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Abstract—This research addresses the path planning prob-
lem with a nonlinear optimization method running in real
time. An optimization problem is continually solved to find a
time-optimal, dynamically feasible trajectory from the vehicle’s
position to some receding horizon ahead (20m-70m forward).
The locally optimal numerical solver optimizes both the spatial
and temporal components of the trajectory simultaneously, and
feeds its output to a trajectory-following controller. The method
has been implemented and tested on a modified Ford E350
van. Using one stereo pair and four LADAR units as terrain
sensors, the vehicle was able to consistently traverse a 2 mile
obstacle course at the DGC qualifying event. At the main
DGC event, the vehicle drove 8 autonomous miles through the
Nevada desert before experiencing non-planning issues. During
this time, the planning system generated a plan 4.28 times
per second on average. This execution speed, coupled with a
feedback-based trajectory-following controller was shown to be
adequate at providing smooth and reliable obstacle avoidance
even on complicated terrain.

Index Terms—kinodynamic planning, receding horizon
control, optimization-based control, dynamic inversion, au-
tonomous navigation

I. INTRODUCTION

A
UTONOMOUS navigation is one of the major open

problems in robotics research. This problem is both

interesting theoretically and has wide-spread applications.

To promote the development of this and other fields of

interest to autonomous robotics, DARPA, the research arm of

the Department of Defense of the United States, sponsored

the DARPA Grand Challenge (DGC), an off-road race for

autonomous, land-based vehicles. The DGC entries had to

traverse as quickly as possible over 130 miles of Mojave

Desert terrain, specified by a GPS-defined corridor. While

moving, the vehicles had to observe corridor boundaries and

DARPA-imposed speed limits. In order to eliminate sophis-

ticated preplanning as a viable navigation option, DARPA

distributed the corridor data to the teams only two hours

before the race.

This research was developed to provide a navigation

system for Team Caltech’s entry to the DGC, Alice (Figure

1). Figure 2 outlines the top level design of Alice’s systems

and the connecting data flow. The vehicle-mounted sensors

produce an estimate of Alice’s pose and, via the map server,

of the surrounding terrain. These are input to the planning

system, which continually computes a trajectory for the

vehicle to follow. A control system computes the actuator

inputs necessary to keep Alice on this trajectory. All these
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Fig. 1. Alice: Team Caltech’s 2005 DGC entry. LADARs and cameras
sense the terrain. The GPS and IMU units provide the vehicle state.

components run asynchronously and process the newest data

available to them at the time.
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Fig. 2. A block diagram of the top level planner framework. The planner
receives terrain data from the map server and state data from the IMU,
GPS. These data are processed to produce trajectories, which are followed
by the controller to send actuator inputs to the vehicle. The vehicle motion
produces updated state and terrain data, which closes the loop.

DARPA specified the problem loosely, leaving several

key decisions to the teams’ discretion. The width of the

course corridor was unlimited, not explicitly invalidating

corridors much wider than the vehicle. Wider corridors could

contain maze-like structures, necessitating use of a long-term

planning algorithm, like D*. Conversely, if the corridor width

was sufficiently limited, the trackline (corridor center) could

serve as the long-term plan. Team Caltech decided to assume

the latter, and to base its navigation off of the trackline.

Keeping these considerations in mind, we developed a

planning system that

1) produces time-optimal plans to place well in the race.

2) is fast enough to run in real-time and has a low enough

latency to produce good closed loop performance, even

despite the added delays of the physical system.

3) is robust to various terrain/vehicle pose combinations.

4) produces dynamically feasible plans to ensure a low
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error bound in performance of the trajectory-following

control system.

Even though no ideal methods for tackling the planning

problem currently exist, this problem is a well-researched

one. Significant effort was directed into avoiding obstructions

in a binary obstacle field. This is inadequate for our purpose,

however, since we want to plan through both obstacles and

impedances, where one could potentially travel, but with

a reduced speed. Another well-researched approach to the

planning problem is a graph search. This is a scheme where

the terrain is represented as a graph with nodes corresponding

to spatial locations, and the edges representing the cost of

movement from one node to another. A* is a well-known

algorithm of this type. It can plan an optimal path through

a fully mapped environment, but since this information is

not completely known a priori [1], this is insufficient. This

particular drawback is addressed in D*, an extension of A*

that dynamically and efficiently modifies the plan if a before-

unknown obstacle is encountered [2]. Unfortunately, if only

a spatial graph is searched, neither D* nor A* are enough,

since the plans they produce include no dynamics. A car-

like robot includes non-holonomic constraints, which would

render unfollowable many spatial paths. Algorithms that

employ A* to search an extended graph to produce feasible

trajectories exist [3], [4]. Unfortunately, these are either too

slow or simplify the problem too much by employing binary

obstacles.

Other research efforts compute the optimal spatial path and

then determine the optimal velocity profile that is feasible

for a vehicle to traverse that path[5], [6]. This separation of

spatial and temporal planning, however, is a potential source

of non-optimality since the shortest path is not necessarily

the fastest path.

To address these issues, work has been directed towards

finding methods to compute dynamically feasible trajectories

around obstacles in real-time. Some of those algorithms use

a database of precomputed clothoid curves to speed up the

online computations [7]. The discrete nature of this method

may create difficulties in finding a feasible solution and can

cause suboptimal trajectories to be produced.

Using an optimization method to generate plans would

address those issues. An optimization problem can be set up

to produce optimal plans that also avoid obstacles and sat-

isfy dynamic feasibility constraints. An optimization-based

planner that performed the spatial and temporal planning

separately and based its spatial plans off D* was attempted in

[8]. Unfortunately, since that research was done in 1991, the

computational power available at the time was insufficient to

solve the planning problem effectively, and the results from

that research remain inconclusive.

Real-time optimization-based control was successfully at-

tempted in [9] to plan paths for the Caltech ducted fan,

a testbed for planning and control algorithms [10]. In this

research, we present a robot planning system that uses a

convex numerical optimization method to explicitly compute,

in real-time, optimal, dynamically feasible trajectories that

satisfy all vehicle, terrain constraints, thus performing the

spatial and temporal planning simultaneously. This method

allows for fast driving and optimal obstacle avoidance even

in complicated terrain, while utilizing a very simple control

system. Further, this method is very flexible and could be

extended to handle more complicated scenarios, such as

dynamic obstacles.

II. APPROACH

Since the DGC race is over 130 miles long, it is both

computationally prohibitive and unnecessary to plan the

vehicle’s trajectory all the way to the finish line at all times.

Thus, we run the planner in a receding horizon framework,

where the plans are computed not to the final goal, but to

a point a set distance ahead on some rough estimate of the

path towards the goal. The planning range thus continually

moves forward with the vehicle.

A. Vehicle model

As mentioned earlier, the planner is designed to generate

trajectories that are dynamically feasible in respect to some

model of the vehicle. The model chosen here is the kinematic

bicycle model (Figure 3).
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v̇ = a

θ̇ = v
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(1)

Fig. 3. Here N and E are the Northing and Easting coordinates of the
middle of the rear axle, v is the scalar speed of the center of the rear axle,
θ is the yaw of the vehicle, a is the scalar longitudinal acceleration of the
vehicle, L is the wheelbase of the vehicle, and φ is the steering angle.

B. System flatness

To apply a numerical optimization scheme to the path

planning problem, we have to represent the space of all

potential trajectories as a vector space. The space of all these

trajectories clearly has infinite order. To use a numerical

solver, it is necessary to approximate this space with a

finite-dimensional one, and to facilitate fast computation, this

dimension needs to be kept as low as possible. To begin

to meet these goals, we employ a flat representation of (1),

using {θ(s), v(s), Sf} as the bases, where s is the normalized
arc length of the trajectory, θ(s) is the vehicle yaw, v(s) is
the scalar speed of the vehicle, and Sf is the total length of

the trajectory (Figure 4). This representation provides a clean



separation between the spatial and temporal components of

a trajectory:

N(s) = N0 + Sf

∫ s

0 cos(θ(s))ds
E(s) = E0 + Sf

∫ s

0 sin(θ(s))ds
dN
ds

= Sf cos(θ(s))
dE
ds

= Sf sin(θ(s))
tan φ = L

Sf

dθ
ds

dφ
ds = L

Sf sec2(φ)
d2θ
ds2

v(s) = Sf
ds
dt

a = v
Sf

dv
ds

T = Sf

∫ s

0
1

v(s)ds

(2)
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Fig. 4. The intrinsic coordinate system used to describe the solution space.

C. Problem formulation

We want to compute trajectories that are time optimal and

satisfy various kinematic and terrain constraints. This can be

stated within the context of a general nonlinear programming

(NLP) optimization problem:

Find #x ∈ R
n that minimizes J(#x) ∈ R

subject to #L ≤ f(#x) ≤ #U ∈ R
m

To pose the planning problem as an NLP, let #x contain

some representation of a trajectory (both spatial and tem-

poral). Dynamic feasibility of the trajectory is specified as

constraints in f(#x). Terrain conditions are a cost and/or a
constraint (J(#x) and/or f(#x)). Traversal time enters into the
cost function J(#x). Since we are using a numerical solver,
constraints can not be explicitly satisfied at every point on

the trajectory. Instead, we satisfy these constraints at discrete

points throughout the trajectory, known as collocation points.

The collocation point spacing is chosen to be tight enough

to ensure that the constraints would be sufficiently satisfied

globally, but sparse enough to facilitate rapid computation.

So far we have talked about the vector #x ∈ Rn being some

representation of a trajectory, with the Rn space mapping

into a suitable approximation to the space of all trajectories.

We need to represent θ(s) and v(s) (Figure 4) in a finite-
dimensional vector space, while assuring that θ(s) is C1 and

v(s) is C0 (continuous speed and steering angle profiles).

Thus, we represent θ(s) as a quadratic spline and v(s) as
a linear spline (piecewise linear). Since constraints are only

satisfied at the collocation points, we only need to evaluate

θ(s) and v(s) at those points. To do this, we have derived
matrices that satisfy

θ|s∈{scollocation}
= Vval #xθ + θ0

dθ
ds

∣

∣

s∈{scollocation}
= Vd1 #xθ

d2θ
ds2

∣

∣

∣

s∈{scollocation}
= Vd2 #xθ

v|s∈{scollocation}
= Wval #xv + v0

dv
ds

∣

∣

s∈{scollocation}
= Wd1 #xv

(3)

Since these V and W matrices can all be computed off-line,

this produces a very fast method for computing the values

of our flat variables at the collocation points.

All the various costs and constraints in the planning

problem are expressed in the f(#x) and J(#x) expressions
in (3). Figure 5 illustrates how the user-specified costs and

constraints (expressed in system variables) map into those

specified as a function of #x, used by the solver.

NLP solver User

(3) (2)

#x
Spline variables

θ(s), v(s), Sf

Differentially flat variables System variables
N , E, v, θ, φ, T

Fig. 5. An illustration of how costs and constraints are evaluated by the
solver. The user expresses everything in terms of the system variables, which
are obtained from the flat variables (2). These, in turn, are obtained from
the spline-defining coefficients #x (3).

The main contributor to the cost function J(#x) is the time-
optimality term that describes traversal time:

T = Sf

∫ 1

0

1

v(s)
ds (4)

This is linearly combined with steering and acceleration

“effort” terms:

Eφ̇ ≡
∫ 1
0 φ̇(s)2ds

Ea ≡
∫ 1
0 a(s)2ds

(5)

These effort terms are necessary to promote smoother driv-

ing. Even though it may be feasible and optimal to decelerate

hard with the brake pedal depressed all the way to avoid

an obstacle, system lags and model inaccuracies make this

dangerous. Thus, we penalize abrupt changes in speed and

steering angle. The weights on each contributing term to the

cost function were chosen empirically in the field.

The constraints are broken into conditions that are to be

satisfied at the start of the trajectory (initial constraints), at

the end of the trajectory (final constraints) and at the collo-

cation points (trajectory constraints). The initial constraints

ensure that the current vehicle pose matches the pose at the

start of the plan. The final constraints ensure that the end of

the plan lies in a tight neighborhood around the target point.

Finally, the trajectory constraints ensure dynamic feasibility



and obstacle avoidance. The full list of trajectory constraints

is

Speed v < vlimit

Acceleration amin < a < amax

Steering −φmax < φ < φmax

Steering speed −φ̇max < φ̇ < φ̇max

Rollover − gW
2hcg

< k v2 tan φ
L

< gW
2hcg

(6)

In the roll-over constraint expression, W is the track of the

vehicle (distance between left and right wheels), hcg is the

height of the center of gravity of the vehicle above ground,

and g is the acceleration due to gravity. This expression can
be derived either by assuming flat ground and considering

roll-over due purely to a centripetal force, or by evaluating

the lateral acceleration. When evaluating this constraint as

roll-over, one has to take into account that on many surfaces

side-slip will occur much before roll-over. This necessitates

an adjustment factor, k, to compensate [15].
Obstacle avoidance enters into the problem as the speed

limit constraint, with the corridor and terrain data processed

to produce a combined, discrete map that represents a spa-

tially dependent speed limit. What this means is that the areas

outside of the corridor and those that lie inside obstacles

have a very low speed limit, and thus any trajectory that

goes through those areas is either infeasible or suboptimal.

This representation allows the obstacle avoidance and quick

traversal conditions to be cleanly combined.

In (6) all of the bounds except for vlimit are known off-

line, and thus are entered into the NLP problem in the solver

set-up, before the computation begins. This is not as simple

in the case of the speed limit constraint, though, since vlimit

depends on (N, E). This constraint is thus entered into the
problem as

0 < vlimit − v < ∞ (7)

D. Map sampling

The #x-dependent computation of vlimit is a non-trivial

matter. There are several issues to consider:

1) To ensure the convergence of the solver, the map

surface must possess a gradient, rather than being flat

(the speed limit constraint has to be convex).

2) The NLP solver expects all functions to have some

degree of smoothness, thus the discrete map data have

to be interpolated.

3) The vehicle is not a point; it has non-negligible width

and length. Thus, obstacle avoidance of the entire

vehicle, rather than just the center of its rear axle, has

to be assured.

1) Ensuring convexity: We are using a convex optimiza-

tion method which will not work well, or at all, if it is input

non-convex functions. One such scenario is a flat speed limit

profile (Figure 6).

If at any point in the solution cycle, the current plan

runs over the top of any obstacle that does not possess a

gradient, the gradient descent-based solver will not be able

to determine the proper optimization direction.

Fig. 6. An illustration of flat obstacles and the numerical non-convexity
they cause. The solver will move the curve up, off of the sloped obstacle,
but will be unable to determine this adjustment direction in the flat case.

2) Smoothness of the map surface: The numerical opti-

mizer works best when all function supplied to it are at least

C1. In particular, the assumed C1 properties of the input are

utilized to determine when an optimal solution is reached. A

discrete map, if used directly, produces a speed limit surface

that is not even C0. Thus an interpolation scheme is essential

to ensure proper convergence of the planning problem.

3) Growing of obstacles: The vehicle is not a point. Thus

when considering the planning problem, the width and length

of the vehicle must be taken into account. One way to do

this is to enter several obstacle avoidance constraints, at

different parts of the vehicle, into the optimization problem.

Unfortunately, the extra constraints have an adverse effect on

the performance of the computation. Another way to handle

this issue is to grow the obstacles, either isotropically or

anisotropically, taking into account the orientation of the

vehicle (Figure 7).

Fig. 7. Different methods of obstacle growing. Isotropic growing, where
obstacles are grown equally in all directions is illustrated on the left;
anisotropic, where the profile of the vehicle is taken into account when
evaluating obstacles is on the right.

4) Map accessor: We developed a map access method

that anisotropically samples the map on an approximation to

the vehicle profile (the “kernel”) to generate a surface that

is as close to being C1 as is desirable. The fundamental

approach to this map accessor implementation is a weighted

average of the map data. Even though the map data is de-

fined on a discrete-domain, the continuous-domain weighting

function allows for accessor continuity:

f(x, y) ≡

∑

i,j w(x − xi, y − yj)g[i, j]
∑

i,j w(x − xi, y − yj)
(8)

where the discrete map g is being accessed to produce

a continuous map f . Note that the weighting function w
is defined in reference to the interpolation location (x, y).
This endows the same degree of continuity onto f as that

of w, assuming that the averaging domain {i, j} remains
constant. In practice, it is important for f(x, y) to be a
function of the map data only in some finite neighborhood

of (x, y). This can create potential discontinuities of f(x, y)
at the regions where that neighborhood of map data shifts



(this happens discretely since the map data is defined on a

discrete domain). This issue can be addressed by designing

the weighting function w to drop off to negligible values far

enough away from (x, y).
Ideally, the vehicle speed would be limited by the lowest

speed allowed by the map in any part of the physical vehicle

body. Thus we need to design w such that f(x, y) represents
a minimum of the data in the vehicle profile around (x, y).
The minimization and the localization can be accomplished

with

w(x, y) ≡ wv(x, y)g[i, j]−n (9)

where n is some positive value that controls the minimization
strength and wv(x, y) is a smooth function that is ≈ 0 away
from the vehicle profile and ≈ 1 in the vehicle profile. If
a rectangular vehicle profile is assumed, wv(x, y) can be
constructed from two one-dimensional functions:

wv(x, y) ≡ wlong(u)wlat(v) (10)

where (u, v) are aligned with the vehicle and wlong(u),
wlat(v) are designed to match the vehicle dimensions. The
exact definitions of n, wlong(u) and wlat(v) can be tuned to
achieve the best system performance.

Since f(x, y) is computed very many times during each
planning cycle, a slow f(x, y) function very strongly ad-
versely affects the computational performance of the planner.

It was found that on Alice’s Opteron CPUs, mathematical

expressions consisting purely of addition, subtraction, multi-

plication and division evaluate orders of magnitude faster

than those that contain more sophisticated functions, like

exponentials and trigonometric or hyperbolic functions. Thus

n was chosen to be an integer (2.0), and wlong(u) and wlat(v)
were fit to a rational function.

Another computation time-saving measure was splitting

wlong(u) into two non-contiguous sections, one at the front
of the vehicle and one at the rear, with each one smaller than

half the original. This reduced the number of mathematical

operations that needed to take place during each map access

cycle. Since this method effectively puts a hole into the

middle of the vehicle, it was necessary to make sure that

this gap is small enough and the collocation point spacing

tight enough to render the missing piece insignificant.

III. RESULTS AND DISCUSSION

The previously described planning system was imple-

mented and tested both at the DGC qualifying event and

at the DGC race. Of those, the qualifying runs were much

more interesting as a testing ground for the planning system,

since these contained varied terrain and some obstacles

to be avoided. Thus to evaluate the performance of the

planning system, we analyze one specific qualifying run.

Some snapshots from this run appear in Figure 9.

Throughout the planner development, the convergence

speed of the optimizer was a constant concern, but on Alice’s

2.2 GHz Opteron CPU, an average rate of 4.8 plans/second

was achieved during the qualifying run, 5713 successful

planning computations in 1187 seconds. A histogram detail-

ing the spread of these computation times appears in Figure

8.
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Fig. 8. A histogram representing the distribution of planning computation
speed from one of the DGC qualifying runs. Most cycles converged at an
average speed of 5 plans/second.

There were a few outliers at the slow end of the dis-

tribution, with 11 plans needing more than 1 second to

compute. All of these outliers and all of the 47 planning

attempts that failed to converge (99.18% rate of convergence)

occurred at a very few episodes during the qualifying run.

This indicates that the errors were not random, but rather

were caused by specific events throughout the run. These

events were manifestations of the imperfections in the state

and terrain sensing systems that feed input to the planner.

These imperfections caused aphysical motion of the vehicle

and/or of obstacles (due to sensor miscalibration, say), and

created infeasible (or nearly so) NLP problems. An example

of how this infeasibility might occur is an obstacle that

appears suddenly, close and in front of the vehicle. It may

not be possible to avoid such an obstacle without violating

the deceleration constraint (braking too hard) or a steering

constraint (steering too hard, too fast or rolling over). A

particularly damaging aspect of these cases is the wasted

computation time that is used up by the optimizer before it

terminates without producing a valid solution. This can be

aggravated further by several cycles in a row failing. In fact,

the longest period between valid plans during this qualifying

run, 3.05 seconds, occurred when 7 planning cycles in a row

failed to converge. This is the main limitation of the planning

system, as currently implemented.

Even though the current implementation works well most

of the time, and was sufficient for the DGC, a method is

needed to quickly recognize an infeasibility and react to it

before a lot of computation time is used. This would add

the necessary extra element of robustness to the planning

algorithm and allow it to be utilized more widely.
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