser detection

and ranging (LADAR) measurement system. Advantages of using LADAR include operability

in unfavorable lighting conditions and the ability to use direct range measurements to represent

road features in an inertially fixed reference system. Extensions within the framework we provide

here will be able to accomodate LADAR and image-based sensing together, but these are outside

the scope of this work.

Our work is motivated by the problem of reliable fully autonomous navigation of ground

vehicles in unstructured environments. Solutions to this problem will see application in places

where human operation of vehicles is typically too costly and/or too dangerous. This will most

ostensibly be seen in military transport operations within the next ten to twenty years; we antic-

ipate economically and technologically feasible further application to construction, agriculture,

manufacturing, and mining activities in twenty to fifty years. After several generations of ad-

vancement in the reliability of autonomous navigation, the level of autonomy could be sufficient

to provide blind and disabled individuals personal transportation solutions (with assistance from

the individual for high-level navigation instruction).

While road-feature identification in static camera images has been studied for on- and off-

highway environments, and recursive road estimation has been studied using both camera and

LADAR sensing techniques in urban environments, this work represents some of the first work of
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the authors’ knowledge that applies recursive estimation techniques to road estimation explicitly

for navigation of off-highway roads. The main contributions of this work are the application of

recursive road estimation techniques to off-highway environments, estimation of complete road

geometry in the global coordinate system, development of techniques to accommodate pitching

and rolling of the vehicle during navigation, and performance evaluation of these techniques.

These contributions are presented as follows. Basic assumptions and the road model are

given in sections 3.3.2 and 3.3.3. The measurement model and recursive estimation framework

are presented in section 3.3.4. We present road-feature extraction techniques in section 3.3.5 and

the results from simulation and autonomous operation in sections 3.3.6 and 3.3.7. A summary

and brief look toward future work are presented in section 3.3.8.

3.3.2 Assumptions

This work presents a solution for estimating the road geometry as the vehicle travels along the

road. We maintain the following fundamental assumptions throughout this section. We assume

1. that a forward-looking sensor is mounted on the vehicle – we assign to this sensor both a

Cartesian coordinate system S and an image coordinate system I,

2. that we are able to extract estimates of road-features in either of the sensor-assigned

coordinate systems,

3. that we have, at any given time, an estimate of the full six DOF pose of the sensor with

respect to some fixed inertial (global) coordinate system, which we will call G,

4. that the roughness of the road is small relative to the roughness outside the boundaries of

the road, and

5. that there are small heading changes in the road at the scale of the sensing horizon.

Assumption 3 can be satisfied with some combination of GPS, inertial sensing, and odometry.

We have done this through related work by using GPS and IMU data as inputs to a Kalman

filter, following the principles of [19]. With assumptions 2 and 3 and a range sensor, the road-

feature estimates can all be represented in the fixed coordinate system G. The primary use of

the inertial sensing is to provide a way to estimate the road geometry with respect to a fixed

coordinate system.

We will further assume that the vehicle is driven such that the road geometry is maintained

in the sensor’s field of view, but no further assumption is made regarding the relative position
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or orientation between the vehicle and the road. The road is assumed to be planar, and the

width of the road is assumed to be fixed.

The estimation framework used here is an implementation of the extended Kalman filter

(EKF). An EKF is used because the speed of the vehicle is not assumed to be constant and

because the measurement model is linearized about the small heading changes assumed (as-

sumption 5). The state variables of the Kalman filter are the local curvature κ0 and arc length

rate of change of curvature κ1. Local here indicates the position along the road centerline that is

closest to the vehicle coordinate system (assumed coincident with the sensor coordinate system

S).

We enlist another coordinate system, R, that is attached to the road with its x-axis always

pointing tangent to the road, but able to be repositioned as the road estimate progresses. One

can think of the road estimate construction as analogous to laying down model railroad tracks

one after the other, with R positioned at the end of the last laid track segment. Forward

road geometry estimates extend from this coordinate system origin and represent the current

curvature estimates.

3.3.3 Road Model

We have chosen a piecewise clothoid to model the road centerline geometry. The centerline is

represented as a planar, twice differentiable curve as a function of arc length, r(s) ∈ R2 and is

parameterized by curvature κ(s). In the clothoid model, the curvature profile is assumed to be

piecewise linear, i.e., each segment of the road in this model corresponds to a constant arc length

rate of change of curvature. For segment i which covers the arc length interval s ∈ [si, si+1), the

curvature is given as κi(s− si) = κ0,i + (s− si)κ1,i. The twice differentiable assumption on the

curve guarantees curvature continuity.

For normal Ackermann-steered automobiles, this parameterization corresponds to continuous

nominal motion of the steering wheel as the road is traveled; this is a common method in

the design of roads and highways [54]. Fig. 3.6 depicts an example simulated road geometry,

determined completely by the curvature rate profile and the initial position, initial orientation,

and initial curvature of the road.

The orientation and position of the road centerline in SE(2) can be easily recovered from
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Figure 3.6. Simulated road geometry (left) and curvature as a function of arc length (right). In
our coordinate conventions, negative curvature corresponds to a left-hand turn.

the curvature profile and are given as a function of arc length by

θ(s) = θ0 +
∫ s

0
κ(τ) dτ

x(s) = x0 +
∫ s

0
cos θ(τ) dτ (3.10)

y(s) = y0 +
∫ s

0
sin θ(τ) dτ.

Using the small angle approximation for the angle θ(τ), the integrals in eqns. (3.10) can be

evaluated in closed form to be

x(s) ≈ x0 + s

y(s) ≈ y0 + θ0s + 1
2κ0s2 + 1

6κ1s3

θ(s) = θ0 + κ0s + 1
2κ1s2

κ(s) = κ0 + κ1s.

(3.11)

By choosing the coordinate frame representation that is aligned with the road initial position

and orientation, the initial angle θ0 can be set to zero, and the validity of the small angle

representation depends only on the distance along the curve and the curvature parameters.

Eqns. (3.11) are a spatial representation of the curve, and we can consider analytically the
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derivatives of these variables with respect to arc length as one imagines a bead moving along

the curve. These derivatives are

y′(s) = θ0 + κ0s + 1
2κ1s2

θ′(s) = κ0 + κ1s

κ′(s) = κ1.

(3.12)

The representation of eqns. (3.11) and eqns. (3.12) have powerful complementary spatial and

temporal aspects that can be exploited in a novel application of Kalman filtering techniques.

First, the spatial eqns. (3.11) can be used to determine the predicted location of features on the

curve at some look-ahead distance s = xm where a measurement is taken. Second, eqns. (3.12)

can be used as a dynamical basis for temporally evolving the representation of the road as

a sensor moves along it and picks up new measurements. While these measurements can be

unreliable due to noise or bad feature extraction, the model-based filtering techniques provide

robustness to these issues, especially as a large number of measurements are taken and noise is

effectively averaged out.

Using the small angle approximation for the angle θ(τ) (justified by choosing the road co-

ordinate aligned with the initial θ0), eqns. (3.10) can be transformed into a spatio-temporal

representation using the chain rule and assuming some time-dependent speed v(t) along the

curve. The resulting differential equations are

ẏ(s) = v(t)
(

θ0 + κ0s +
1
2
κ1s

2

)
(3.13)

θ̇(s) = v(t) (κ0 + κ1s) (3.14)

κ̇(s) = v(t) κ1. (3.15)

We use the representation of eqns. (3.13–3.15) to provide both the propagation and the

measurement model for our Kalman filter design. A time integral of eqn. (3.13) at a fixed

look-ahead distance s provides the measurement model with y (the lateral offset in the road

coordinates) as the measurement variable, and propagating the road coordinate system forward

with the vehicle provides the dynamic equations for tracking of road parameters.

The evolution of the curvature variables as the vehicle moves forward at speed v(t) is modeled

by 

 θ̇0

κ̇0



 =



 0 v(t)

0 0







 θ0

κ0



 +



 0

w(t)



 , (3.16)
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Differential GPS IMU Single-axis LADAR

Figure 3.7. The test platform is a 2005 Ford E-350 Econoline van modified by Sportsmobile
of Fresno, California. A roof-mounted LADAR and custom inertial navigation system (INS)
provide the raw data used for navigation of desert roads.

where ˙(·) ! d
dt(·) and w(t) represents a noise term that drives the evolution of κ0. The noise

signal w(t) is assumed to be Gaussian and white with p(w) = N (0, Q). Eqn. (3.16) forms the

process dynamics for our estimator, to be used in the propagation step.

Note that there is no input in this process model, but any a priori information about the road

could be incorporated into the model here. Note also that we chose to use a state formulation

with heading and curvature, rather than curvature and curvature rate, as this resulted in better

performance in closed-loop testing. A comparative analysis of the different approaches is not

within the scope of this work, but warrants attention.

In compact form, we re-express eqn. (3.16) as

ẋ = A(t)x + w(t). (3.17)

We approximate eqn. (3.17) with the first order difference equation

xk = Akxk−1 + wk (3.18)

where Ak ! (A(k∆t)∆t + I).
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3.3.4 Measurement Model

The underlying measurement model used follows the approach in [13], and relies on small heading

changes between the road coordinate x-axis and the heading of the road at the so-called look-

ahead location at which the road measurement is taken. With this small angle approximation,

cos θr ≈ 1 and sin θr ≈ θr, and the lateral location of the centerline in the road coordinate at

look-ahead distance xm is recovered from eqns. (3.10) as

y ≈ 1
2
θ0xm + κ0x

2
m +

1
6
κ1x

3
m.

By formulating with heading and curvature only, we can eliminate the κ1 term, and therefore

find the following as the measurement equation associated with our process model:

y(t) =
[

xm
1
2x2

m

]


 θ0

κ0



 + ν(t). (3.19)

We use a discrete version of eqn. (3.19) for use with the discrete EKF,

yk = Ckxk + νk. (3.20)

The signal νk represents our measurement noise, which we assume to be white and Gaussian

with p(ν) = N (0, R), where R is the measurement noise (co)variance. This measurement noise

can be estimated from a statistical analysis of a sequence of recorded measurements.

The discrete process and measurement eqns. (3.18) and (3.20) were used in the design of the

extended Kalman filter. Letting x̂k denote the state estimate, and given an initial estimate of

the process covariance P0, the propagation equations are given by

x̂−k = Akx̂k−1

P−
k = AkPk−1A

T
k + Q

and the update equations are

Kk = P−
k CT

k (CkP
−
k CT

k + R)−1

x̂k = x̂−k + Kk(yk − Ckx̂
−
k )

Pk = (I −KkCk)P−
k .
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Figure 3.8. A pair of scans taken by our test vehicle several seconds apart during autonomous
operations on a slight right-hand curve. The sensor is mounted over the cab of the vehicle
with approximately −7 degrees pitch. Pitching and rolling of the vehicle and sensor cause the
intersection of the scan with flat ground to move relative to the vehicle. Estimated vehicle
(roll, pitch) in position 1 are (1.21, −1.74) degrees and for position 2 are (0.94, −1.58) degrees.
Approximate road boundaries are shown as parallel lines. The ×s are the result of the road-
feature extraction techniques of section 3.3.5. The thin line is the trace of the vehicle position
as it followed the road estimate.

The matrix Kk represents the Kalman gain here; see [55] for a good background reference. Note

that since the matrices A and C depend on the current speed and current look-ahead distance,

they are not constant but rather are dependent on the timestep k.

The inputs to this extended Kalman filter implementation are the sequence of estimates yk

for the road centerline lateral coordinate (in the road coordinate system R) at the look-ahead

corresponding to a given scan. The calculation of these estimates, given the range images and

sensor pose estimate, is the subject of the next section.

3.3.5 Road Feature Extraction

A LADAR image array can be considered a 2D Cartesian pixel map where each pixel (u, v)

represents an (azimuth, elevation) pair (θ, φ). The values in this pixel map for a given scan

represent the range measured in that direction. Let the sensor x-axis be aligned with the

measurement at (θ, φ) = (0, 0). If we consider a Cartesian coordinate system with its x-axis

pointed along the range measurement vector, a ZYX Euler rotation with (roll, pitch, yaw) =
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Figure 3.9. Visual forward image corresponding to position 2 of fig. 3.8. LADAR-based road-
feature estimation has the advantage of insensitivity to lighting conditions such as long shadows,
but is limited to a single look-ahead range. Computation times are significantly faster with
LADAR feature extraction.

(0,−φ,−θ) will transform the point p = (ρ, 0, 0) into the sensor frame. For our single axis

LADAR, the elevation is zero and the azimuth lies in the interval [−90, 90] degrees. The range

image becomes one dimensional, and the Cartesian coordinates in the sensor frame are reduced

to 



xs

ys

zs




= ρ





cos θ

sin θ

0




.

Since we are using a range sensor for feature extraction, we are able to transform any feature

between any of the coordinate systems we have defined so far – namely the image coordinates

I, sensor coordinates S, road coordinates R, or global coordinates G – with ease. We have a

choice, therefore, of performing feature extraction in any of these coordinates.

Fig. 3.8 depicts two full range scans from a bird’s-eye perspective, where the LADAR sensor

is rigidly mounted on the front of the vehicle at a height of 2.4 meters and pitched downward

by approximately 6.9 degrees with respect to flat ground. On flat ground in this configuration,

the scan plane intersects the ground on a line perpendicular to the vehicle orientation at ap-

proximately 20 meters from the sensor position. Positive pitching of the vehicle causes this line

to move further away, and positive roll causes the line to rotate clockwise. Feature extraction

in this space can be based on finding and filtering the straight segments that correspond to the

road surface and road boundaries. This has been achieved with considerable success as shown

in [58] for navigation at low speeds (up to 5 m/s) in urban environments.
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Figure 3.10. The range image corresponding to position 2 in fig. 3.8, and the image that would
result in a scan of flat ground. The difference between these two is used to extract features that
correspond to the road centerline.

Fig. 3.10 shows the range image corresponding to the scan shown in position 2 of fig. 3.8.

Features in the scan associated with vegetation, road berms, and flat road are all apparent to

the trained human eye, if correlated with the camera image of fig. 3.9.

The method used in this work to extract road features is to perform a search in the image

plane for a best candidate section for flat ground. With the assumption of flat ground, the ideal

range image is a function of the height of the sensor above the ground zs, the pitch of the sensor

φs, the roll of the sensor ψs, and the sensor scan angle θ, and is given by

ρflat(θ) =
zs

cos θ sinφs − cos φs sinψs sin θ
.

The feature extraction of a point on the road centerline is done by considering the difference

ρe(θ) between the LADAR range image ρ(θ) and the flat ground range image ρflat(θ) as calculated

above. An optimization problem is posed to find the most likely road center feature in the scan,

and can be expressed as

min
i

σ(ρe(Wi))

where σ(·) represents a variance and Wi is the scan angle interval that corresponds to the road

width (which is here assumed to be fixed). Fig. 3.10 also shows the solution of this optimization

(performed by brute force but still more than fast enough for real-time implementation) for the

scan shown.

The search is performed through the image plane by considering several overlapping discrete

window positions in the scan as candidates for a road cross section. The smoothness of each
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road-window candidate is calculated by taking the variance of ρe(θ) for the range of θ that

corresponds to the window. The range measurement at the center of the minimum variance

window is used to compute the measurement for each update step of the extended Kalman

filter.

Note that this algorithm will work only in the situation where the roughness of the road

is small relative to the roughness outside the boundaries of the road. If the terrain on either

side of the road is also smooth, false outlier road features are likely to occur. If road berms are

geometrically significant, restricting the search to a region around the current estimate of the

road can improve results in this situation.

3.3.6 Simulation Results

The extended Kalman filter estimation scheme as presented above, but with the curvature and

curvature rate formulation, was simulated over the road geometry depicted in fig. 3.6. The ve-

hicle was simulated to move along the road at 5 m/s and scans were simulated to provide noisy

measurements of the road centerline. The process noise covariance was set to Q = diag(5.0×10−5,

5.0×10−2) and the measurement noise variance was set to R = 3.0×10−4. The value of the pro-

cess noise covariance was chosen to be consistent with results from previously published literature

[24]. The initial covariance estimate was set as P0 = diag(5.0×10−5, 5.0×101). The resulting

estimated versus actual curvature parameters for one of these simulated runs is presented in

fig. 3.11, along with a trace of lateral error as a function of arc length from the beginning of the

simulated road.

The noise provided in this simulation is significant and is designed to be comparable with the

noise observed from analysis of collected LADAR scans using the feature extraction methods

of section 3.3.4. Even with this amount of noise, these simulation results are comparable to

previous results; see for example [24] for results from a two-clothoid model.

A few practical comments on the estimator design are warranted. For the look-ahead dis-

tances used here (approx. 20 m), no estimator parameters were found that gave good estimation

performance of κ1(s). Poor κ1 estimates sometimes caused oscillations in the κ0 estimates, which

provided a large part of the incentive to investigate the heading and curvature formulation in

real-world runs.
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Figure 3.11. Typical simulation performance for the simulated road geometry given in fig. 3.6.
Noisy data were simulated to generate lateral offset estimates from the current road geometry
estimate. Simulation results show good tracking of the curvature of the road and small lateral
errors even at curvature transition segments. Curvature rate estimates are not shown.

3.3.7 Autonomous Operation Results

The EKF as designed above was also implemented to determine the performance of the road

estimation scheme with real data, processed using the methods in section 3.3.5 to provide road-

feature estimates in the road coordinate system to the extended Kalman filter presented in

section 3.3.4. The process and measurement noise covariance were set to be Q = diag(5.0×10−4,

5.0×10−5), R = 5.0×102. These were tuned heuristically to find a good balance between match-

ing the local curvature and reducing the lateral offset error in the estimate.

The data presented were collected while running the road-feature detection and road geom-

etry estimation as described above, in closed loop, while our test vehicle controlled the throttle,

brake, and steering in order to track the road estimate. Successful tracking of the road was

consistently achieved while driving a section of desert road at speeds between 4 and 6 m/s.

LADAR scans and synchronized state data were collected at a rate of approximately 75

Hz. Fig. 3.12 shows some sample statistics from the collected data, including traveling speed,

roll, pitch, and relative yaw to the estimated road centerline features. These are indications

of the degree to which the flat ground and the constant speed assumptions are violated, which

require us to use the extended Kalman filter implementation to account for changing look-ahead

distances and non-constant process matrix Ak.
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Figure 3.12. Speed, pitch, and roll histograms for a sample segment of the data on which the
techniques presented in this work were tested. These data represent a sampling of 1,000 full
LADAR scans with 181 scanpoints each, which corresponds to about 43 seconds of data at 75
Hz.

Example performance of the algorithms on collected data is depicted in fig. 3.8. Approximate

road boundaries are shown, as well as extracted road centerline feature estimates (×s) and the

resultant vehicle trace. These results indicate the performance of the road-feature extraction

algorithms of section 3.3.4, although outliers are present. The results also indicate the ability of

the filtering algorithm to handle outlier as well as noisy data. In particular, the road estimate

conforms well to the series of measurements, while not being affected terribly by the outliers.

3.3.8 Summary and Extensions

We have developed an extended Kalman filter framework for estimation of road geometry that

has been applied in simulation and to closed-loop autonomous operation in off-highway environ-

ments. Results from simulation and from real data indicate that reliable estimation and tracking

of off-highway road geometry is possible for use in autonomous systems and future intelligent

vehicles. We have presented feature extraction methods for the road centerline that provide

good tracking in moderate off-road environments.

Several improvements and extensions are the subject of future research. In general, careful

testing in a wider variety of road types will provide insight for the improvement of these algo-

rithms and likely enable us to eliminate several of the assumptions presented in the beginning

of this section.
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The extent to which the filter is able to handle outlier measurements is limited. Exploration

of other solutions to the optimization problem posed in section 3.3.4 for extraction of road-

feature estimates will be necessary to improve the conditions under which the application of

these techniques will be successful. Initial investigation suggests that restricting the search for

the road features in a scan to a local region around the current estimate may prove to be an

intelligent way to reduce the number of outlier measurements.

In addition, there is clear benefit to extending the estimation framework to include online

estimation of road width, so that the vehicle has sufficient information to determine whether

it can navigate potential obstructions while still remaining on the road. Supervised learning,

matched filter, and other techniques could enable one to extract estimates of left and right road

boundaries as well as road center.

Finally, there are indications that significant performance increases might be achieved by

combining road-feature extraction techniques from LADAR sensing and monocular vision to

generate a unified road model for hetereogeneous sensor suites. These would take advantage of

the long range sensing properties of the camera (enabling vanishing point detection) with short

range geometric information from the LADARs to better estimate the global road geometry.

3.4 Alternative Methods

The road estimation work presented above might be improved through use of the alternative

methods of moving horizon estimation or particle filtering. The gains of taking such an approach

remain to be seen, but it is expected that such methods will provide improved robustness to

non-Gaussian measurements.
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Chapter 4

Alice: An Autonomous Vehicle for
High-Speed Desert Navigation

This chapter provides a detailed description of the design strategy, system architecture, and

components of Alice, a full-size high speed autonomous vehicle finalist in the 2005 DARPA Grand

Challenge. Alice’s design and implementation took advantage of several important achievements

in robotics and control over the past twenty years. The path planning strategy employed is a

real-time implementation of receding horizon control [38], where the planned path is a result of a

constrained optimization that takes into account vehicle dynamics and spatially encoded speed

constraints. This method is carried over from previous application to flight control systems

[15]. The system architecture was designed and implemented based on the experience of Team

Caltech’s entry in the 2004 Grand Challenge (Bob) and on the experience of the other finalists

in that competition, notably that of the Red Team [53]. A supervisory control element was

implemented that made use of new ideas employed at the Jet Propulsion Laboratory for fault

protection of complex systems in the form of the Mission Data System [46].

While an attempt is made to make this chapter comprehensive, special attention is paid

to the systems engineering, algorithmic, and software aspects of the design of Alice. Deeper

analysis of the hardware and some of the software components of Alice can be found in [12] and

other references cited in the appropriate subsections.

Alice represents the culmination of three years of effort and experience for more than one

hundred undergraduate students, four graduate student coordinators, four faculty advisors, and

many external reviewers, totaling several tens of thousands of person-hours. The resulting

system is proficient at navigating autonomously at speeds up to 15 m/s (35 mph) in clear

conditions, deciding online appropriate navigation speeds depending on terrain roughness and

difficulty, detecting and incorporating road information into its plans, and satisfying kinematic

and dynamic constraints in its path planning and execution. A key quality of Alice’s design
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Figure 4.1. Specification of route boundaries for autonomous navigation was done with a list
of GPS waypoint locations and lateral boundary offsets (LBOs) as indicated. Each waypoint
segment was also assigned a speed limit. Source: DARPA Route Data Definition File document.

is that it does not rely on human preplanning of paths or any a priori data other than the

Route Data Definition File (RDDF). It uses the RDDF as a mask on the possible regions for

navigation, but does not in particular favor the centerline of the corridor, instead finding the

most desirable navigation path within the limits of the corridor.

This chapter will serve as an exposition of the essential features and details of Alice’s im-

plementation and can be considered a guide for development of an autonomous vehicle for the

purpose of navigation in outdoor unstructured environments. It is presented in the context of

the DARPA Grand Challenge, but it serves as a general strategy for successful development of

a research testbed for autonomous navigation.

4.1 DARPA Grand Challenge: Background

The DARPA1 Grand Challenge was a race for autonomous ground vehicles that was announced

in July 2002.2 Two races were run in association with the Challenge, the first on March 13th,

2004 (142 miles across the Mojave desert of California) and the second on October 8th, 2005

(132 miles through the desert around Primm, Nevada), with fifteen finalists in the first race and

twenty-three finalists in the second. For each race, the field of finalists was narrowed down from

a larger number in advance through a series of applications, qualifying events, and site visits.

Two hours in advance of each race, teams were given a Route Definition Data File (RDDF)

consisting of a set of waypoints, lateral offsets, and speed limits. As detailed in the event rules
1Defense Advanced Research Projects Agency
2Substantial details were released at a DARPA-sponsored conference in February 2003.
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Table 4.1. Basic statistics from route definitions for two Grand Challenge races.

Number of Distance LBO (ft) speed limit (mph)
Course Waypoints (mi) Min Max Median Min Max Median

2004 Race 2,586 142 6 800 8 2 60 20
2005 Race 2,935 132 5 50 6 5 45 20

[1], this defined a corridor segment from each waypoint to the next with a boundary defined

at the lateral offset distance from the line segment between adjacent waypoints (see fig. 4.1).

A speed limit was imposed for each corridor segment. The course boundaries consisted of the

union of the corridor segments, and each vehicle was expected to traverse the corridor segments

in order while following roads along the course and avoiding obstacles along the way. The first

team to finish the course in less than ten hours was to be awarded a grand prize of one million

dollars ($1,000,000). In the first race, no vehicle completed more than 7.4 miles (about 5%) of

the course, leading to the announcement of a second race and an increase of the prize to two

million dollars ($2,000,000).

The route definition data file (RDDF) represented free a priori knowledge about the path

from the first to last waypoint. The required degree of autonomy of the competing vehicles was

specified by the nature of this RDDF, including what percentage of its interior is traversable

and whether the speed limits reflect actual safe autonomous driving speeds. Statistics for the

RDDF for the 2004 and 2005 races are displayed in table 4.1. By several measures, the 2005

race course was an easier course for vehicles to complete: there were more waypoints, the total

distance was shorter, speed limits were lower, and boundaries were tighter, all of which required

less autonomy in choosing the vehicle path. In addition, no manmade obstacles appeared on the

interior of the course and all desert roads were nicely graded before the race. The fact that only

five of 23 teams completed the course is a testament to both practical and research challenges

involved in doing so.

4.2 Team Caltech

Team Caltech was formed in February 2003 to design, build, and test a vehicle to compete in the

2004 DARPA Grand Challenge. It consisted of primarily undergraduate students, with a few

graduate student technical coordinators and faculty advisors. Our first vehicle, Bob (fig. 3.1),

executed a behavior-based architecture and was one of only six to traverse more than one mile

(1.3 miles) of the 2004 race course.
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Team Caltech’s mission was twofold. First, we sought to provide a high quality educa-

tional experience in multidisciplinary systems engineering. The team’s activities were organized

around a year-long course that spanned Computer Science, Mechanical Engineering, and Elec-

trical Engineering disciplines, and summer activities were supported through Caltech’s Summer

Undergraduate Research Fellowship (SURF) program. Second, in a manner consistent with this

first goal, Team Caltech sought to design, build and test a vehicle to win the 2005 DARPA

Grand Challenge.

Based on these high-level goals, a top-level system specification was defined that drove de-

velopment strategy. The team adhered to a total equipment budget of $120,000, excluding

donations. According to the rules of the DARPA Grand Challenge, no sources of government

funding were used. Additional specifications were derived based on the rules, other guidance

from DARPA, and best guesses as to the nature and difficulty of the course; these specifications

included the following:

S1) 175 mile (282 km) range, 10 hours driving, 36 hours elapsed (with possible overnight

shutdown and restart).

S2) Traverse 15 cm high (or deep) obstacles at 7 m/s, 30 cm obstacles at 1 m/s, 50 cm deep

water (slowly), 30 cm deep sand and up to 15 deg slopes. Detect and avoid situations that

are worse than this.

S3) Operate in dusty conditions, dawn to dusk, with up to 2 sensor failures.

S4) Safe operation that avoids irreparable damage, with variable safety factor. Safety driver

with ability to immediately regain control of vehicle; ability to withstand 20 mph crash

without injury to occupants.

S5) Rapid development and testing: street capable, 15 minute/2 person setup.

S6) Average speed versus terrain type according to table below. (Total mileage was specified

as 175 miles maximum, here total mileage is set at 132 miles for comparison with 2005

race course).
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Terrain type Speed (mph) Expected Distance Time (hr)

Min Max Mean mi %

(P) Paved road 20 30 25 12 9.1% 0.48

(D1) Easy dirt road 20 30 25 44 33.3% 1.76

(D2) Moderate dirt road 15 25 20 43 32.6% 2.15

(W) Dirt road, winding 15 25 20 4 3% 0.20

(R) Dirt road, rolling 15 25 20 9 6.8% 0.45

(M1) Mountain road, moderate 10 20 15 11 8.3% 0.73

(M2) Mountain road, extreme 5 10 7.5 8 6.1% 1.07

(S) Special (off-road, tunnels) 3 8 5.5 0.8 1% 0.19

Total 3 30 132 100% 7.03

The speed versus terrain table was developed by analyzing the 2004 DARPA Grand Challenge

race course and choosing a representative number of distinct terrain types, as determined by

factors of roughness, degree of rolling, degree of winding, and road width. Since a vast majority

of the course consisted of dirt roads of various forms, all but one of the terrain categories are

breakdowns of different representative types of roads. The average speed specifications for each

terrain type were chosen to provide a reasonable margin for finishing 175 miles (the maximum

prescribed 2005 course distance) in ten hours or less.

All of the specifications were reviewed and revised as necessary throughout development.

Some ambitious early specifications, such as being able to withstand a computer failure, were

deemed unnecessary; it was deemed more effective to eliminate this specification and take steps

to reduce the chance of computer failure.

In order to satisfy these specifications, Team Caltech organized itself around three main race

teams: terrain, planning, and vehicle/embedded. The scope and responsibilities of these teams

were divided as follows:

• Terrain: Sensor selection, sensor configuration, sensor processing, vehicle pose estima-

tion, environment mapping, sensor fusion of real-time terrain and road data with RDDF

information

• Planning: Path planning and evaluation, trajectory tracking, actuator characterization,

supervisory control, graphical user interface, data logging, playback and visualization

• Vehicle/Embedded: Vehicle chassis, power delivery, actuation, sensor and computer

mounting, E-stop integration
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Team Caltech maintained a focus on field testing in race conditions throughout development.

An informal qualification procedure was followed for new and updated software components,

from planar simulations to live data playback and validation of component behavior, to live

testing on vehicle under increasing levels of autonomy, increasing terrain difficulty, and increasing

speeds.

An initial additional focus on simulation capabilities included developing the ability to sim-

ulate the six degree-of freedom vehicle, sensors, and collisions in the Gazebo 3D simulation

environment [17]. We also developed a custom in-house planar kinodynamic simulator, which

was used primarily for trajectory tracker development. For each simulator the achieved goal was

to test the same software that runs on the vehicle with a minimum of reconfiguration.

While end-to-end system simulation capabilities from sensors to actuator drivers seemed

feasible in the Gazebo environment, this endeavor was deliberately abandoned during develop-

ment for several reasons. Although we were able to demonstrate such end-to-end capabilities

with a small number of simulated LADAR sensors in simple environments, there remained a

significant gap between such demonstrations and real-world performance. As closing this gap

by adding more sensors would result in slower than real-time simulation performance, and still

leave significant uncertainty in vehicle, sensor, and environment models, we chose to abandon

such ambitions. Instead, focus was placed on capabilities for testing system components using

playback of logged data and on real-world system testing of the vehicle.

4.3 Alice: A Platform for Autonomous Desert Navigation

A top-down flow of the system specifications drove the design for the race teams, software, and

hardware components of Alice. These are described in the following sections.

4.3.1 Hardware Description

The vehicle design choices for Alice were made so that it would be robust to driving in particu-

larly harsh desert terrain, with a focus on durability over ride quality. Alice was built on a 2005

Ford E-350 chassis with significant modifications for off-road navigation made by Sportsmobile

West of Fresno, California.

Power delivery for computing, sensing, and actuation components was supplied from a 3

kilowatt generator hinge mounted to the rear door. This generator fed two 1500 watt invert-

ers/chargers which provided direct power and charging of four deep cycle marine batteries. The
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Figure 4.2. Alice in the 2005 Grand Challenge.

batteries delivered power when the generator was not operating, such as during transition to

externally supplied 120 VAC power.

The steering, throttle, brake, transmission, and ignition were all outfitted with actuators

for computer-controlled operation. Steering was actuated by a chain drive to the steering col-

umn with a DC servomotor, brake actuation was achieved with a series of pneumatic pistons,

transmission was controlled with an electric linear actuator, and throttle and ignition were

electronically controlled. Interfaces for on-board diagnostics (OBD II) and an emergency-stop

(E-stop) system were also installed, along with a series of dashboard switches that allowed the

safety driver to immediately regain control of any or all of the actuated components if necessary.

A multi-threaded program called Adrive provided the software abstraction to all of the vehi-

cle hardware and actuation. This program handled the receiving of software actuator commands,

translation of these into hardware signals via the RS-232 protocol, reading and reporting posi-

tion and status for each actuator, handling the logic associated with the E-stop interface, and

managing actuator fault protection and recovery.

Focus on a rapid development cycle and ease of testing led to a choice of a vehicle that

was able to carry a safety driver and three developers able to monitor and improve Alice’s

performance throughout testing. The vehicle was configured with two front and two rear racing

seats, each outfitted with five point harnesses. A shock-isolated computer box was centrally

located and served as a mount point for monitors for the rear workstations. An eight-input,

four-output keyboard-video-mouse switch was installed to provide independent workstations
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Figure 4.3. System architecture for Alice.

for onboard monitoring and development, and a laptop onboard served as a field server for

collaborative code management, bug reporting, and documentation. Gigabit Ethernet provided

communication between the seven onboard computers, and it was augmented with wireless hub

and wireless bridge communication for low bandwidth operations from outside the vehicle.

The rugged physical capabilities of Alice were intended to handle challenging terrain similar

to the 2004 Grand Challenge course, and were more than sufficient to handle the less physically

and technically demanding 2005 course. In hindsight, the rapid development specification was

essential, and the onboard development capabilities of Alice proved (and continue to prove)

to be indispensable. The safety driver function allowed more aggressive testing strategies and

faster recovery from mistakes during development, and onboard development enabled a more

accelerated testing schedule.

4.3.2 Deliberative System Architecture

Alice’s navigation system was built on a deliberative control framework as a result of a principled

evolution of the system architecture of Bob, Team Caltech’s finalist in the 2004 DARPA Grand

Challenge (DGC). Typical sensor suites of DGC finalists were not omnidirectional; that is, at

any given time they did not have a combined field of view that covered all of the terrain of

interest around the vehicle. For this reason, it was necessary for the autonomous vehicle to

build an understanding of its environment over time. This rules out the effective use of purely

reactive systems, which by definition do not maintain internal representation of the environment

when translating sensory inputs to actuation.

The architecture chosen for Alice embraced the deliberative control architecture approach

discussed at length in chapter 2, with distinct and serially organized mapping, path-planning,

and path-following components. The first defining feature of this architecture as opposed to
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behavior-based ones is the separation of the model of the environment from the actual envi-

ronment itself. The second defining feature is the existence of a path planner, which serves to

choose between potential alternate future states.

The system architecture diagram of fig. 4.3 depicts the essential components and their interac-

tion. The architecture possessed a nested feedback control loop structure, with a path-following

inner loop that managed the uncertainty of the vehicle dynamics and interaction with the envi-

ronment, and a path-planning outer loop that provided new paths in response to a continuously

updated map model. State estimation was performed in a global, inertial coordinate frame with

the aid of commercially available differential GPS, and knowledge of six degree of freedom sensor

pose at any given time allowed for the map model to be represented in this global coordinate

frame.

Vehicle state estimation for Alice is discussed in more detail in section 4.3.4, and the sensor

fusion and mapping are elaborated in section 4.3.6. The environment map combined the in-

formation from the RDDF, detected road geometry, and terrain elevation into a single layer of

the environment that encoded, in each cell in the map, the estimated maximum speed at which

any part of the vehicle could traverse that cell. These speeds served as both constraints and

cost for path planning based on gradient-based optimization of the traversal time through the

RDDF. This optimization was performed to a speed-dependent horizon of no more than 100

meters. Alice, therefore, had the capability to navigate using only local online path planning

and without relying on any offline route planning based on static data and human input. The

details of the path planning implementation are presented in section 4.3.7.

The output of the planning process was a spatially consistent sequence of trajectories that

satisfied vehicle dynamic and kinematic constraints, as well as constraints imposed by the map-

ping process. A trajectory follower module calculated the actuation commands that would best

keep the vehicle on this spatial path and driving at the specified speed. This module is described

in detail in section 4.3.8.

4.3.3 Network-Centric Approach

The system architecture was implemented in a networked computing environment of six Dell

PowerEdge servers and one IBM dual-core dual-chip AMD server. Modules were run on different

servers to balance load, and communication between modules took place using the Spread Toolkit

for network communications [2, 3], which sits on top of the standard TCP and UDP protocols.

The message interfaces between modules utilized a set of commonly used message types,
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Table 4.2. Message categories, rates, and cumulative throughput for Alice’s software during the
2005 Grand Challenge.

Approximate Cumulative Throughput
Message Type Send Rate (Hz) (kbytes/sec)

Fused map 40 614
Trajectories 4 529

LADAR elevation 50 474
State estimates 150 28.6

Status + fault protection 280 18.7
Actuator commands 90 7.7

Road data 14 7.6
Stereo elevation 1 1.6

Total 714 1681

listed in table 4.2. These standard message types (vehicle state, range measurement, map

update, trajectory and actuation command) are described in the following paragraphs.

The vehicle state estimate message consists of information needed to establish vehicle pose

information for the purposes of mapping, trajectory generation, and trajectory following. The

vehicle state message consisted of northing, easting, altitude, roll, pitch and yaw estimates for

a coordinate system fixed to the vehicle in a forward-right-down configuration, as well as the

first and second derivatives of each of these values, a timestamp, and information about the

confidence in these estimates.

Range or elevation measurement messages consisted of three dimensional points in space in

the global coordinate system (northing, easting, altitude) that represent the location of a range

return from onboard laser detection and ranging (LADAR) sensors or stereo vision.

A map update consisted of a set of (northing, easting, value) triplets that provided either

replacement values or input measurements for communication of new map data. Maps consisted

of several layers, and the value of a map update could represent elevation, speed, confidence, or

another user-defined value.

A trajectory was a dense discrete sampling of a twice differentiable planar curve for the

vehicle to follow, where each point in the trajectory encoded the following values:

• northing (N) and easting (E), the Universal Transverse Mercator (UTM) Cartesian pro-

jection of latitude and longitude,

• the first derivatives of northing and easting, Ṅ and Ė, and

• the second derivatives of northing and easting, N̈ and Ë.

This encoding allowed the trajectory follower to calculate the nominal speed and lateral and
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Table 4.3. State estimation sensors used on Alice.
Sensor Type Mounting Location Specifications
IMU (Northrop Grum-
man LN-200)

Roof 1◦–10◦ gyro bias, 0.3–3 mg ac-
celeration bias, 400 Hz update
rate

GPS (Navcom SF-2050) Roof 0.5 m Circular Error Probable
(CEP), 2 Hz update rate

GPS (Novatel DL-4plus) Roof 0.4 m CEP, 10 Hz update rate

longitudinal acceleration for any point on the trajectory, assuming conditions of negligible tire

sideslip. We limited lateral accelerations sufficiently when computing the paths to justify this

assumption.

An actuation command message consisted of throttle, brake, and steering commands for the

driving software to follow. In return, measured throttle, brake, and steering commands as well

as the status of these actuators were returned by the driving software.

A summary of the message types described along with statistics on their throughput and

rates are shown in table 4.2. These data were extracted by processing the message log from the

2005 race. By comparison, raw data rates from sensor hardware are approximately 350 Mb/s

(44 MB/s).

4.3.4 State Estimation

As the vehicle moves throughout its navigation, it is essential for map building to register the

pose of each of the sensor measurements in order to represent them in a single coordinate system.

Because the sensors used on Alice were all fixed to the vehicle, this amounted to measuring the

mounting parameters of each of the sensors and providing an estimate of the vehicle position and

orientation in three dimensions at a sufficiently high rate to allow correlation with environment

sensor measurements.

State estimation was achieved using a combination measurements from an inertial measure-

ment unit (IMU), a differential global positioning system (GPS) receiver, and onboard diagnos-

tics from the automotive industry standard OBD II protocol (for speed correction). A Kalman

filter performed this sensor fusion and tracked and updated the state estimate according to stan-

dard inertial navigation equations (see, e.g., [19] and [12] for specific implementation details).

The point mass model was used for the propagation step of these equations.

Outages of the GPS signal are generally a standard occurrence from occlusion of satellites by

buildings and natural terrain features, and a specific requirement for the DGC was to maintain



82

Table 4.4. Road detection and mapping sensors used on Alice.
Sensor Type Mounting Location Specifications
Road-Finding Camera
(Point Grey Dragonfly)

Roof 640×480 resolution, 2.8 mm
focal length

LADAR (SICK LMS
221-30206)

Bumper 180◦ field of view (FOV), 1◦

resolution, 80 m max range,
pointed horizontally

vehicle navigation integrity in response to such events. When GPS outages occured, integrating

the inertial accelerometer and gyroscope measurements from the IMU continued to provide

an adequate state estimate for a short period of time, but this estimate drifted away from the

actual position and orientation after an extended duration. Upon reacquisition of the differential

GPS signal, the drifted state estimate and the GPS location could be an appreciable distance

apart from each other. In such cases, the state estimate was corrected back to the reported

GPS position in the standard way: using the measurement confidence delivered by the GPS

unit to assign a covariance to the GPS measurement input to the Kalman filter. An additional

mechanism was used for reporting and responding to situations in which the discrepancy between

the state estimate and reported GPS location was too large; this is discussed in more detail in

section 4.3.9.

4.3.5 Road Finding

Alice employed a monocular camera and a horizontally oriented LADAR unit to detect road

geometry for race and development, the details of which are presented in [45]. This method

performed remarkably well in detecting road regions for “utility fusion” into the map in the

form of speed bonuses. The comparative advantage of the work in section 3.3 is to model

curvature of the road centerline, while the method implemented for the race assumed straight

road centerlines and had the tendency to cut corners on curves.

4.3.6 Mapping

The maintenance and use of a map of the environment is central to the deliberative architecture

employed by Alice. Alice’s map is updated continuously and asynchronously by processing data

from ten onboard environment sensors consisting of LADAR units, monocular cameras, and

stereovision cameras. These sensors and their specifications are listed in table 4.5 for elevation

mapping and 4.4 for road mapping. The map format was a 200 m by 200 m Cartesian grid

centered on the vehicle location, with a cell size of 40 cm by 40 cm. This map was oriented
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Table 4.5. Elevation mapping sensors used on Alice.
Sensor Type Mounting Location Specifications
LADAR (SICK LMS
221-30206)

Roof 180◦ FOV, 1◦ resolution, 75 Hz,
80 m max range, pointed 20 m
away

LADAR (SICK LMS
291-S14)

Roof 90◦ FOV, 0.5◦ resolution, 75 Hz,
80 m max range, pointed 35 m
away

LADAR (Riegl LMS
Q120i)

Roof 80◦ FOV, 0.4◦ resolution, 50 Hz,
120 m max range, pointed 50 m
away

LADAR (SICK LMS
291-S05)

Bumper 180◦ FOV, 1◦ resolution, 80 m
max range, pointed 3 m away

Stereovision Pair
(Point Grey Dragon-
fly)

Roof 1 m baseline, 640×480 resolution,
2.8 mm focal length, 128 dispari-
ties

Stereovision Pair
(Point Grey Dragon-
fly)

Roof 1.5 m baseline, 640×480 resolu-
tion, 8 mm focal length, 128 dis-
parities

along the cardinal directions and shifted along them by multiples of the cell width as the vehicle

moved through the environment, keeping the vehicle in the center of the map.

The map was implemented in an extensible manner to have multiple layers for debugging and

development purposes. An elevation layer was maintained for each of four single-axis LADAR

units and two stereovision camera pairs. Each layer was formed by averaging of 3D point clouds

that were transformed from the sensor frame into the global coordinate frame.

The elevation layer was translated to speed according to the local gradient of the terrain.

Perfectly flat terrain was marked with a maximum speed according to sensor range, and steep

local features above a certain threshhold were marked with a zero maximum speed. Details of

the implementation of this conversion, including related tasks of cost fusion, obstacle growing,

and assignment of speeds in the absence of terrain data, are provided in [12].

Rather than combining the elevation layers from the different sensors into a single estimate

of terrain elevation, the elevation layer for each sensor was converted into a cost/speed map to

assign speeds according to the local gradient of elevation. The cost layers from each sensor were

then combined using a weighted average, with weights for each sensor determined heuristically.

The primary and compelling reason for doing speed-based fusion rather than elevation-based

fusion was to avoid sensitivity to calibration errors between sensors. A basic analysis of such

sensitivity was given in section 3.2.6.

The decision between elevation fusion and cost fusion for individual range sensors has a direct
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Figure 4.4. The two degree of freedom design for real-time trajectory generation and control.
The input to the plant is composed of a feedforward term ud from the properties of the trajectory
and a feedback term δu based on the error between desired and actual state.

interpretation in terms of predictability. If the transformation between two sensors was known

to be extremely well calibrated, then the perception of terrain elevation is highly predictable

using both sensors, and it makes sense to estimate a single elevation, and to perform deliberative

control. Without careful calibration of sensors, terrain elevation is not as predictable, and the

cost fusion method represents a shift from deliberative sensor fusion with a unified map toward

behavior-based utility fusion with distributed representations (cf. section 2.1.5).

4.3.7 Path Planning

Receding horizon control (RHC) [16, 37, 43] is an method for optimal control of dynamical

systems. It relies on a mathematical model of the system to be controlled in order to generate

trajectories that satisfy the dynamics of the controlled system, and can include constraints on the

system’s state and input. Receding horizon control is also called model predictive control (MPC),

and has early origins in the 1980s in chemical engineering, in applications for which process time

constants were large enough to make online computation feasible given the contemporary com-

puting constraints. Since then, increased computing speeds and tools for numerical optimization

have made fast online computation possible even for systems with fast dynamics. An example

of such a system is the Caltech ducted fan, on which Mark Milam was able to demonstrate

real-time nonlinear RHC while satisfying preprogrammed state and input constraints [39].

Receding horizon control is formulated so that the path is computed using the updated vehicle

state as an initial condition of the path. Pure receding horizon control can be implemented with

no low-level path tracking if the model used to generate the path is a precise representation of

the vehicle and actuation dynamics. In many practical implementations, the model is not precise

(and disturbances are present), and applied actuator control is a combination of a feedforward
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Figure 4.5. Schematic diagram to illustrate derivation of the bicycle model. Slightly different
equations can be derived for a front-axle centered coordinate frame.

component computed based on the properties of the planned trajectory and separate feedback

control to compensate for deviation from the planned trajectory. This “two degree of freedom”

[40] control design is a standard configuration for real-time trajectory generation. The diagram

of fig. 4.4 illustrates the inner-outer loop configuration, with the path planning forming the outer

feedback loop and the error compensation forming the inner feedback loop.

Errors between the planned trajectory and vehicle state are inevitable whenever disturbances

are present or when there is a mismatch between actual vehicle dynamics and the modeled

dynamics of the vehicle. This is the reason for using the inner-outer loop design shown. Care

must be taken when implementing inner-outer loop control for real-world systems, because the

two feedback loops can interact with each other in undesirable ways.

In Alice’s software design, path planning and control through the map of the environment

were performed as a variation of receding horizon control (see [27] for details). Gradient-based

optimization tools were used to find the best path according to a specified cost function, given

initial, trajectory, and final constraints on the state of the vehicle. The kinematic bicycle model

(fig. 4.5) for the vehicle was used for path planning (as well as path following). With the

coordinate system at the center of the rear axle of a vehicle this model is given by the equations

Ṅ = v cos θ (4.1)

Ė = v sin θ (4.2)

θ̇ =
v

L
tanφ (4.3)

v̇ = a (4.4)
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where (N , E) are the (northing, easting) coordinates of the center of the rear axle that represent

(x, y) in the north-east-down coordinate system, v is the speed of the center of the rear axle, θ

is the vehicle yaw measured clockwise from north, and φ is the steering angle of the front wheels

measured positive clockwise. The distance between the front and rear axles is L. These equations

are derived based on the no sideslip condition for the rear wheels, i.e., that the direction of travel

of the rear wheels (and therefore of the center of the rear axle) is only along the orientation

of the vehicle. The θ̇ equation is derived from the geometric relations tanφ = L/Rr = κrL

and the definition of curvature, κ ≡ dθ/ds. At sufficiently slow speeds, an Ackermann-steered

vehicle’s tires satisfy the no sideslip condition sufficiently such that this kinematic bicycle model

is a reasonable predictor of vehicle planar motion.

In addition, the following vehicle linear and nonlinear constraints are satisfied by the path

planner to ensure feasible trajectories:

v ∈ (0, vmax]

a ∈ [amin, amax]

φ ∈ [φmin, φmax]

φ̇ ∈ [φ̇min, φ̇max]

v2 tan φ
L ∈ [−αmax,αmax].

(4.5)

The constraint that the vehicle speed be always positive is required to avoid divide-by-zero

issues when using the differentially flat representation shown below and when computing the

feedforward steering angle from the trajectory representation. In Alice’s architecture, the ability

to stop and reverse was handled in a supervisory manner above the trajectory planning. The

last, nonlinear constraint is a limitation on the vehicle’s lateral acceleration in order to ensure

sufficiently slow navigation around turns in order to avoid excessive sideslip or rollover.

The solution space for the dynamic equations above lives in the class of twice differentiable

functions, and is therefore infinite dimensional. As such, numerical optimization problems in

this broad class are intractable, and it is necessary to approximate this trajectory space with

some finite- and low-dimensional representation. This is done by approximating the solution

space by the coefficients of a set of basis functions. B-splines [42] and polynomial splines are

convenient and popular choices for this set of basis functions.

The optimization problem for dynamical systems can often be further simplified by exploiting
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differential flatness. A system of the form

ẋ = f(x, u)

is differentially flat with output vector z if there is a smooth function of the form

z = h(x, u, u̇, ü, . . . , u(p))

such that the state and inputs of the system can be written in terms of z and a finite number

of its derivatives, i.e., for some smooth functions a and b and integer q,

x = a(z, ż, z̈, . . . , z(q))

u = b(z, ż, z̈, . . . , z(q)).

For the system described by equations (4.1)–(4.4), we can rewrite the system in terms of the

variables θ(s), v(s), and the total distance of the trajectory Sf . Defining l as the arc length

along the trajectory, and s ∈ [0, 1] as arc length normalized by Sf , we can use the change of

variables

(·)′ ! d(·)
dl

=
d(·)
dt

dl

dt

˙(·) ! d(·)
dt

=
d(·)
ds

ds

dt

to derive the equations for the state and output variables in terms of Sf and dependent variables

θ(s) and v(s):

Ṅ(s) = v(s) cos θ(s)

Ė(s) = v(s) sin θ(s)

N(s) = N0 + Sf

∫ s

0
cos θ(σ)dσ

E(s) = E0 + Sf

∫ s

0
sin θ(σ)dσ

tanφ(s) =
L

Sf

dθ(s)
ds

=⇒ θ̇ =
v(s)
Sf

dθ(s)
ds

φ̇(s) =
v(s)Ld2θ(s)

ds2

S2
f +

(
Ldθ(s)

ds

)2 .
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The advantage of this representation is that the optimization problem, cost function, and

constraints can all be represented in terms of the output variables θ(s), v(s), and Sf . The

function θ(s) is approximated by the coefficients of a quadratic spline, and v(s) is approximated

by a linear spline to ensure continuous speed profiles. With this choice, the acceleration profile

can be discontinuous, ignoring engine dynamics, but inner loop feedback control compensates

for this intentional model mismatch, allowing optimization in a lower-dimensional space.

The planning optimization problem that was solved is to minimize the following objective

function subject to the constraints of eqns. (4.5):

J = Sf

∫ 1

0

1
v(s)

ds + k1

∥∥∥φ̇(s)
∥∥∥

2

2
+ k2 ‖a(s)‖22

This allowed tuning of the system to achieve more or less aggressive behavior depending on

how the time of traversal term balanced against the terms for steering rate and longitudinal

acceleration. The planning was implemented in software on top of the SNOPT numerical solver;

implementation details are available at [12] and [27].

4.3.8 Trajectory Following

The design specification for the trajectory tracking algorithm was to receive a trajectory from a

planning module and output appropriate actuator commands to keep Alice on this trajectory.

The inputs to the algorithm were the current state of the vehicle (position and orientation,

along with first and second derivatives) and the desired trajectory (specified in northing and

easting coordinates, with their first and second derivatives). From these inputs, the algorithm

output steering and brake/throttle commands to an actuation module. Goals for accuracy were

+0%/-10% for velocity tracking, and ±20 cm perpendicular y-error at 5 m/s, with larger errors

allowable at higher speeds. These performance criteria needed to be met on any terrain type

found in the system specifications at speeds up to 15 m/s.

System Characterization Before designing the controller, it was necessary to characterize

the open-loop dynamics of the system. With this characterization, a mapping from actuator

positions to lateral and longitudinal accelerations was obtained. It showed that Alice under-

steered, and it allowed the determination of safe steering commands at various speeds, such that

the vehicle would remain in the linear response region. In this region, the feedforward term was

reasonable, and possibly dangerous roll angles/sliding were avoided. Additionally, system delays

were determined by examination of the time between commands leaving this module and the
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resulting vehicular accelerations.

Control Law Design Although not entirely independent, the lateral and longitudinal con-

trollers were treated separately in the system design. Longitudinal (throttle and brake) control

was executed by a feedback PID loop around error in speed plus a feedforward term based on a

time-averaged vehicle pitch to reduce steady-state error when traveling up or down hills.

The trajectories received as input to the trajectory follower encoded first and second deriva-

tive data as well as geometry of the path, so that desired velocity and acceleration could be

calculated at any point on the trajectory. For the longitudinal controller, we decided not to

use a feedforward term associated with acceleration based on the input trajectory. This was

determined by experience; there were occasions when the feedforward term would overpower the

feedback and simultaneous tracking of speed and acceleration was not achievable. For example,

the vehicle could not correct error associated with going slower than the trajectory speed if the

trajectory was slowing down.

The lateral control loop included a feedforward term calculated from curvature of the path

along with a PID loop around a combined error term. The error for the lateral PID is a

combination of heading and lateral position errors:

Cerr = αỸerr + (1− α)βθerr,

where Ỹerr is the lateral position error (saturated at some maximum value Ymax), θerr is the

heading error, and β is a scale factor. This form was motivated by a desire to obtain stability

at any distance from the path. Using this error term, the (continuous) vector field in the

neighborhood of a desired path will follow tangent to the path as Yerr → 0 and will head directly

toward the path at distances greater than Ymax away from the path.

Note that the use of this error term requires an accurate estimate of the vehicle heading.

Systematic biases in this estimate will result in steady-state error from the desired path.

The lateral feedforward term was generated by determining the curvature required by the

input trajectory and applying the mapping for steering position to curvature, which yields

φFF = arctan

(
L

ṄË − ĖN̈

(Ṅ + Ė)
3
2

)
,

where N is the northing position, E is the easting position and L is the distance between front

and rear wheels. For this calculation, it was assumed that Alice behaves as described by the
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bicycle model [14].

To avoid oscillations, an integral reset was incorporated in both the lateral and longitudi-

nal controllers when the relevant error was below some acceptable threshold. In testing, the

lateral integral term rarely built up to any significant amount, since performance of the system

maintained modest errors comparable to the threshold. For the longitudinal controller, resetting

helped to alleviate the overshoot associated with transferring from hilly to flat ground.

Finally, to compensate for system delays, a look-ahead term was added. This term defined

the point on the trajectory from which lateral feedforward and longitudinal feedback would be

computed.

4.3.9 Contingency Management

The deliberative approach presented above relies on assumptions about and by its constituent

components. This is a general feature of deliberative control; since sensor information is ab-

stracted away into a representation of the environment, it is essential that this representation

accurately reflect the world. When assumptions made in maintaining this representation are

violated, system failure may result.

The supervisory control module served to detect and manage higher-level system faults that

other individual modules could not. This included scenarios such as losing and reacquiring GPS,

and being stuck on an undetected obstacle. The supervisory control module was also responsible

for maintaining forward progress in unusual conditions,

Alice employed a supervisory control module to periodically cross-check important assump-

tions made by each of the system components and provide the appropriate response when any

of these were violated. In the context of the architecture discussion of chapter 2, this super-

visory control acted as a high-level behavior-based layer for management of uncertainty in the

deliberative process.

Examples of conditions where system assumptions were violated include excessive drift of

the state estimate, travel outside of the DARPA-specified route corridor, a stuck condition on

an unseen obstacle, and perception of no possible route forward in the corridor. In each of these

conditions, supervisory control brought the vehicle into a state or sequence of states intended

to keep the vehicle safe and to maintain forward progress along the course.

The supervisory control module is described in detail in [12], but three of its strategies are

described here for later reference; these are Slow Advance, Lone Ranger, and GPS reacquisition.

• Slow Advance mode was employed when the vehicle’s planned trajectory passed through
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an obstacle, but had not done so previously. In this case a low maximum speed cap is

applied to slow the vehicle. If the perceived obstacle remains, the planner will either 1)

report trajectories that bring the vehicle to a stop before the obstacle, 2) create a new

plan around the obstacle, or 3) report planner failure, which will result in more aggressive

braking.

• Lone Ranger mode was used in situations where Alice’s current plan passes through a

perceived obstacle and has stopped. In this mode, Alice will attempt to push through this

perceived obstacle (and reverse if unable).

• GPS Reacquisition is triggered by GPS measurements that are greater than some thresh-

hold away from the current state estimate. This condition happens if significant state

drift occurs during GPS outages. In this case, Alice is brought to a stop while zero-speed

corrections fix the discrepancy.

4.4 Experimental Results

The previous sections describe in detail Team Caltech’s approach to designing its unmanned

ground vehicle, Alice. While Alice shares many subsystems with previous autonomous vehicles

and other Grand Challenge entrants, four unique characteristics set Alice apart.

The first such characteristic is its sensor coverage: Alice relied heavily on its disparate

combination of sensors to generate information about its environment, making use of all available

data when determining the locations of obstacles. In particular, Alice only “forgot” prior map

data when a sufficient amount of new map data arrived, regardless of the accuracy of existing

measurements, allowing it to “drive blind” for as long as necessary.

A second unique characteristic was the use of speed limit maps to encode information about

both the traversability and difficulty of the terrain. This approach allowed Alice to precisely

navigate through areas that were complex both in terms of how the vehicle should navigate

spatially (e.g., a field of obstacles, through which a precise course must be chosen to prevent

collisions) as well as how the vehicle should navigate temporally (e.g., rocky or bumpy areas

through which precise speed limits should be followed to prevent damage to the vehicle or

instability).

The third characteristic that sets Alice apart from most other Grand Challenge entrants is

the fact that its software architecture makes absolutely no assumptions about the structure of

the race course as defined by the RDDF. In particular, Alice makes no use of a priori map
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data, thereby enhancing its flexibility; it would be just as able to drive a desert road in a foreign

country as it would in the Mojave desert. Additionally it does not assume that the RDDF will

“hold its hand,” so to speak, by constraining it to a road, or forcing it to decelerate around

turns or in rough terrain. In fact, a great deal of testing was done in which the corridor’s width

was set very high (on the order of dozens of meters) and the speed limit was chosen to be

essentially infinity. Despite the open-endedness of this problem, Alice’s architecture allowed it

to consistently choose an optimal course and speed.

The fourth and final feature that set Alice apart from many other GCE entrants was its

physical robustness. While there were several other entrants who would likely have been at least

as physically capable as Alice in a true off-road environment, Alice’s tough physical exterior

enabled it to take risks that may have damaged some vehicles catastrophically.

4.4.1 Desert Testing

Team Caltech documented over 300 miles of fully autonomous desert driving in the Mojave

desert with Alice from June 2005 to the National Qualifying Event in Fontana, California in

September 2005.

Approximately 33 of these miles were driven on the 2004 Grand Challenge race route during

the week of June 13th, 2005. Alice traversed these miles with a testing team of four people

inside, scrutinizing its performance and making software improvements and corrections. Over

the course of three days, Alice suffered three flat tires including a debilitating crash into a short

rocky wall that blew out the inside of its front left tire and split its rim into two pieces. This

crash was determined to be caused primarily by a lack of accurate altitude estimates when

cresting large hills. Along with several related bug fixes, an improved capability to estimate

elevation was added to the state estimator.

The majority (approximately 169 miles) of autonomous operation for Alice took place in the

two weeks leading into the National Qualifying Event. This operation included a full traverse of

Daggett Ridge (the most difficult section of the 2004 race course) at 4 m/s average speed and sig-

nificant operation in hilly and mountainous terrain. The top speed attained over all autonomous

operations was 35 mph. The longest uninterrupted autonomous run was approximately 25 miles.

4.4.2 National Qualifying Event

As one of 43 teams at the California Speedway in Fontana, Alice successfully completed three of

its four qualifying runs. Several of its runs were characterized by frequent stopping as a result
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Run Gates Obst Time Issues
1 21/50 0/4 DNF State estimate problems

after tunnel
2 44/50 4/4 12:45
3 49/50 5/5 16:21 Multiple pauses due to

short in E-Stop wiring
4 44/50 5/5 16:59 Frequent stops due to

state drift

Figure 4.6. Alice on the National Qualifying Event course (left). Table of results from Alice’s
four runs at the event (right).

of the performance of the state estimator under conditions of intermittent GPS. Specifically,

under degraded GPS conditions its state estimate would drift considerably, partially due to

miscalibration of IMU angular (especially yaw) biases and partially due to lack of odometry

inputs to the state estimator. However, zero-speed corrections were applied to the Kalman filter

when Alice was stopped, which served to correct errors in its state estimate due to drift.

During Alice’s first national qualifying event (NQE) run, zero-speed corrections were not

applied in the state estimator. Accordingly, drift accumulating in the state estimator was not

corrected adequately when Alice stopped. Travel through the man-made tunnel produced drift

substantial enough for Alice’s estimate to be outside the RDDF, which at the time resulted in a

reverse action. Alice performed a series of reverse actions in this state, going outside the actual

corridor, causing DARPA to pause it and end its first run.

Zero-speed corrections were added to the state estimator after Alice’s first run, enabling it to

successfully complete all subsequent runs, clearing all obstacles and 137 out of a total 150 gates.

Completion times were slow for runs 2, 3, and 4 partially due to frequent stopping as a result

of state estimator corrections. Fig. 4.6 provides a summary of Alice’s NQE run performances.

4.4.3 Grand Challenge Event

When Alice left the starting line on October 8th, 2005, all of its systems were functioning

properly. However, a series of failures caused it to drive off course and topple a concrete barrier,

resulting in a DARPA E-stop PAUSE and subsequent DISABLE. Although, as mentioned above,

the system we have described performed well over the course of hundreds of miles of testing in the

desert prior to the Grand Challenge, we believe the pathological nature of this particular failure

scenario demonstrates a few of the more important weaknesses of the system and exemplifies

the need for further ongoing research. We will begin by providing a brief chronological timeline

of the events of the race leading up to Alice’s failure, followed by an analysis of what weaknesses
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contributed to the failure.

Alice’s timeline of events in the Grand Challenge was as follows:

• Zero minutes into the race (9:03 AM), Alice left the starting line with all systems func-

tioning nominally.

• Approximately four minutes into the race, two of its midrange LADARs entered an error

mode from which they could not recover, despite repeated attempts by the software to

reset. Alice continued driving using its long and short-range sensors.

• Approximately 30 minutes into the race, Alice passed under a set of high-voltage power

lines. Signals from the power lines (and, possibly, electronic equipment in the vehicle pit

area) interfered with its ability to receive GPS signals, and its state estimate began to rely

heavily on data from its Inertial Measurement Unit (IMU).

• Approximately 31 minutes into the race, Alice approached a section of the course lined

by concrete barriers. Because new GPS measurements were far from its current state

estimate, the state estimator requested and was granted a stop from supervisory control

to correct approximately 4 meters of state drift. This was done and the map cleared to

prevent blurred obstacles from remaining.

• GPS measurements reported large signal errors and the state estimator consequently con-

verged very slowly, mistakenly determining that the state had converged after a few sec-

onds. With the state estimate in an unconverged state, Alice proceeded forward.

• A considerable eastward drift of the state estimate resulted from a low confidence placed

on the GPS measurements. This caused its velocity vector and yaw angle to converge to

values that were several degrees away from their true values. Based on the placement of the

north-south aligned row of K-rails in the map by the short-range LADAR (see fig. 4.8(a)),

Alice’s actual average yaw for the 5 or so seconds leading into the crash—between times C

and D on fig. 4.7—appeared to be about 8 degrees west of south (−172 degrees). For the

same period, its average estimated yaw was about −174 degrees and its average heading

(from Ṅ and Ė) was about −178 degrees. Roughly, as Alice drove south-southwest, its

state estimate said it was driving due south, straight down the race corridor (figure 4.8(a)).

• Alice’s long-range sensors detected the concrete barriers and placed them improperly in

the map due to the error in state estimate. Alice’s midrange sensors were still in an error

mode. Alice picked up speed to 10–15 mph.
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Figure 4.7. Alice’s estimated heading and yaw (top), both measured clockwise from north, in its
final moments of the Grand Challenge. Yaw is estimated by the state estimator and heading is
computed directly as the arctangent of the easting and northing speeds of the rear axle. Shown
are the approximate times at which the state estimator requested a vehicle pause (A), the map
was cleared and pause was released (B), Alice sped up after clearing a region of no data (C), and
impact happened (D). Between A and B the direction of motion was noisy, as expected, because
Alice was stopped. Between B and D the state estimate was converged around 180 degree yaw,
which we know to be about 8 degrees off, leading into the crash. Evolution of supervisory control
modes (bottom). Impact speed was 6.3 m/s.
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Figure 4.8. Alice’s speed limit maps over the last few seconds of the race, with notation added.
For all three diagrams, the brown area is the road, the light blue vertically oriented rectangular
areas are the concrete barriers, the blue box is Alice, and the pink line is its perceived yaw
(direction of travel). The color bar on the right indicates the speed limit that was assigned
to a given cell, where brown is highest and blue is lowest. The leftmost diagram indicates
Alice’s expected yaw and Alice’s actual yaw during the last few seconds of the race. The center
diagram is Alice’s speed limit map less than one second before it crashed, indicating the differing
placement of the obstacles by the short- and long-range sensors as two parallel lines of concrete
barriers (blue rectangles). In fact, there was only a single line of barriers oriented directly
north-south, not angled as Alice perceived. The rightmost diagram is Alice’s final estimate of
its location: accurate, but thirty seconds too late.
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Figure 4.9. Alice as it topples a concrete barrier during the Grand Challenge.

• At 32 minutes, because it was not driving where it thought it was, Alice crashed into a

concrete barrier. Its short-range sensors detected the barrier, but not until it was virtually

on top of it (figure 4.8(b) and figure 4.9).

• Almost simultaneously, DARPA issued an E-Stop PAUSE, the front right wheel collided

with the barrier, the power steering gearbox was damaged, and the driving software de-

tected this as a fault and executed its own pause, independent of that from DARPA. The

strong front bumper prevented Alice from suffering any major damage as it drove over the

barrier.

• Once Alice had come to a stop, the state-estimation software once again attempted to re-

converge to get a more accurate state estimate—this time it corrected about 9.5 meters and

converged close to the correct location, outside the race corridor. Alice was subsequently

issued an E-Stop DISABLE command (figure 4.8(c)).

Fig. 4.7(b) shows the supervisory control component state during this final segment, including

a Slow Advance through some spurious obstacles, a brief Lone Ranger push to get through

them, the GPS reacquisition while stopped, and the final Slow Advance only after Alice had

picked up speed and was too late to avoid crashing. These supervisory modes were described in

section 4.3.9.

It is clear that while Alice’s ultimate demise was rooted in its incorrect state estimates (due

to poor GPS signals), other factors also contributed to its failure, or could conceivably have
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prevented it. These include the midrange LADAR sensor failures, the lack of a system-level

response to such failures, and the high speeds assigned to long range sensor data even in the

face of state uncertainty. Additionally, in race configuration the forward facing bumper LADAR

sensor was only used to assist in detection of the boundaries of the roads for the road following

module. Data from this sensor could have helped to provide the persistent sensing of the row of

K-rails and ensure appropriate speeds in the map.

4.5 Novel Contributions

While the design and implementation of Alice had a conventional “map, plan, follow” delib-

erative architecture, there are several features of Alice’s architecture and implementation that

distinguish it from other entries in the DARPA Grand Challenge and other autonomous vehi-

cles. These fall into the categories of vehicle design, map representation, optimal path planning

approach, and software fault tolerance.

Vehicle Platform Our platform (Sportsmobile 4x4) was extremely rugged and powerful,

perhaps to a fault (since this put the vehicle on the wrong side of some K-rails at the end of our

race). A central feature of its design is to satisfy the specification for rapid testing capability.

Alice was equipped as a four-passenger experimental testbed and development laboratory, which

enabled very quick improvement of its navigation capabilities.

Map Representation Our mapping software mapped the environment to a globally-fixed

Cartesian grid, but instead of evaluating each grid cell to “go/no” or “go/no/unknown,” each

cell contained the maximum speed at which any portion of the vehicle could traverse that

cell. This resulted in a richer representation of the environment, and a very flexible and clean

abstraction between the mapping and planning levels.

Path Planning Our planning software executed a constrained nonlinear optimization problem

in the space of the coefficients of a quadratic spline that represented the heading and speed as a

function of distance along the desired trajectory. The speed limits encoded in the map translated

into constraints in this optimization problem.

Fault Tolerance We developed an extensive supervisory control layer that handled five cate-

gories of system faults, which resulted in a vehicle that would always attempt to make (sometimes

cautious) forward progress along the course. Unfortunately, the confluence of events that led to



99

our vehicle’s crash eluded the sensibilities of this system, because the vehicle had high confidence

in an erroneous state estimate.
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Chapter 5

Conclusions

5.1 Summary

High-speed autonomous navigation provides a rich problem that cuts across disciplines of control

theory, robotics, computer vision, and systems engineering. The navigation task can be specified

in a range of ways that tunes the level and nature of autonomy achieved.

I have presented the notions of dynamic feasibility and predictability as dictating the degree

of difficulty of autonomous navigation tasks, and demonstrated that these considerations have

direct impact on achievable system performance. Alice is presented as a system adept at man-

aging dynamic feasibility restrictions. Its performance in the Grand Challenge event serves to

emphasize the importance of predictability in deliberative approaches to autonomous navigation.

5.2 Contributions

The major contributions of this thesis are in three areas:

Robot Control Architectures. Qualitative comparisons are made between the major meth-

ods of designing robot control architectures. These comparisons are presented in the context

of dynamic feasibility and predictability, and are supported by real-world examples, thought

experiments, and simulations.

Environment Modeling. Model-based methods are developed and executed in simulated

and real-world experiments to demonstrate their effectiveness in high-predictability environ-

ments. Two examples are presented: (1) spatial filtering of digital elevation models by use of a

high number of low-dimensional Kalman filters, and (2) detection, spatio-temporal estimation,

and tracking of road centerline geometry in a desert environment. Initial headway is made
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in developing and applying moving horizon estimation techniques for application to the same

problem.

Alice. The detailed design and implementation of and the experimental results from Alice

are presented as a demonstration of novel and advanced technical capabilities for autonomous

navigation in real-world environments. Alice serves as a reference model, and the performance

successes and pitfalls will serve as a guide for further advanced robotics research.

5.3 Future Work

This thesis suggests several different avenues for future work:

Formal Selection of Robot Architectures. Chapters 1 and 2 provide clarification of dif-

ferent robot control architectures and provide motivation and high-level guidelines for designing

robot sensing and control systems based on dynamic feasibility and predictability, without for-

mal analysis of the tradeoffs between architectures. Such an analysis could provide a structured

way to design sensing, perception, and environment models, and control systems based on the

specific requirements of the task and available resources.

Deliberative Control Parameterizations. When the inner-outer loop control design was

implemented on Alice in the receding horizon framework, instabilities were discovered when the

optimal plan was calculated using the current vehicle position as input, causing Alice to oscillate

laterally and eventually drive off the road. This phenomenon happened even on straight roads

where the optimal path appears to be along the centerline. Can this be recreated in simulation?

What is the relative impact of various delays in the system, planning rate and miscalibration in

the model? How should one decide how far into the past to use sensory data and how far into

the future to plan?

Contingency Management. Alice employed a relatively sophisticated and extensively tested

supervisory control layer which cross-checked a number of assumptions made during nominal

operation and provided an appropriate response when these assumptions were violated. Even

with such a system in place, Alice suffered a debilitating crash due to poor state estimate and

the inability of the perception system to correct or compensate. More work is needed to develop

those perception systems that detect discrepancies in sensor data and internal models and to

provide the appropriate means to reconcile them.
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From Modeling to Perception. In a wide variety of robotic tasks it is necessary to dis-

tinguish sensory data as belonging to distinct elements of the environment, such as a person

walking, an object requiring manipulation, or a landmark for aiding localization. In low pre-

dictability environments this data association ability is critical to understanding of the robot’s

situation (and therefore critical to its response).

For example, obstruction of GPS signals by buildings in urban environments represents a

situation of low predictability for the robot’s position. This must be compensated by advanced

perception capability (e.g., simultaneous localization and mapping or visual odometry). A com-

bination of improved perception with model-based tracking (for high predictability targets) will

provide fundamental solutions to new challenges for advanced robotics.

Dynamic Environments. One of the central limitations of many current robotic systems is

that they assume static or quasistatic environments. Elements of dynamic environments (people,

other cars, animals) were intentionally eliminated from the Grand Challenge because they pose

a considerably more difficult navigation problem.

Current robots that operate in dynamic environments typically do so at slow speeds so that

dynamic feasibility is not an issue in the face of low predictability. Reliable operation in low

predictability environments with limited dynamic feasibility (e.g., at higher speeds) will provide

grand challenges in robotics for years to come.
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