
Bio-Inspired Visuomotor Convergence in Navigation and

Flight Control Systems

Thesis by

James Sean Humbert

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2006

(Defended June 2, 2005)



ii

c© 2006

James Sean Humbert

All Rights Reserved



iii

Acknowledgements

First and foremost, I would like to acknowledge my advisor Richard Murray. Throughout

the duration of my time at Caltech, Richard provided an environment with the highest

level of professionalism and expectation. Thanks for the financial and intellectual support,

the freedom, and the flexibility that was so generously extended; for these things I owe

a large debt of gratitude. I wish to thank the other members of my committee: Michael

Dickinson, Doug MacMynowski, and Joel Burdick. Michael’s integrated approach to the

study of insect behavior is both revolutionary and refreshing, and was instrumental in the

development of this thesis topic. Thanks to Doug and Joel for their interest and time; their

constructive comments significantly improved the quality of this work. I also wish to thank

my undergraduate advisor from UC Davis, Art Krener. Without the opportunities that Art

provided during my time as an undergraduate, I would not be where I am today.

Gracious thanks are due to all of my family and friends; especially to my grandmother,

Peg, for giving me the strength to pursue my dreams, and my late grandfather, Chuck, to

whom I dedicate this thesis. I hope someday my accomplishments will be able to stand

shoulder to shoulder with yours. Thanks to all the members of El Toro Guapo, our champi-

onship Red Bull Flugtag team, and thanks to all of my Southern California friends: James,

Bob, Richie, Shawn, Brian, Ilias, Eimear, and Ross. We’ve had an amazing four years, and

I have no doubt the next will be equally memorable.

Lastly, I wish to acknowledge the financial support for this research, including the

Army Research Office (ARO) Institute for Collaborative Biotechnologies program under

grant DAAD19-03-D-0004 and the Air Force Office of Scientific Research (AFOSR) under

grant F30602-01-2-0558.



iv

Abstract

Insects exhibit incredibly robust closed loop flight dynamics in the face of uncertainties.

A fundamental principle contributing to this unparalleled behavior is rapid processing and

convergence of visual sensory information to flight motor commands via spatial wide-field

integration, accomplished by retinal motion pattern sensitive interneurons (LPTCs) in the

lobula plate portion of the visual ganglia. Within a control-theoretic framework, an inner

product model for wide-field integration of retinal image flow is developed, representing the

spatial decompositions performed by LPTCs in the insect visuomotor system. A rigorous

characterization of the information available from this visuomotor convergence technique

for motion within environments exhibiting non-homogeneous spatial distributions is per-

formed, establishing the connection between retinal motion sensitivity shape and closed

loop behavior. The proposed output feedback methodology is shown to be sufficient to give

rise to experimentally observed insect navigational heuristics, including forward speed reg-

ulation, obstacle avoidance, hovering, and terrain following behaviors. Hence, extraction of

global retinal motion cues through computationally efficient wide-field integration process-

ing provides a novel and promising methodology for utilizing visual sensory information in

autonomous robotic navigation and flight control applications.
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Chapter 1

Introduction

Insects represent incredible efficiency and diversity, with millions of existing species backed

by over 350 million years of evolutionary design. Flying insects, in particular, are micro-

miniaturized packages capable of efficient and effective visual-based navigation. In spite of

the size and simplicity of their nervous systems, they represent the highest standard for

performance and robustness in flight control and navigation of uncertain environments. On

the other hand, local maneuvering and obstacle avoidance in cluttered environments poses

a significant challenge for autonomous, unmanned aerial vehicles (UAVs) in operational sce-

narios. With the current limitations, agile, near-ground flight is impractical. Simple, robust,

and lightweight solutions are required for autonomous behavior to be achievable within the

power, weight, and size constraints of a miniature UAV. Despite these challenges, artificial

vision-based systems appear to be essential to the development of truly autonomous UAVs,

especially for near-ground flight.

A characteristic of typical vision sensors is that they provide a vast amount of infor-

mation at any given time instant. Hence, any successful vision-based navigation algorithm

must be able to rapidly and intelligently parse this information to provide appropriate motor

control signals at required servo rates. Current research in autonomous visual navigation

has focused on several useful, but complex algorithms that involve (but are not limited

to) feature detection, extraction, and classification as well as simultaneous localization and

mapping (SLAM). Nature, on the other hand, has developed elegant and simple solutions

to the problems of perception and navigation as evidenced by a comparison of the computa-

tion power required for implementation. Insect brains pack approximately 330,000 neurons

– about 2/3 of which are dedicated specifically to visual processing – in a volume smaller

than a sesame seed, whereas typical robotic platforms that implement the algorithms de-
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scribed above require several state of the art computer processors. If one does a neuron to

transistor comparison, there is a difference of several orders of magnitude, all without the

accompanying performance and robustness that is seen in nature. The fundamental prin-

ciples inherent to insect navigation are both elusive and promising candidates for closing

the considerably large gap in performance and robustness that exists between biological

systems and their robotic counterparts.

As the important details of the biology are uncovered through behavioral and neuro-

physiological studies, the challenge is not only to develop appropriate mathematical models

of these processes but also to understand how information is integrated at the system level

to control locomotion. This thesis, through rigorous modeling and characterization of the

control-relevant information available through wide-field integration of retinal image flow,

is a dedicated effort to unravel the visuomotor convergence properties that provide the

performance and robustness that is seen in the natural world.

1.1 Review of the Insect Visuomotor System

Prevalent in many natural sensory systems is the phenomenon of sensorimotor convergence,

wherein signals from arrays of spatially distributed and differentially tuned sensors converge

in vast numbers onto motor neurons responsible for controlling locomotive behavior. A

prime example occurs in the processing of retinal image pattern movement (optic flow) by

the visuomotor systems of insects (Figure 1.1). Insect visual systems encode optic flow by

combining motion estimates from arrays of local movement detectors in a way that preserves

the spatial layout of the retina [15]. This spatially preserved motion information is parsed

by wide-field motion sensitive interneurons in the lobula plate section of the visual ganglia

(called tangential cells, or LPTCs for short). The output of these neurons is communicated

via decending neurons to the motor control centers, creating a sensory processing front end

that spatially integrates the optic flow [6]. This visuomotor convergence technique, spatial

wide-field integration, is presumed to be used by insects to extract behaviorally relevant

information from optic flow patterns to modulate the kinematics of flight.

Early Stages of Visuomotor Processing

As an insect moves through an environment, patterns of luminence form on the retina
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Figure 1.1: Visuomotor system of Drosophila

of the compound insect eye. The individual units of the eye, or ommatidia, are essentially

bundles of photoreceptors that provide an estimate of the brightness over a specific patch of

the visual space. In the case of Drosophila melanogaster, the 1400 ommatidia (700 per eye)

can sample roughly 85% of this visual space [34]. Photoreceptor axons synapse in the region

of the insect brain called the visual ganglia, composed of three successive layers termed the

lamina, the medulla, and the lobula complex. The lobula complex is composed of two

regions, the lobula and the lobula plate, that receive input in parallel from the medulla.

Shown in Figure 1.1 is the pathway through the lobula plate, as this is the processing layer of

interest. These layers of neuropile maintain the spatial organization of photoreceptor inputs,

and therefore relationships between adjacent ommatidia are conserved within the nervous

system [6]. The patterns that form on the retina are time dependent and are a function of

the particular kinematics of the motion as well as the spatial layout of the environment [41],

and therefore contain critical information useful for stabilization and navigation tasks. The

magnitude and direction of these local image shifts, taken over the entire visual space, form
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what is known as the retinal motion field, also called the optic flow field.

Insect visuomotor systems do not have access to this field directly; however, it is hy-

pothesized that they compute local estimates based on two-dimensional arrays of movement

detectors [15]. Reichardt and Hassenstein proposed an elementary local motion detection

model [48], consisting of asymmetrical input channels correlated with a nonlinear (multi-

plicative) element. Due to the dynamics inherent to this structure, a perfect estimate of

local image velocity is not possible, but rather it depends characteristically on the structure

and properties of the retinal pattern [26], [50]. This arrangement forms a discrete array of

directionally selective and spatially organized estimates that is subsequently passed to the

wide-field sensitive visual interneurons in the lobula plate section of the visual ganglia, also

known as the tangential cells (Figure 1.1).

Wide-Field Motion Sensitive Tangential Neurons

Organized in the third visual neuropile of each hemisphere, a region referred to as the

lobula plate (Figure 1.1), are approximately 60 tangential interneurons (LPTCs) that re-

ceive spatially organized dendritic input from local movement detectors [5], [43]. Early

experimental research showed these neurons to be an essential component of visually medi-

ated behaviors [24], [33]. Axons typically project to three locations including the outputs

of the visual ganglia (descending cells), the contralateral half of the brain, and others,

termed centrifugal cells, are presynaptic in the lobula plate and postsynaptic in the central

brain [30], [23]. Descending cells, which receive dendritic input from LPTCs, drive mo-

tor neurons controlling the steering muscles of the mechanosensory halteres, which provide

input to neurons controlling wing kinematics [22], [29].

Early studies of these neurons focused on structure, arrangement, and synaptic connec-

tivity [62]; however, recent developments in experimental capabilities have provided various

classifications based on response characteristics (for an extensive review, see [6]). Notable

are the groups of horizontal (HS) cells [31] and vertical (VS) cells [35], whose receptive field

organization and response characteristics have been studied extensively [32], [42]. Due to

their receptive field structure, which is similar to the equivalent projected velocity fields for

certain cases of rotary self motion, these neurons are thought to contribute to stabilization

and course control [42], [16]. In addition, there is evidence for existence of more compli-

cated, translational-like pattern sensitivities as seen in the Hx cells [42]. Significant progress
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has been made in understanding how insect visual systems encode behaviorally relevant in-

formation [16]; however, the exact functional role that each of these neurons hold in the

stabilization and navigation system of the fly remains a challenging and open question.

1.2 The Matched Filter Concept

Since optic flow was first recognized as a critical source of information [25], there has been

considerable interest in adapting this type of sensory system for bio-inspired autonomous

navigation. One concept that has recently received a significant amount of attention is

that of the biological matched filter [67], where the neural images formed from sensory

inputs are compared with pre-determined templates, presumably to assist in determination

of behavioral responses. As receptive field structure of particular VS and HS tangential

cells [32], [42] have revealed similarites to the equivalent projected velocity fields for certain

cases of rotary self motion, it has been postulated [43] that LPTCs extract particular types

of self-motion from optic flow fields.

Investigations comparing VS neuron receptive field organizations and matched filter

models based on rotary optic flow fields have been performed [19]. The models, comprised

of weighted sums of optic flow components, were generated using an optimality principle

that minimized the variance of filter output caused by noise and variability of the distance

distribution from scene to scene. In order to perform these calculations, knowledge about

the distance statistics of the environment, self-motion, and EMD noise had to be assumed.

It was concluded that some of the VS neurons are optimized for detecting the sign of rotary

optic flow about selected axes; however none were able to code the rotation rate.

In a classical linear estimation approach, the same type of LPTC-based processing model

mentioned above has been investigated as an estimator for robot kinematic states directly

from observed optic flow [18]. In this case, however, the quadratic error in the estimated

motion parameters was minimized instead of output variance about fixed motion axes. To

compute the weights used in the estimator, prior knowledge about the particular environ-

mental distance distribution and about the noise and egomotion statistics of the sensor were

used. In order to compute the distance statistics, a robot was sent around the environment

along prescribed trajectories recording the distance information. From the measurements,

an average distance and covariance were computed. The noise statistics were determined
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by presenting the flow algorithm with artificially translated images of the laboratory en-

vironment. It was concluded that with the aid of detailed prior knowledge of the specific

environment, rotation estimates were fairly reliable; however translation estimates were

difficult due to variability of spatial structure from scene to scene.

There are several points that should be noted regarding the performance of these types

of matched filter implementations. Firstly, optic flow is inherently a relative measurement;

that is to say, it is a measure of effective angular image velocity or speed/depth. The imple-

mentations described above are attempting to estimate absolute quantities (rotational and

translational velocities) that would presumably be utilized in a closed feedback loop. The

difficulty is evident when you consider utilizing the approach above for estimating the same

egomotion for a robot that is translating through two distinct environments. The motion

is the same, but the optic flow, and more specifically the estimated egomotion parameters,

can be drastically different from environment to environment. Secondly, detailed statis-

tics regarding the particular environment as well as the noise and egomotion of the sensor

were required in order to achieve the results obtained. Presuming that insects do collect

this information, as evidenced by the fact that LPTC receptive field organization does not

depend on visual experience [39], the navigational robustness of insects with respect to dif-

ferent environments suggests other principles might be at work. Lastly, it has been shown

that the particular receptive field sensitivites that have been measured experimentally are

not optimal for extracting the magnitude of rotational and translational velocity measure-

ments when utilized in estimation approaches described above, and at most can predict the

presence and the sign of a specific egomotion component [11].

1.3 Global Optic Flow Cues for Navigation

While there have been extensive research efforts focused on understanding the neurobiology

of the insect visuomotor system, there have also been efforts that have focused on under-

standing the function of this complex sensory and control system from a behavioral point of

view. In this context, LPTCs are interpreted as an intermediate processing layer that ex-

tracts specific global cues from the complicated patterns of retinal motion that presumably

are useful for navigational and stabilization tasks. Most notably, the classical optomotor

response has received a significant amount of attention over the past 40 years [27], [28], [49].
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Figure 1.2: Navigation with global optic flow cues. (A) The centering response; insects
adjust their flight path in order to balance the effective angular velocity induced by wall
motion. (B) The forward speed regulation response; insects modulate forward speed based
on the average global image velocity.

In these investigations it was found that the visuomotor systems of tethered flies robustly

generate torques to minimize large-field rotational motion on their retinas.

Recently explored behaviors have shown that visual cues derived from optic flow might

be used to accomplish far subtler tasks [56]. In experiments with honeybees, centering and

forward speed regulation responses were studied [58], [60], and in Drosophila, the forward

speed regulation response was studied in [12]. These reflexive behaviors are different from

the optomotor response in a very fundamental way; the optomotor response attempts to

regulate a retinal equilibrium of zero image velocity, whereas the centering and forward

speed responses regulate nonzero retinal image motion patterns. This suggests that insects

might be attempting to regulate spatial structure of retinal image flow instead of a global

average or uniform balance, as previously hypothesized, over the two hemispheres.

The centering response states that in order to negotiate a narrow gap, an insect must

balance the speeds of the image velocity on each retina. This heuristic was postulated

based on the well-known facts that insects have immobile eyes with fixed-focal length optics

and hence are unable to reliably estimate range to objects via binocular stereopsis [59]. In

experiments bees were trained to fly down a tunnel to collect a sugar reward. The flight

paths of the bees were investigated as a wall of the tunnel aparatus, consisting of a grated
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pattern, was given motion. With no wall motion, the flight path of the bees tended to be

directly down the center. However, when the wall was given motion, the flight paths of the

bees shifted. For motion along (against) the flight direction, the induced image velocity

on the corresponding retina is reduced (increased), and hence the flight paths were seen to

shift towards (away from) the moving wall. The conclusion from the experiments is that

the bees were in some sense balancing the image speeds on their retinas.

The forward speed regulation response, in this case of Drosophila, was investigated

in [12]. In these experiments flies navigating a cylindrical tunnel were held stationary by

rotating the walls of the cylinder, and hence inducing backward pattern motion indicative

of forward flight. The flies were also observed to modulate thrust to compensate for wind

in order to hold the angular velocity of the image constant. In separate experiments this

behavior was investigated in bees using a converging-diverging tunnel aparatus [60]. As

bees negotiated the tunnel, they were found to regulate their forward speed in proportion

to tunnel width, i.e., a more narrow tunnel dictates a reduced speed. The conclusion was

that the bees were holding the apparent angular velocity of the retinal image induced by

the walls at 320 deg/s.

1.4 Visually Mediated Wind Disturbance Rejection

Recent experimental results [64] demonstrate that flies posses a robust tendency to orient

towards the frontally-centered focus of the visual motion field that typically occurs during

upwind flight. In these experiments large-field visual motion stimuli were presented in open

loop to tethered flies (Figure 1.3). A–D shows the averaged turning response of the flies

measured from an optical sensor that records wing activity. Figure 1.3A corresponds to

the classic optomotor response [27], in which the fly responds to coherent full field rotatory

motion by turning to minimize retinal slip. The plots in B and C show the mean response of

the fly to front- and rear-field rotatory motion. The response in A is shown to be the sum of

the responses in B and C (dashed line). However, the response in C, clearly contradicts the

predictions of the optomotor response, since the attempted turn is not in the direction that

would minimize the rotatory stimuli. The response in D shows that the strongest response is

obtained when the fly attempts to orient towards a contracting focus of the motion stimulus.

This shows that the fly can detect the location of the visual focus of contraction (or is doing
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Figure 1.3: Open loop visuomotor reflexes in Drosophila. (A-D) The quantity plotted on
the vertical axis is the difference between the right and left wing beat amplitudes measured
by an optical sensor. Each trace represents the mean ± S.D. (shaded area), from 10 flies.
These data have been replotted from Tammero et. al., 2002. (E) Experimental setup.
Tethered flies are presented with visual stimuli, and the left minus right wingbeat response
is measured using an IR-based wingbeat analyzer.

something functionally equivalent). The focus of contraction (expansion) is the point of

no motion in a velocity field induced by pure translation, which all motion vectors point

towards (away from). These data suggest that a control algorithm based on feedback of the

movement of the visual focus of contraction could be used to detect wind direction, since

upwind flight induces a frontally centered focus of the visual motion field.

In [51] we sought to answer the question of how an insect is able to extract this global

optic flow cue based on the known visual processing capabilities available through the lobula

plate tangential cells. As the experimental evidence described in Section 1.1 suggests,

LPTCs perform a spatial decomposition of the retinal motion field. Mathematically, this

operation can be represented by an inner product (Appendix A) between the instantaneous

optic flow field and a set of spatially defined functions representing the visual motion pattern

sensitivity of each specific LPTC. Under a planar model assumption, both the optic flow
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Figure 1.4: Open loop visuomotor reflexes in Drosophila. (A) Open loop visual stimulus
pattern as a function of the retinal viewing angle γ. (B) Open loop response as a function
of the position of the focus of expansion on the retina of tethered animals. The quantity
plotted on the vertical axis is the difference between the right and left wing beat amplitudes
measured by an optical sensor. (C) Open loop response of the visual turning model as a
function of the focus of expansion position.

stimulus Q̇ and the pattern sensitivity F , representing a left and right hemispherical pair of

LPTCs, are 2π-periodic functions of the body-fixed retinal viewing angle γ. The open loop

optic flow stimulus presented in the experiments of [64] depends on radius of the arena R,

the magnitude of optic flow v0/R, and the location of the focus of expansion on the retina

θ (Figure 1.4A). Described as a spatial Fourier series expansion in terms of γ,

Q̇(γ, θ) =
4v0
πR





∞
∑

n=1,3,5,...

cosnθ

n
sinnγ −

∞
∑

n=1,3,5,...

sinnθ

n
cosnγ



 , (1.1)

with amplitudes of the cosine and sine spatial harmonics

an(θ) =
1

π

∫ 2π

0
Q̇(γ, θ) · cosnγ dγ = − 4v0

πRn sinnθ

bn(θ) =
1

π

∫ 2π

0
Q̇(γ, θ) · sinnγ dγ = 4v0

πRn cosnθ. (1.2)
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If we assume the following visuomotor control model for yaw torque

T (θ) = 〈Q̇(γ, θ), F (γ)〉, (1.3)

along with a LPTC motion pattern sensitivity

F (γ) = cos γ, (1.4)

then the open loop turning response is

T (θ) = −4v0
πR

sin θ, (1.5)

which corresponds to the first spatial harmonic of optic flow a1(θ) from (1.2). Open loop

turning response experiments were performed in [64], whose data is replotted in Figure 1.4B

along with the open loop model response (1.5) in Figure 1.4C. The simple model of open

loop visual response is shown to be in remarkable agreement with the behavioral data from

the tethered Drosophila.

Based on these results, a closed loop planar insect flight model was constructed, with a

control algorithm based on feedback of the location of the visual focus of contraction. The

equations describing the dynamics and the actuation were based on current understanding

of the biomechanics and aerodynamics [52], [21], and the optic flow was assumed planar

and generated by a motion with respect to a homogeneous and uniform spatial distribution

of objects in the environment. Under these assumptions, feasibility of visually mediated

upwind orientation was demonstrated in the range of behaviorally relevant wind speeds

(0.4 to 1.2 m/s).

1.5 Thesis Contributions and Organization

The experiments in [64] and modeling effort in [51] provide an initial step in the verifi-

cation of the hypothesis that LPTCs extract global optic flow cues for use in navigation

and stabilization, in contrast to more traditional suggestions that LPTCs might be used

as direct estimators of kinematic states [18]. However, these efforts have assumed that the

environment has a homogeneous and uniform spatial distribution of objects. In order to
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generalize the conclusions to free flight behavior, as well as develop optic flow based method-

ologies for autonomous robotic guidance and navigation, we must relax the uniformity and

homogeneity assumptions on the environment.

As will be shown in Chapter 2, there are two critical pieces of information available

from retinal motion fields; body frame kinematics, useful for vehicle stabilization, and the

spatial layout information of the environment, useful for guidance and navigation tasks.

Experimental evidence suggests (Section 1.1) that LPTCs decompose complicated 2-D vi-

sual motion fields into approximately 120 separate outputs that are available to the motor

control centers of the insect. In this thesis, a spatial inner product model for LPTCs is

proposed and analyzed with an emphasis on extraction of behaviorally relevant optic flow

cues. General retinal motion pattern sensitivities are assumed, and using the intuition from

the corresponding decomposition, retinal sensitivity functions are constructed that provide

stabilization of behaviors such as obstacle avoidance via a centering response, forward speed

regulation, hover, and terrain following. The computationally efficient wide-field integration

outputs require no direct estimation of depth or kinematic states, nor any prior knowledge

of the environment. A general theory of planar optic flow based navigation and flight con-

trol is presented, demonstrating that the global optic flow cues extracted by LPTCs, which

are generalized combinations of speed/depth, provide control-relevant information, as well

as a novel methodology for utilizing optic flow sensory information in bio-inspired robotic

applications.

In Chapter 2, a control-theoretic version of the equations that describe general spheri-

cal optic flow fields [41] for 3-D environments and 6 DOF dynamics is developed, which is

required for a rigorous mathematical analysis of LPTC retinal motion processing. Specif-

ically, the previous discretization of the environment into a finite number of rigid fiducial

points [41] is replaced with a spatially continuous representation (that is, a representation

that is a function of a set of continuous spatial independent variables) called the nearness,

which is the inverse of the distances to the nearest objects along any direction from a gen-

eral vantage point that is the center of a spherical retina. The rotational and translational

contibutions to the retinal motion field are rewritten in a spherical coordinate-based linear

operator formulation with the velocity dependence expressed in terms of quantities that are

of interest for feedback control, namely the yaw, pitch, and roll rates for rotational velocity

and forward, vertical, and sideslip translational velocities. Two special cases (horizontal
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and vertical cross sections) of 1-D tangential optic flows corresponding to 3DOF planar

motion are examined.

A model for wide-field integration of planar optic flow, corresponding to LPTC process-

ing, is formalized in Chapter 3. It is shown that the set of all possible wide-field integration

outputs is characterized by the spatial Fourier coefficients of the planar optic flows from

Chapter 2. In addition, these Fourier coefficients are characterized in terms of the body

frame linear and angular velocity and the spatial harmonics of the nearness function. Inter-

pretations of these wide-field integration outputs for arbitrary environments are presented,

which suggest a general methodology for stabilization of various navigational tasks. Es-

sentially, by balancing various spatial harmonics of optic flow, we can obtain generalized

feedback terms in relative units of speed/depth that are functions of rotational and lateral

stiffness with respect to flight trajectories that avoid objects in the environment, as well

as terms that contain rotational, lateral, and forward velocities, which are useful for closed

loop stabilization and performance.

Obstacle avoidance and forward speed regulation is discussed in Chapter 4, with appli-

cations to planar wheeled robots and hovercraft. A static output feedback control structure

is proposed, where force and torque inputs are computed (as would be the case with LPTCs)

by taking the inner product of the instantaneous optic flow with pre-determined sensitivity

functions for each required control input. Based on the analysis of the spatial Fourier de-

composition of planar optic flows in Chapter 3, the connection between the retinal motion

sensitivity function shape and its corresponding contributions to closed loop rotational and

lateral stiffness and damping is formalized. Sensitivity function shape is then tied to be-

havior (closed loop eigenvalues) via a local asymptotic stability analysis. It is shown that

the proposed methodology has sufficient complexity to give rise to the centering (obstacle

avoidance) and clutter (forward speed regulation) responses exibited in experiments with

insects, which were discussed in Section 1.3. Simulations of centering and forward speed

regulation responses, as well as navigation of general environments, are presented.

In Chapter 5, wide-field integration outputs are coupled to pitch-altitude dynamics

of rotorcraft. Using the same analytical approach as in Chapter 4, hovering and terrain

following behaviors are stabilized. In this case, however, hover stabilization required a pitch

(attitude) estimate as the rotational stiffness provided by forward motion is not available at

the desired equilibrium point. Presumably this attitude estimate can be obtained by insects
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from other sensory modalities, such as the visual-based ocelli [61]. As for the stabilization

of the terrain following behavior, an absolute estimate of either forward velocity or altitude

is required for zero steady-state error (a velocity estimate was assumed). This is due to

the fact that wide-field integration outputs are derived from an optic flow field that is a

relative speed/depth measurement. In the case of navigation between obstacles (centering

response), the goal is to fly in between them so this problem is not encountered. Simulations

of hovering and terrain following behaviors over general surfaces are presented.
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Chapter 2

A Spatially Continuous Model of

Optic Flow on the Sphere

Conceptually, the term true optic flow refers to the velocity field produced by motion of a

projected image over the surface of the retina. This velocity field depends on the geometry

of the retinal surface, the motion of the retinal vantage point, and the spatial distribution

and motion of objects in the environment. Insects, who possess relatively simple visual

systems, cannot measure this velocity field directly. However, they are able to compute es-

timates based on the spatiotemporal patterns of luminance values sensed by their compound

eyes, which are large arrays of photoreceptors [4]. Moreover, the arrays of local movement

detectors thought to perform the estimation, which are postsynaptic to the photoreceptors,

depend on stimulus characteristics unrelated to motion. Hence, it is important to note the

distinction between true optic flow, which is a purely geometric object, and what is more

traditionally known as optic flow, the estimate provided by local motion detection that

depends on structure, contrast, and spatial wavelength of retinal patterns [6], [26], [50].

In this thesis the idealized case of “true optic flow” will be considered, henceforth refered

to as “optic flow,” along with the assumption that the objects in the environment are

fixed with respect to an inertial frame. The latter approximation is known as the rigidity

hypothesis, described in [40]. The work presented will be restricted to a spherical retinal

geometry; however the analysis approach adopted is completely general and can be applied

to any assumed geometry.
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Figure 2.1: Optic flow field geometric definitions.

2.1 Review of Spatially Discrete Optic Flow

The basic set of equations that specify a general spatially discrete optic flow field for a

spherical retinal surface geometry and an environment composed of j = 1 . . . N rigid fiducial

points (Figure 2.1) was developed in [41]:

Q̇j = −ω × Qj −
1

rj

[

v − 〈v,Qj〉Qj

]

. (2.1)

A fiducial point j is located with respect to the vantage point, i.e., the origin of the rigidly

attached body frame coordinate system B = (êxb
, êyb

, êzb
), by a vector rj ∈ R

3 with

magnitude rj = ‖rj‖ along marker Qj = rj/rj . In this formulation, the motion parallax

Q̇j = Q̇ω,j + Q̇v,j is defined as the time derivative of the marker Qj ∈ S2, which has

contributions from both the angular and linear velocities ω,v ∈ R
3 of the body frame B

with respect to an inertial frame I = (êx, êy, êz). The rotational contribution,

Q̇ω,j = −ω × Qj , (2.2)

produces a velocity field independent of the distances to objects in the environment. The

translational contribution,

Q̇v,j =
1

rj

[

v − 〈v,Qj〉Qj

]

, (2.3)

is the relative linear velocity of the fiducial point, scaled inversely by the distance, with the

radial component removed. Collectively, the set of markers and motion parallax vectors
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{Qj , Q̇j , j = 1 . . . N} compose a general spatially discrete optic flow field. However, we will

use the terms optic flow and motion parallax synonymously.

2.2 Spatially Continuous Optic Flow

Equation (2.1) is a composition of two critical pieces of information: the vantage point

motion, useful for the flight stabilization task, and the spatial distribution of objects in the

environment, which is useful for navigation tasks such as obstacle avoidance and terrain

following. As noted in Chapter 1, it is presumed that insect visual systems extract these

types of control-relevant information by parsing the optic flow field via wide-field pattern

sensitive neurons. A thorough and rigorous analysis of the information available from this

sensory process from a system viewpoint will require a control-theoretic version of the 3-D

optic flow field (2.1). In this section we develop a body-frame-relative spherical coordinate

representation Q̇ = Q̇γ êγ + Q̇β êβ with a continuous formulation of the spatial distribution

of objects in the environment and kinematics ω,v expressed in body frame coordinates

(Figure 2.2B).

For a continuous representation of the spatial distribution of the environment, the in-

stantaneous set of distances to the fiducial points {ri, i = 1 . . . N} becomes a function of

the azimuth and elevation (Figure 2.2A) angles r(γ, β) : [0, 2π] × [−π
2 ,

π
2 ] 7→ (0,∞). Im-

plicit to this definition, r also depends on the particular environment as well as the vantage

point configuration q(t), i.e., the position and orientation within that environment. We

expect this function to take on values from (0,∞) and contain discontinuities, especially in

a cluttered object field. By explicitly disallowing contact r(γ, β,q) = 0, we ensure that the

reciprocal, defined as the nearness,

µ(γ, β,q) =
1

r(γ, β,q)
, (2.4)

is a bounded, piecewise continuous function with a finite (countable) number of discontinu-

ities and at each instant in time is restricted to the space of square integrable functions

L2 ([0, 2π] × [0, π]) =

{

f : [0, 2π] × [−π
2
,
π

2
] → R :

∫ 2π

0

∫ π

0
|f(γ, β)|2 dγdβ <∞

}

.
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Figure 2.2: Spherical retinal geometry. (A) Azimuth and elevation angles (B) Spherical
optic flow components Q̇γ and Q̇β .

2.2.1 Rotational Optic Flow

We would like to express the optic flow in terms of quanities that are useful for feedback

control; hence we define the roll, pitch, and yaw rates as the projections of the body frame

angular velocity ω onto the unit directions for B,

ω = ψ̇ êxb
+ φ̇ êyb

+ θ̇ êzb
. (2.5)

For this spatially continuous formulation, we express a general point on the sphere Q ∈ S2

in terms of the azimuth γ and elevation β angles in B (Figure 2.2A):

Q(γ, β) = cos γ cosβ êxb
+ sin γ cosβ êyb

+ sinβ êzb
, (2.6)

Now considered as an operator Q̇ω : R
3 7→ R

3, the map ω 7→ −ω × Q is linear and has a

skew-symmetric matrix representation

Q̂(γ, β) =











0 − sinβ sin γ cosβ

sinβ 0 − cos γ cosβ

− sin γ cosβ cos γ cosβ 0











.

Hence, the rotational optic flow field in B coordinates is given by

Q̇ω = Q̂ω. (2.7)
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2.2.2 Translational Optic Flow

As in the rotational contribution, we define the forward, lateral, and vertical velocities as

projections of the body frame linear velocity v onto the unit directions for B:

v = ẋb êxb
+ ẏb êyb

+ żb êzb
. (2.8)

Using the definition (2.6), the operator v 7→ v − 〈v,Q〉Q can be written compactly as

(

I − QQT
)

(γ, β) =











1 − cos 2γ cos 2β − cos 2β sin γ cos γ − cos γ sinβ cosβ

− cos γ sin γ cosβ2 1 − sin 2γ cos 2β − sin γ sinβ cosβ

− cos γ sinβ cosβ − sin γ sinβ cosβ 1 − sin 2β











.(2.9)

To obtain the translational optic flow field in B coordinates, we scale (2.9) by the nearness

function (2.4):

Q̇v = µ
(

I − QQT
)

v. (2.10)

2.2.3 Spherical Coordinates

As noted in Section 2.1, the action of (2.10) is to extract the radial component from the

velocity field of stationary objects relative to the moving body frame B. Therefore, for

an arbitrary point Q(γ, β) ∈ S2 on a spherical sensor or retina, the resulting translational

optic flow vector is a projection of the relative velocity of the point on the nearest object

along direction Q into the tangent space TQS2 at the point Q, i.e.,

(

I − QQT
)

: R
3 7→ TS2. (2.11)

The same result may be concluded regarding the action of (2.7):

Q̂ : R
3 7→ TS2. (2.12)
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Therefore, it makes sense to put (2.7) and (2.10) into spherical coordinates, by applying

the transformation from rectangular coordinates

R =











cos γ cosβ sin γ cosβ sinβ

− sin γ cos γ 0

− cos γ sinβ − sin γ sinβ cosβ











.

The resulting spherical coordinate representation Q̇ = Q̇γ êγ + Q̇β êβ is given by

Q̇ = Aω + µBv. (2.13)

The matricies A(γ, β) = RQ̂ and B(γ, β) = −R
(

I − QQT
)

, reflecting the spherical retina

geometry, are given by

A(γ, β) =





sinβ cos γ sinβ sin γ − cosβ

sin γ cos γ 0





B(γ, β) =





− sin γ cos γ 0

− sinβ cos γ − sinβ sin γ cosβ



 .

It is further assumed that the kinematics q̇ = (v,ω) of the body frame B are bounded,

piecewise-continuous functions of time; hence the instantaneous optic flow components Q̇γ

and Q̇β , given by (2.13), are restricted to the function space L2

(

[0, 2π] × [−π
2 ,

π
2 ]
)

.

2.3 Planar Optic Flow

For planar guidance and navigation applications where rigid body motion is restricted to

3 DOF (planar translation with single-axis rotation) we will consider two special cases of

general spherical optic flows (2.13).
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Figure 2.3: Horizontal cross-section optic flow definitions.

2.3.1 Horizontal Applications

The tangential and normal optic flow components Q̇γ and Q̇β for the circle defined by the

intersection of S2 and the plane β = 0 (Figure 2.3B) are given by

Q̇γ = −θ̇ + µ(γ, 0,q) (ẋb sin γ − ẏb cos γ) (2.14)

Q̇β = −ψ̇ sin γ + φ̇ cos γ − µ(γ, 0,q) żb (2.15)

For motion restricted to the plane β = 0, we define the vehicle configuration q = (x, y, θ)

and velocity q̇ = (ẋb, ẏb, θ̇) with respect to an inertial (static) environment. Under these

conditions, the normal component Q̇β is zero, and the tangential component Q̇γ becomes a

2π-periodic function of the vehicle-referred viewing angle γ. Clearly for fixed t, µ(γ, 0,q) ∈
L2[0, 2π] and therefore Q̇γ ∈ L2[0, 2π]. For notational convenience we will refer to the

planar nearness function for the environment of interest as µ(γ,q), noting the dependence

on components of the configuration of the vehicle. In addition we will drop the γ subscript

and refer to the tangential optic flow component as Q̇(γ,q, q̇), noting the dependence on

the vehicle’s configuration and velocity:

Q̇(γ,q, q̇) = −θ̇ + µ(γ,q) (ẋb sin γ − ẏb cos γ) . (2.16)
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Figure 2.4: Vertical cross-section optic flow definitions.

2.3.2 Vertical Applications

The tangential and normal optic flow components Q̇γ and Q̇β for the circle defined by the

intersection of S2 and the plane γ = 0 (Figure 2.4) are given by

Q̇γ = ψ̇ sinβ − θ̇ cosβ − µ(0, β,q) ẏb (2.17)

Q̇β = φ̇+ µ(0, β,q) (ẋb sinβ − żb cosβ) (2.18)

For motion restricted to the plane γ = 0, we define the vehicle configuration q = (x, z, φ)

and velocity q̇ = (ẋb, żb, φ̇) with respect to an inertial environment. We let β span the circle,

i.e., β ∈ [0, 2π], and for notational convienience redefine the sign convention of φ such that

it agrees with that of the β coordinate. Under these conditions, the component normal to

the circle Q̇γ is zero, and the component tangent to the circle Q̇β becomes a 2π-periodic

function of the vehicle-referred viewing angle β. Clearly for fixed t, µ(0, β,q) ∈ L2[0, 2π]

and therefore Q̇β ∈ L2[0, 2π]. As in the horizontal case, we will refer to the planar nearness

function for the environment of interest as µ(β,q), noting the dependence on components

of the configuration of the vehicle. In addition we will drop the β subscript and refer to

the tangential optic flow component as Q̇(β,q, q̇), noting the dependence on the vehicle’s

configuration and velocity:

Q̇(β,q, q̇) = −φ̇+ µ(β,q) (ẋb sinβ − żb cosβ) . (2.19)
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Chapter 3

A Model for Wide-Field

Integration of Optic Flow

3.1 Planar Optic Flow Processing Model

For this treatment we will represent the lobula plate tangential cells (or ispi- and contralat-

eral pairs as may be appropriate) by a general weight Fi(γ) ∈ L2[0, 2π], which models their

sensitivity to retinal motion patterns (Figure 3.1A). Weights Fi(γ) are essentially a spatially

distributed set static gains that are applied to the output at the corresponding local motion

detectors at retinal azumuthal positions γ (Figure 3.1B). With the analysis presented in

this chapter, we are interested in characterizing the available information relevant for use

in closed loop feedback. We expect these retinal motion pattern sensitivities to be piece-

wise continuous and square-integrable; hence the restriction to the function space L2[0, 2π].

For this analysis we will also assume that optic flow estimation processing (photoreceptors

and local motion detectors) have negligible dynamics, that is, wide-field spatial integration

(henceforth WFI) can be modeled in entirety by a transformation W , representing a spatial

inner product over the circle S1 with the optic flow kernel

Q̇(γ,q, q̇) = −θ̇ + µ(γ,q) (ẋb sin γ − ẏb cos γ), (3.1)

which acts on elements Fi(γ) to produce a sensor output signal zi(q, q̇), hence

W : Fi ∈ L2[0, 2π] 7→ zi ∈ R.
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The transformation W defined by zi = WFi can be represented as a linear functional using

the inner product structure available (A.0.2) on L2[0, 2π]:

zi(q, q̇) = 〈Q̇, Fi〉w =
1

π

∫ 2π

0
Q̇(γ,q, q̇) · Fi(γ) dγ. (3.2)

The inner product (3.2) has been defined with a factor of 1/π to be compatible with the

typical Fourier harmonic component definition so that later notation is simplified.

3.2 Characterization of WFI Outputs

We are interested in characterizing the set of all possible sensory outputs available within

this model and their dependency on vehicle motion and spatial distribution of objects in the

environment. Since L2[0, 2π] is a separable Hilbert space, per (A.0.1) a countably infinite

orthonormal basis {φn(γ)} exists. For every instant in time, the optic flow (3.1) resides in

L2[0, 2π]; therefore also by (A.0.1) we are guaranteed a unique generalized Fourier series

expansion

Q̇ =
∑

n

〈Q̇, φn〉 φn.

For the orthonormal basis (A.0.2)

Φ = {1/
√

2} ∪ {cosnγ : n ∈ Z
+} ∪ {sinnγ : n ∈ Z

+}, (3.3)

the expansion becomes

Q̇ =
a0

2
+

∞
∑

n=1

an cosnγ +
∞
∑

n=1

bn sinnγ,
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Figure 3.1: (A) Visuomotor system of insects. Wide-field retinal motion sensitive interneu-
rons (tangential cells) parse spatially-preserved visual information and transmit it to motor
control centers. (B) WFI processing model. Spatial modes zi(x) of optic flow are extracted
by retinal motion sensitivity kernels Fi.
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where the Fourier coefficients of the optic flow, which are functions of the configuration and

velocity, are defined as

a0(q, q̇) = 〈Q̇, 1/
√

2〉w =
1

π

∫ 2π

0
Q̇(γ,q, q̇)/

√
2 dγ

an(q, q̇) = 〈Q̇, cosnγ〉w =
1

π

∫ 2π

0
Q̇(γ,q, q̇) · cosnγ dγ

bn(q, q̇) = 〈Q̇, sinnγ〉w =
1

π

∫ 2π

0
Q̇(γ,q, q̇) · sinnγ dγ.

With some manipulations, we can re-write these expressions in terms of the vehicle velocity

q̇ = (ẋb, ẏb, θ̇) and the spatial harmonics {A0(q), Ak(q), Bk(q) : k ∈ Z
+} of the nearness

function µ(γ,q):

a0 = (−θ̇ + ẋbB1 − ẏbA1/
√

2

an =
ẋb

2
(−Bn−1 +Bn+1) −

ẏb

2
(An−1 +An+1) (3.4)

bn =
ẋb

2
(An−1 −An+1) −

ẏb

2
(Bn−1 +Bn+1) ,

where the nearness function has been expanded in the orthonormal basis Φ:

µ =
A0

2
+

∞
∑

k=1

Ak cosnγ +

∞
∑

k=1

Bk sinnγ,

and whose configuration-dependent Fourier series coefficients are defined as

A0(q) = 〈µ, 1/
√

2〉w =
1

π

∫ 2π

0
µ(γ,q)/

√
2 dγ

Ak(q) = 〈µ, cos kγ〉w =
1

π

∫ 2π

0
µ(γ,q) · cos kγ dγ

Bk(q) = 〈µ, sin kγ〉w =
1

π

∫ 2π

0
µ(γ,q) · sin kγ dγ.

Now, under the interpretation

WΦ = {a0} ∪ {an : n ∈ Z
+} ∪ {bn : n ∈ Z

+},

the equations (3.4) define the action of the linear transformation W : L2[0, 2π] 7→ R on a

basis Φ for the domain, and as such uniquely characterize the set of all possible wide-field
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Figure 3.2: Planar tunnel geometry. (A) Notation and vehicle configuration definitions (B)
Balanced planar nearness function µ(γ) and lateral/rotational perturbations of µ.

integration sensory outputs.

3.3 Interpretation of WFI Outputs

The relationships in (3.4) define how WFI outputs depend on vehicle velocity q̇ = (ẋb, ẏb, θ̇)

and object nearness µ : {A0, Ak, Bk : k ∈ Z
+} with respect to the vantage point configura-

tion q; however the intuition required to utilize them in closed loop feedback is not readily

apparent. In the following we consider several motivational examples that suggest a general

methodology for stabilization of various reflexive behaviors.

3.3.1 Planar Tunnel Geometry

As a first example, we consider a planar tunnel geometry (Figure 3.2A), which provides

a reasonable approximation to flight between two obstacles. In this case the nearness

function µ(γ,q) is independent of the axial position x and can be expressed in closed form

as a function of the lateral position y, body frame orientation θ, and the tunnel half-width

a:

µ(γ,q) =











sin (γ+θ)
a−y 0 ≤ γ + θ < π

− sin (γ+θ)
a+y π ≤ γ + θ < 2π

. (3.5)
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Table 3.1: Planar Tunnel Spatial Fourier Decomposition

Mode Balanced Perturbed Linearized Āk, B̄k Interpretation

A0
2

πa
2a

π(a2−y2)
2

πa Balanced

A1 0 y sin θ
(a2−y2)

0 -

B1 0 y cos θ
(a2−y2)

y
a2 Lateral Displacement

A2,4,... − 4
πa(k2−1)

− 4a cos kθ
π(a2−y2)(k2−1)

− 4
πa(k2−1)

Balanced

B2,4,... 0 − 4a sin kθ
π(a2−y2)(k2−1)

− 4kθ
πa(k2−1)

Rotary Displacement

A3,5,... 0 0 0 -

B3,5,... 0 0 0 -

For a perfectly centered vehicle (y, θ) = (0, 0), (3.5) reduces to |sin γ| /a, which has a Fourier

series expansion

µ(γ,q)|y,θ=0 =
2

aπ
−

∞
∑

k=2,4,6,...

4

aπ(k2 − 1)
cos kγ. (3.6)

Note that the expansion is composed of a DC component and even cosine harmonics

{Ak : k = 0, 2, 4, . . .} of decreasing amplitude only. Equation (3.6) represents the balanced

or equilibrium nearness shape (Figure 3.2B), as it corresponds to a position and orientation

along the centerline of the tunnel. For lateral and rotary displacements, the spatial har-

monics of the perturbed nearness function are computed in Table 3.1. Also shown are their

linearizations

Āk(q) = Ak(q0) +
∑

i

∂Ak

∂qi
(q0) · (qi − q0i)

B̄k(q) = Bk(q0) +
∑

i

∂Bk

∂qi
(q0) · (qi − q0i), (3.7)

with respect to the configuration variables q = (y, θ) at a reference configuration q0 = (0, 0).

From these linearizations it is clear that the B1 harmonic provides an estimate of the

lateral displacement (Figure 3.3A) while the B2 harmonic provides an estimate of the rotary

displacement (Figure 3.3B).
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Figure 3.3: Connections between WFI outputs and spatial structure of µ. (A) The B1

harmonic corresponds to a lateral displacement. (B) The B2 harmonic is a leading order
estimate of the rotation. (C) The B3 harmonic represents local curvature. (D) µ perturba-
tions in environments with higher order spatial structure; odd Bk correspond to a lateral
imbalance, even Bk correspond to a rotary imbalance, and odd Ak appear when there is a
coupled lateral/rotary imbalance.
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b1 =
ẋb

2
(A0¡A2)¡

ẏb

2
B2

Figure 3.4: Spatial interpretation of horizontal WFI outputs. Nearness function spatial
harmonics {A0, Ak, Bk, k ∈ Z

+} appear in one of four spatially significant combinations.

These results can immediately be generalized to environments with more complicated

spatial structure (Figures 3.3 C,D). Spatial harmonics of the nearness function appear in one

of four spatially significant combinations whose interpretation is shown in Figure 3.4. We

have defined even cosine harmonics {Ak : k = 0, 2, 4, . . .} to represent a balanced nearness

function; thus, the presence of even sine harmonics {Bk : k = 2, 4, . . .} indicates a rotary

imbalance, odd sine harmonics {Bk : k = 1, 3, 5, . . .} a lateral imbalance, and odd cosine

harmonics {Ak : k = 1, 3, 5, . . .} a coupled rotary/lateral imbalance.

3.3.2 Planar Surface Geometry

The planar surface geometry (Figure 3.5A) serves as a second motivating example; the

nearness function µ(β,q) is independent of the lateral position along the surface and can be

expressed in closed form as a function of the reference height h, body frame pitch orientation

φ, and the vertical height z above the reference:

µ(β,q) =











0 0 ≤ β + φ < π

− sin (β+φ)
z+h π ≤ β + φ < 2π

. (3.8)
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Figure 3.5: Planar surface geometry. (A) Rotorcraft geometry and kinematic definitions.
(B) Balanced planar nearness function µ(β) with altitude and pitch perturbations.

For the case z = 0 and φ = 0, (3.8) has a Fourier series expansion

µ|z=0,Φ=0 =
2

πh
− 1

2h
sinβ −

∞
∑

k=2,4,6,...

2

πh(k2 − 1)
cos kβ. (3.9)

Note that the expansion is composed of the fundamental sine harmonic B1, a DC component

and even cosine harmonics {Ak : k = 0, 2, 4, . . .} of decreasing amplitude. In this case, (3.9)

represents the balanced or equilibrium nearness shape (Figure 3.5B), as it corresponds to

level (φ = 0) flight over a plane at the reference height h, i.e., z = 0.

The Fourier series for general rotary and altitude perturbations (φ 6= 0, z 6= 0) from

this equilibrium configuration can also be computed, and the terms are shown in Table 3.2.

For rotary perturbations φ 6= 0 we see that new spatial harmonics appear, specifically the

fundamental cosine harmonic A1, in proportion to sinφ, along with even sine harmonics

{Bk : k = 0, 2, 4, . . .}, in proportion to sin kφ. The amplitudes of the nominal harmonics

present in the balanced nearness shape (3.9) are also influenced for φ 6= 0 as they appear in

proportion to cos kφ. Altitude perturbations z 6= 0 have the effect of scaling the amplitudes

of all the harmonics present by h/(z+h). Also shown in Table 3.2 are the linearizations with

respect to the configuration variables q = (z, φ) at a reference configuration q0 = (0, 0).

Clearly the A1 and {Bk : k = 0, 2, 4, . . .} harmonics provide an estimate of the pitch

displacement, while the amplitudes of B1 and {Ak : k = 0, 2, 4, . . .} provide a relative

altitude estimate.
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Table 3.2: Planar Surface Spatial Fourier Decomposition

Mode Balanced Perturbed Linearized Āk, B̄k Interpretation

A0
2

πh
2

π(z+h)
2

πh

(

1 − z
h

)

Altitude Displacement

A1 0 − sin φ
2(z+h)

1
2hφ Pitch Displacement

B1 − 1
2h − cos φ

2(z+h) − 1
2h

(

1 − z
h

)

Altitude Displacement

A2,4,6,... − 2
πh(k2−1)

− 2 cos kφ
π(z+h)(k2−1)

− 2
πh(k2−1)

(

1 − z
h

)

Altitude Displacement

B2,4,6,... 0 2 sin kφ
π(z+h)(k2−1)

2kφ
πh(k2−1)

Pitch Displacement

A3,5,7,... 0 0 - -

B3,5,7,... 0 0 - -
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Chapter 4

Obstacle Avoidance and Forward

Speed Regulation

4.1 WFI-Based Static Output Feedback

If we were to write down a simple block diagram for planar vehicle implementation based

on the various connections within the visuomotor system of the fly, it might look something

like Figure 4.1. The plant dynamics block, described by the set of nonlinear differential

equations ẋ = f(x, u), f ∈ R
n, takes force and torque inputs u(t) ∈ R

p and outputs the

state of the vehicle x(t) ∈ R
n. The optic flow estimation block takes as inputs the state

x = (q, q̇) and the spatial nearness µ(γ,q) ∈ L2[0, 2π] and outputs the instantaneous optic

flow Q̇(γ,q, q̇) ∈ L2[0, 2π]. In the insect visual system this is thought to be accomplished

with photoreceptors and arrays of elementary (local) motion detectors [15], whereas in a

robotic application this function may be performed in a number of ways, for example, by

image interpolation algorithms based on camera image inputs [57]. The wide field integration

block(s), which model the LPTC spatial decompositions of the optic flow kernel input Q̇

through pre-determined sensitivity functions Fui
(γ) ∈ L2[0, 2π], produce the requisite force

and torque inputs, which are fed back to the dynamics. Insects implement this function

via wide-field sensitive neurons, contained in the lobula plate (Figure 3.1), which parse the

spatially preserved motion estimates from the earlier stages of the vision system. In robotic

applications, this function can be implemented easily as long as a minimum of computation

ability is available.

The advantages of the block diagram in Figure 4.1 are that it is simple to implement in

robotic navigation applications, along with the fact that it requires very little computation
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Figure 4.1: Basic closed loop block diagram for static output feedback of wide-field integra-
tion processing information.

time (hence only very minor servo delay). Given an instantaneous optic flow estimate, one

just needs to perform a spatial inner product with pre-determined sensitivity patterns to

compute each force and torque control input desired,

ui = 〈Q̇, Fui
〉w. (4.1)

This speed and simplicity are greatly desired from the point of view of closing visual-based

control loops where significant bandwidth is required, as in the case with the fast, highly-

agile dynamics of MAVs.

Figure 4.1 represents a system level representation of the insect visuomotor system as

well as a simple implementation for robotic applications. However, as formulated it does

not lend any particular insight into how to design retinal motion sensitivity functions Fui
(γ)

to accomplish navigation and control tasks. For that insight, we look to the block diagram

representation in Figure 4.2. In this case, the plant dynamics and optic flow estimation

blocks remain unchanged, and the wide-field integration block is represented functionally

as a decomposition or a projection of the optic flow Q̇ onto a set of basis functions {φn(γ)}:

Q̇(γ,q, q̇) =
∞
∑

n

cn(q, q̇) · φn(γ), (4.2)
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K

Figure 4.2: Control-theoretic representation of static output feedback of WFI information.
The WFI operator acts to decompose the optic flow into projections cn onto a finite set of
basis functions φn.

where the projections are defined as

cn(q, q̇) = 〈Q̇(γ,q, q̇), φn(γ)〉. (4.3)

The advantage to thinking of wide-field integration as a decomposition of optic flow

is that it provides a basis {cn} of possible output feedback terms that are, assuming the

basis {φn(γ)} is wisely chosen, relatively simple functions of the quantities of interest (q, q̇)

for navigation and control. For instance, a particular decomposition might provide terms

that uncouple lateral and rotational stiffness or damping. Hence, with selection of gains

K ∈ R
p×m, where m is the number of basis functions used for decomposition, we can

intelligently feed back commands to force and torque inputs in such a way to stabilize

various reflexive behaviors:

ui =
m
∑

j=1

Kij cj . (4.4)

The block diagrams in Figure 4.1 and Figure 4.2 are completely mathematically equivalent.

Therefore, once we have designed the gains K = [Kij ], we can immediately write down the

corresponding motion sensitivity functions

Fui
(γ) =

m
∑

j=1

Kij φj(γ), (4.5)
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that upon taking the spatial inner product with the optic flow Q̇, compute the appropriate

controlled inputs (4.1).

If an orthonormal basis of sinusoids (3.3) is used to decompose the optic flow into

spatial harmonics (3.4), the force and torque control inputs u1, u2 can be computed as

static combinations

ui = Ka
i0 a0 +

m
∑

j=1

Ka
ij aj +

m
∑

j=1

Kb
ij bj , (4.6)

which correspond to motion sensitivity functions

Fui
= Ka

i0 +
m
∑

j=1

Ka
ij cos jγ +

m
∑

j=1

Kb
ij sin jγ. (4.7)

4.2 Wheeled Robot Control

In this section we demonstrate the utility of WFI sensory outputs (3.4) through coupling

with planar wheeled robot dynamics via static output feedback (Figure 4.1) in order to

stabilize obstacle avoidance (centering) and forward speed regulation (clutter) reflexive be-

haviors. We will consider rolling or wheeled vehicles of the unicycle type (Figure 4.3),

subject to the nonholonomic constraint

ẋ sin θ − ẏ cos θ = 0. (4.8)

This assumption enforces the zero sideslip condition ẏb = 0, resulting in a simplified optic

flow field

Q̇(γ,q, q̇) = −θ̇ + µ(γ,q) · ẋb sin γ. (4.9)

It is assumed that the two wheels providing continuous contact with the ground are driven

independently, and the vehicle center of mass is located at the midpoint along the axis

between them. For the inertial configuration q = (x, y, θ) the kinematic and dynamic
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Figure 4.3: Wheeled robot geometry and kinematics.

equations describing the motion are

ẋ = v cos θ

ẏ = v sin θ

mv̇ =
1

rw
(Ts + Tp) (4.10)

Jθ̈ =
r0
rw

(Ts − Tp) ,

where v = ẋb, starboard and port wheel torques are denoted by Ts and Tp, r0 and rw denote

the vehicle width and wheel radius, and the vehicle mass and rotational inertia are given

by m and J (Figure 4.3).

4.2.1 Navigation Methodology for General Environments

In this section we consider the interpretation of WFI static feedback in the context of the

output regulation problem, that is, regulating or shaping the spatial harmonic content of

the nearness µ. Recall the balanced nearness function (3.6) for the infinite tunnel, which

was composed of DC and even (negative) cosine harmonics {Ak, k = 0, 2, 4, . . .}. In the case

of a more general obstacle field, we can choose this as our desired µ shape, and through

feedback of WFI outputs we can filter out unwanted spatial content. The fundamental sine

harmonic of the 1-D motion parallax field,

b1 =
ẋb

2
(A0 −A2),
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is proportional to the desired spatial content; therefore if we are close to the desired nearness

shape, b1 provides an estimate of the forward speed ẋb and can be used to maintain a pre-

determined reference value. The speed setpoint is automatically reduced as the magnitudes

of A0 and A2 increase, i.e., as the obstacle field becomes increasingly cluttered [36].

The DC and first two cosine harmonics of the motion parallax field,

a0 = −
√

2θ̇ +
ẋb√
2
B1

a1 =
ẋb

2
B2

a2 =
ẋb

2
(−B1 +B3),

are functions of even and odd sine harmonics Bk of the nearness function. Therefore,

balancing (zeroing) the a1 component contributes rotary stiffness to the loop and balancing

the a2 component contributes lateral stiffness (Figures 3.3A,B) for a control system that is

regulating about a fixed forward speed ẋb. In addition, balancing the DC component adds

rotary damping to the loop.

4.2.2 Local Asymptotic Stability Analysis

In this section feasibility of the proposed output feedback methodology will be evaluated

though a linearized control design that guarentees local asymptotic stability of speed reg-

ulation and obstacle avoidance responses in the nonlinear system. To simplify notation we

introduce the state definition v = ẋb and input definitions

u1 =
1

mrw
(Ts + Tp)

u2 =
r0
Jrw

(Ts − Tp). (4.11)

Assuming small states (other than v) and control inputs, the linearized equations of motion

for a centerline flight trajectory become

v̇ = u1

ẏ = v0θ (4.12)

θ̈ = u2.
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Table 4.1: Spatial Fourier Decomposition of Planar Tunnel Optic Flow for Vehicles with a
Nonholonomic Sideslip Constraint

Mode Tunnel Geometry Linearization (x0)

a0 −
√

2θ̇ + y√
2(a2−y2)

ẋb cos θ −
√

2θ̇ + v0√
2a2

y

a1
4a

3π(a2−y2)
ẋb sin θ cos θ 4v0

3πa θ

b1
4a

3π(a2−y2)
ẋb(cos2 θ + 1) 8

3πa ẋb

a2 − y
2(a2−y2)

ẋb cos θ − v0

2a2 y

b2
y

2(a2−y2)
ẋb sin θ 0

an,

n = 1, 3, . . .

4a
nπ(a2−y2)(n2−4)

(n sin θ cosnθ

− 2 cos θ sinnθ) ẋb

− 4v0

πa(n2−4)
θ

an,

n = 2, 4, . . .

0 0

bn,

n = 1, 3, . . .

− 4a
nπ(a2−y2)(n2−4)

(n sin θ sinnθ

+ 2 cos θ cosnθ) ẋb

− 8
nπa(n2−4)

ẋb

bn,

n = 2, 4, . . .

0 0
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We will first examine the task of maintaining a forward reference velocity and trajectory

along the centerline of a tunnel. If we assume a nearness function (3.5) describing the planar

tunnel geometry (Figure 3.2), we can explicitly compute the spatial Fourier harmonics of

optic flow, as shown in the first column of Table 4.1. The second column is the resulting

linearization

z(x) = z(x0) +
∑

i

∂z

∂xi
(x0) (xi − x0i), (4.13)

with respect to the vehicle state x = (ẋb, y, θ, θ̇) along a reference trajectory x0 = (v0, 0, 0, 0),

corresponding to a centerline flight path at a constant velocity v0. As predicted from the

analysis in Section 3.3, the b1 mode is an estimate of the average global image velocity and,

more specifically, yields a signal that is proportional to the forward speed v. In addition, the

first and second cosine harmonics a1 and a2 provide rotary stiffness θ and lateral stiffness

y, respectively, while the DC component a0 is a function of rotary damping θ̇ and lateral

stiffness y. The higher order spatial harmonics an,bn for n = 2, 4, . . . are all zero due to the

fact that all odd sine and cosine harmonics greater than one of the nearness function are

zero (Table 3.1). In addition, the linearizations of an and bn for n = 1, 3, . . . provide the

same state information as for n = 1, just at a reduced gain. Therefore, we will attempt to

stabilize the centering and clutter responses with the b1, a0, a1, and a2 spatial harmonics

of optic flow, reflected in the choice of the observation equation z = Cx below:

















zb1

za0

za1

za2

















=

















8
3πa 0 0 0

0 v0√
2a2

0 −
√

2

0 0 4v0

3πa 0

0 − v0

4a2 0 0

































v

y

θ

θ̇

















. (4.14)

For v0 6= 0, C is full rank, and hence in the linearization we effectively have the equivalent of

full state feedback since C is invertible. Notice in (4.12) that the v dynamics are decoupled

from the y, θ dynamics, in (4.14) the linearized b1 output is a function of v only, and the

linearized a0, a1, a2 outputs are functions of y, θ, θ̇. Hence, with the linearized system we can

effectively decouple the control problem into the clutter (forward speed regulation) response

and the centering (obstacle avoidance) response.
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Forward Speed Regulation

For the forward speed regulation task, we define a reference forward velocity r and corre-

sponding scaling factor N and close the loop by setting the thrust input

u1 = Kb
11(Nr − b1), (4.15)

where b1 = 〈Q̇, sin γ〉w, corresponding to the motion sensitivity function

Fu1
(γ) = Kb

11 sin γ. (4.16)

With r = v0, choose N = 8/(3πa) for zero steady-state error, and the linearized closed loop

dynamics become

v̇ = −N
m
Kb

11(v − v0).

One can easily verify that with Kb
11 > 0, the closed loop eigenvalue is in the open left-half

plane, and therefore local stability of the nonlinear system is achieved.

Obstacle Avoidance

A quick check of the controllability and observability matricies shows that the linearized

system is completely controllable and observable about the equilibrium point x0 as long as

v0 6= 0. Therefore, due to the coupling of the lateral to the rotational dynamics through

the v0θ term in (4.12), it is possible to accomplish stabilization of both modes via static

output feedback through the torque input, taken to be

u2 = Ka
20a0 +Ka

21a1 +Ka
22a2. (4.17)

Hence u2 = 〈Q̇, Fu2
〉w, corresponding to the motion sensitivity function

Fu2
(γ) = Ka

20 +Ka
21 cos γ +Ka

22 cos 2γ. (4.18)

With this choice of torque control, the characteristic equation for the linearized closed loop
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Figure 4.4: Connections between closed loop wheeled robot behavior (eigenvalues) and
retinal motion sensitivity shape. (A) Root locus plot for Ka

20 = 0.1, Ka
22 = 1.0, and

−2 ≤ Ka
21 ≤ 0. (B) Once the desired closed loop eigenvalues (solutions to (4.19)) are

selected, the shape of the motion sensitivity function is determined by the coefficients of
the characteristic polynomial.

dynamics is

s3 +
Ka

20

J
s2 − 8Ka

21v0
3Jπa

s+
v0(K

a
22 −

√
2Ka

20)

Ja2
= 0. (4.19)

The natural dynamics contain only inertial and viscous terms; therefore to achieve a stable

centering/obstacle avoidance response, we requireKa
21 < 0 for rotational stiffness andKa

22 >

0 for lateral stiffness. Additionally, rotational damping can be added with Ka
20 > 0; however

the linearization of the DC component a0 of Q̇ also has a lateral imbalance term (Table

4.1), and hence we further need the restriction Ka
22 >

√
2Ka

20 to provide the correctly signed

lateral stiffness required for a stable centering response.

4.2.3 Simulations of WFI-Based Navigation

Simulations were constructed based on the full nonlinear planar flight dynamics (4.10) to

study the performance of the WFI control methodology in general environments (Figure

4.5). Environments were defined as bitmaps and converted to grayscale using the Mat-

lab command rgb2gray(), which eliminates the hue and saturation information result-

ing in a matrix where a zero entry is defined as level ground and a nonzero entry as a

point on an obstacle. At each instant in time the depth, or the distance to the near-
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Figure 4.5: Simulations of WFI-based navigation. Full nonlinear vehicle dynamics are
combined with a spatially-discretized optic flow estimation block. General environments
are defined with bitmaps, from which the instantaneous nearness function is estimated.
Force and torque control inputs are generated with a discrete inner product of the optic
flow estimate and appropriately sampled sensitivity functions Fui

.

est obstacle in the environment from the current location and orientation, is estimated

at locations Γ = [0 : ∆γ : 2π], spaced equidistant by ∆γ about the circumference of

the vehicle, for a total of N = floor(2π/∆γ) points. The vehicle’s current configura-

tion q(ti) = (x(ti), y(ti), θ(ti)) is provided by the plant dynamics block that integrates the

vehicle equations of motion. The planar nearness function µ(γj , ti) is then computed by

inverting the depth information at locations Γ. The instantaneous optic flow Q̇(γj , ti) is

computed by combining the instantaneous nearness function with the current kinematics

q̇(ti) = (ẋb(ti), ẏb(ti), θ̇(ti)), from the vehicle dynamics block, according to

Q̇(γj , ti) = −θ̇(ti) + µ(γj , ti) · [ẋb(ti) sin γj − ẏb(ti) cos γj ]. (4.20)

Force and torque control inputs are generated by taking the discrete inner product of the

instantaneous optic flow with appropriately sampled versions of the motion sensitivity func-
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Figure 4.6: Simulations of WFI-based navigation. (A) Corridor navigation (B) Obstacle
field navigation.

tions (4.16) and (4.18):

u(ti) =
∆γ

π

N
∑

j=1

Q̇(γj , ti) · Fu(γj). (4.21)

Sensitivity gains Ka
ij and Kb

ij used in the simulation were chosen based on the performance

index of maximizing the bandwidth of the slow (lateral) mode in the linearized closed loop

system (4.19). In Figure 4.6, the vehicle was directed to navigate a complicated corridor (C)

and an obstacle field (D). Body velocities are shown for the corridor, and the responses of the

first two cosine harmonics of the optic flow are shown for the obstacle field. The corrective

torque for the lateral imbalance is supplied by a2, and the dynamics are stabilized with the

opposing rotational stiffness from a1.
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4.2.4 Global Stability Analysis

For the planar tunnel geometry, odd spatial harmonics Ak, Bk are zero for k > 1, and

therefore we can obtain reduced expressions for the amplitide and phase of the second

spatial harmonic of optic flow

A2 =
√

a2
2 + b22 =

y

a2 − y2
ẋb

Θ2 = tan−1

(

b2
a2

)

= −θ. (4.22)

Under the assumptions that the forward speed is held constant ẋb = v0 and the rotational

inertia is negligible, the dynamics are

ẏ = v0 sin θ (4.23)

θ̇ = u2.

Therefore, we consider the following control law (distinct from the control law proposed in

Section 4.2.2)

u2 = −Kθθ +Ky
y

a2 − y2
v0

sin θ

θ
, (4.24)

based on the information available from (4.22). The Lyapunov function candidate

V =
θ

2

2

+ V0 −
1

2
ln (y2 − a2) (4.25)

has derivative

V̇ = −Kθθ
2 ≤ 0,

hence utilizing LaSalle’s principle we can conclude that the equilibrium (y, θ) = (0, 0) of

the closed loop system is globally asymptotically stable.
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4.3 Hovercraft Control

In this section we demonstrate the utility of WFI sensory outputs (3.4) through coupling

with planar flight dynamics via static output feedback (Figure 4.1). For analysis and sim-

ulation purposes we will use the dynamics of the hovercraft from the Caltech multi-vehicle

wireless testbed [10]. The vehicle admits planar translational motion (surge, sway) and a

single axis of rotary motion (yaw). For the inertial configuration q = (x, y, θ) the equations

of motion are

mẍ = (Fs + Fp) cos θ − bẋ

mÿ = (Fs + Fp) sin θ − bẏ (4.26)

Jθ̈ = (Fs − Fp)r0 − cθ̇.

The translational and rotational damping coefficients are denoted by b and c, respectively,

the starboard and port thruster forces are denoted by Fs and Fp, and r0 denotes the thruster

moment arm. The vehicle mass is given by m, and the rotational inertia about the yaw axis

is J .

4.3.1 Navigation Methodology for Vehicles with Sideslip

In Section 4.2.1 a navigation methodology was proposed for vehicles of the wheeled or

rolling type with the nonholonomic constraint that prevents sideslip motion, i.e. ẏb = 0.

For vehicles such as hovercraft that exhibit unconstrained, three degree of freedom (3 DOF)

planar dynamics, this constraint does not hold, and the resulting spatial harmonics of optic

flow contain additional terms proportional to the sideslip velocity, ẏb:

b1 =
ẋb

2
(A0 −A2) +

ẏb

2
B2

a0 = −
√

2θ̇ +
ẋb√
2
B1 −

ẏb√
2
A1

a1 =
ẋb

2
B2 +

ẏb

2
(A0 +A2) (4.27)

a2 =
ẋb

2
(−B1 +B3) +

ẏb

2
(A1 +A3),

Interpreting these signals in the context of the output regulation problem, we still seek

to regulate the harmonic content of the nearness function such that we achieve a balanced
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Table 4.2: Spatial Fourier Decomposition of Planar Tunnel Optic Flow for Vehicles with
Sideslip

Mode Tunnel Geometry Linearization (x0)

a0 −
√

2θ̇ + y√
2(a2−y2)

(ẋb cos θ − ẏb sin θ) −
√

2θ̇ + v0√
2a2

y

a1
4a

3π(a2−y2)

[

ẋb sin θ cos θ + ẏb(cos2 θ − 2)
]

4
3πa (v0θ − ẏb)

b1
4a

3π(a2−y2)

[

ẋb(cos2 θ + 1) − ẏb sin θ cos θ
]

8
3πa ẋb

a2
y

2(a2−y2)
(−ẋb cos θ − ẏb sin θ) − v0

2a2 y

b2
y

2(a2−y2)
(ẋb sin θ − ẏb cos θ) 0

an,

n = 1, 3, . . .

4a
nπ(a2−y2)(n2−4)

[(n sin θ cosnθ − 2 cos θ sinnθ) ẋb

+ (n cos θ cosnθ − 2 sin θ sinnθ) ẏb]

− 4
πa(n2−4)

(voθ − ẏb)

an,

n = 4, 6, . . .

0 0

bn,

n = 1, 3, . . .

− 4a
nπ(a2−y2)(n2−4)

[(n sin θ sinnθ + 2 cos θ cosnθ) ẋb

+ (n cos θ sinnθ − 2 sin θ cosnθ) ẏb]

− 8
nπa(n2−4)

ẋb

bn,

n = 4, 6, . . .

0 0



48

shape containing DC and even (negative) cosine harmonics {Ak, k = 0, 2, 4, . . .}. In addition,

we will attempt to track a reference trajectory or equilibrium with zero sideslip [38]. Under

this requirement most of the new terms in (4.27) that are proportional to ẏb will be second

order and higher, and the previous local analysis will be applicable. However, the new term

in the a1 harmonic, ẏb

2 (A0 + A2), is also proportional to the desired spatial content of the

nearness function and will have a first order contribution. As we will be shown in the next

section, this will result in a coupling of the rotational imbalance term that is proportional

to θ with a lateral velocity term proportional to ẏb.

4.3.2 Local Asymptotic Stability Analysis

As in the wheeled robot case we will first examine the task of maintaining a forward reference

velocity and trajectory along the centerline of a planar tunnel. The intent is to show

feasibility of the proposed output feedback methodology, and hence a linearized control

design that guarentees local asymptotic stability of speed regulation and obstacle avoidance

responses will be discussed. With this assumed geometry we can explicity compute the

spatial Fourier harmonics of the optic flow (Table 4.2), in terms of kinematic variables

x = (ẋb, y, ẏb, θ, θ̇), along with their linearization z(x) = z(x0) +
∑

i
∂z
∂xi

(x0) (xi −x0i) with

respect to the reference trajectory x0 = (v0, 0, 0, 0, 0). Similar to the optic flow for the

nonholonomic wheeled robot dynamics, the b1 mode provides an estimate of the average

global image velocity, the a2 mode provides an estimate of the lateral imbalance y, and the

DC component a0 is a function of the angular velocity θ̇ and lateral imbalance y. However,

the a1 mode, which previously gave an estimate of the rotary imbalance, now provides a

signal where the rotary imbalance θ is coupled with the lateral velocity ẏb. Due to this

coupling, we no longer have the equivalent of full state feedback in the linearized system.

However, we will attempt to stabilize the centering and clutter responses with the b1, a0,

a1, and a2 spatial harmonics of optic flow.

In the following analysis it will be beneficial to define the state of the vehicle in terms

of inertial coordinates x = (v, y, ẏ, θ, θ̇), where v = ẋ, and the inputs as

u1 = Fs + Fp − bv0

u2 = r0(Fs − Fp), (4.28)
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so that nominally a zero input is required to hold the vehicle at equilibrium. Assuming

small states (other than v) and control inputs, the linearized equations of motion for a

centerline flight trajectory become

mv̇ = u1 + b(v0 − v)

mÿ = b(v0θ − ẏ) (4.29)

Jθ̈ = u2 − cθ̇.

With the above state definition, the observation equation z = Cx becomes

















zb1

za0

za1

za2

















=

















8
3πa 0 0 0 0

0 v0√
2a2

0 0 −
√

2

0 0 − 4
3πa

8v0

3πa 0

0 − v0

2a2 0 0 0







































v

y

ẏ

θ

θ̇























. (4.30)

Note that the observation matrix C is full row rank for v0 6= 0; however due to the coupling in

the ẏ and θ states we have constrained state feedback and will not be able to arbitrarily place

the closed loop poles in a linear design. However, in (4.29) the v dynamics are decoupled

from the y, θ dynamics, in (4.30) the linearized b1 output is a function of v only, and the

linearized a0, a1, a2 outputs are functions of y, ẏ, θ, θ̇. Hence, with the linearized system we

can again decouple the control problem into the clutter (forward speed regulation) response

and the centering (obstacle avoidance) response.

Forward Speed Regulation

For the forward speed regulation task, we define a reference forward velocity r and corre-

sponding scaling factor N and close the loop by setting the thrust input

u1 = Kb
11(Nr − b1), (4.31)

where b1 = 〈Q̇, sin γ〉w, corresponding to the motion sensitivity function

Fu1
(γ) = Kb

11 sin γ. (4.32)
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With r = v0, choose N = 8/(3πa) for zero steady-state error, and the linearized closed loop

dynamics become

v̇ = − 1

m

(

Kb
11N + b

)

(v − v0). (4.33)

One can easily verify that with Kb
11 > −b/N , the closed loop eigenvalue is in the open left

half plane, and therefore local stability of the nonlinear system is achieved.

Obstacle Avoidance

In terms of the control task we have two difficulties not present with the wheeled robot

dynamics. First, the linearized observation equation (4.30) is not invertible, and therefore

it is not possible to arbitrarily place the closed loop eigenvalues with static output feedback.

In addition, for the underactuated hovercraft no control input is available in the sideslip

(sway) direction. However, the lateral dynamics are coupled to the rotational dynamics

through the bv0θ term in (4.29), and hence it is possible to accomplish stabilization of both

flight modes through the torque input, taken to be

u2 = Ka
20a0 +Ka

21a1 +Ka
22a2, (4.34)

and hence u2 = 〈Q̇, Fu2
〉w, corresponding to the motion sensitivity function

Fu2
(γ) = Ka

20 +Ka
21 cos γ +Ka

22 cos 2γ. (4.35)

With this choice of torque control, the characteristic equation for the linearized closed loop

dynamics is

s4 +

(

b

m
+
c+

√
2Ka

20

J

)

s3 +

(

bc

mJ
+

√
2bKa

20

mJ
− 4Ka

21v0
3πJa

)

s2

−4Ka
21bv0

3πmJa
s+

v2
0b(K

a
22 −

√
2Ka

20)

2mJa2
= 0. (4.36)

The natural dynamics contain only inertial and viscous terms, and therefore to achieve a

stable centering/obstacle avoidance response, we require Ka
21 < 0 for rotational stiffness and

Ka
22 > 0 for lateral stiffness. Additionally, rotational damping can be added with Ka

20 > 0;
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Figure 4.7: Connections between closed loop hovercraft behavior (eigenvalues) and retinal
motion sensitivity shape. (A) Root locus plot for Ka

20 = 2.0, Ka
22 = 6.0, and −22 ≤ Ka

21 ≤
−14. (B) Once the desired closed loop eigenvalues (solutions to (4.36)) are selected, the
shape of the motion sensitivity function is determined by the coefficients of the characteristic
polynomial.

however the linearization of the DC component a0 of Q̇ also has a lateral imbalance term

(4.30), and hence we further need the restriction Ka
22 >

√
2Ka

20 to provide the lateral

stiffness required for a stable centering response (Figure 4.7).

4.3.3 Comparisons with Experimental Assays

It is useful at this point to make some comparisons with the experimental assays in honeybee

tunnel navigation, namely the converging-diverging tunnel [60] and the moving wall [58], as

discussed in Chapter 1. The converging-diverging tunnel assay investigated the hypothesis

that bees control forward flight speed based on retinal image velocity, which is a behavior

also described as the clutter response [2]. In experiments it was observed that bees regulated

their forward flight speed in proportion to tunnel width; the more narrow the tunnel, the

slower the flight speed, and vice-versa. It was concluded from the data that bees strive to

hold constant the angular velocity of the image, i.e., the optic flow, within the lateral region

of the eye.

To test whether or not the forward speed regulation methodology proposed in this thesis

would give rise to this behavior, a converging-diverging tunnel environment was constructed

(Figure 4.8A), and a simulation of the hovercraft using the controller described in Section

4.3.2 was performed. The axial and lateral velocities are plotted as a function of tunnel
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Figure 4.8: Simulations of WFI-based forward speed regulation (clutter response). (A)
Hovercraft flight path for a converging-diverging tunnel. (B) Clutter response; the forward
speed of the hovercraft is proportional to the tunnel width.

position in Figure 4.8B. The initial condition started the hovercraft off-center, so we see

the centering response in the lateral velocity. However, as seen in experiments, the forward

speed of the hovercraft is indeed proportional to the tunnel width, as one would expect.

In the moving wall experiments [58], the centering response was examined. Honeybees

were directed to fly down a tunnel with one of the walls moving at a constant rate along the

flight path. It was observed that when the walls were stationary the bees tended to fly along

the centerline, but when one wall was given constant motion along (against) the direction

of travel, bees shifted their trajectories toward (away from) the moving wall. Within the

framework we have constructed we can investigate the moving wall assay by modifying the

planar tunnel optic flow with a constant left- or right-wall velocity bias (Figure 4.9A):

−vw êx = −vw cos θ êxb
+ vw sin θ êyb

. (4.37)

Hence,

ẋb 7→ ẋb + vw cos θ (4.38)

ẏb 7→ ẏb + vw sin θ, (4.39)

for 0 ≤ γ+ θ < π (left wall movement) or π ≤ γ+ θ < 2π (right wall movement). Assuming
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Table 4.3: Fourier Expansion of Optic Flow For a Moving Wall

Mode Left Moving Wall

a0 −θ̇ + 1
2(a2−y2)

[

(ẋb cos θ − ẏb sin θ) y + vw(a+ y)(cos2 θ − 1
2)
]

a1
2

3π(a2−y2)

[

aẋb sin θ cos θ + aẏb(cos2 θ − 2) + vw sin θ(a+ y)(cos2 θ − 1)
]

b1
2

3π(a2−y2)

[

aẋb(cos2 θ + 1) − aẏb sin θ cos θ + vw cos3 θ(a+ y)
]

a2
y

4(a2−y2)

[

−(ẋb cos θ + ẏb sin θ)y − vw

2 (a+ y)
]

b2
y

4(a2−y2)
(ẋb sin θ − ẏb cos θ)

left wall movement, the resulting optic flow is

Q̇w(γ,q, q̇) =































−θ̇ + sin (γ+θ)
a−y [(vxb

+ vw cos θ) sin γ

−(vyb
+ vw sin θ) cos γ]

−θ̇ − sin (γ+θ)
a+y (vxb

sin γ − vyb
cos γ)

0 ≤ γ + θ < π

π ≤ γ + θ < 2π

. (4.40)

Similar to the case of a stationary planar tunnel, we can explicity compute the first several

spatial Fourier harmonics of this optic flow (Table 4.3). The steady-state value y = yss

along the equilibrium trajectory

xw : (v = v0, y = yss, ẏ = 0, θ = 0, θ̇ = 0) (4.41)

that results in a zero torque input u2 = 〈Q̇w, Fu2
〉w|xw = 0 is

yss = − avw

2v0 + vw
. (4.42)

Motion opposite the flight direction (vw > 0) will result in a shift right (yss < 0) of the

steady-state flight path while motion along the flight direction (vw < 0) will result in a shift

left (yss > 0), as observed in [58]. Also as vw → 0, yss → 0 and as vw → ±∞, yss → ∓a.
The simulated hovercraft flight path for left wall motion with vw > 0 is plotted in Figure

4.9, along with the time response of the first two spatial cosine harmonics a1,a2 of the optic

flow. As discussed in the previous section, a2 provides a corrective torque for the lateral
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Figure 4.9: Simulations of WFI-based centering response. (A) Hovercraft flight path for
a moving wall. (B) 1st and 2nd cosine harmonics of optic flow; a2 is an estimate of the
lateral spatial imbalance, which adds lateral stiffness, and a1 provides a stabilizing rotational
stiffness.

imbalance, and a1 provides the opposing rotational stiffness required for stabilization.

Based on the analysis and simulations presented, we conclude that the proposed for-

ward speed regulation and obstacle avoidance methodologies have sufficient complexity to

give rise to experimentally observed navigational heuristics as the centering and clutter

responses exhibited by honeybees. It is important to note that these reflexive behaviors

were demonstrated using only sensory information obtained through wide-field integration

of optic flow.

4.3.4 Simulations of General Environments

The closed loop behavior of this output feedback methodology was also evaluated in more

complicated environments. Using the same feedback structure and gains, the vehicle was

directed to navigate a complicated corridor (Figure 4.10A) and an obstacle field (Figure

4.10B). Body velocities are shown for the corridor, and the response of the first two cosine

harmonics of the optic flow are shown for the obstacle field.

4.3.5 Limitations of the Proposed Centering Approach

The LPTC pathway (Figure 1.1) that forms the basis of the obstacle avoidance (centering)

methodology is one of several feedback circuits found in insect visuomotor neurobiology.

Experimental evidence [13] suggests that visual expansion is critical in triggering the rapid

body saccades that contribute to obstacle avoidance behavior in free flight. When insects
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Figure 4.10: Simulations of WFI-based navigation. (A) Centering response for a maze
and body frame velocities as a function of time. (B) General obstacle field navigation
with time traces of the 1st and 2nd cosine harmonics of optic flow; a2 is an estimate of
the lateral spatial imbalance, which adds lateral stiffness, and a1 provides a stabilizing
rotational stiffness.

experience sustained expansion on a given side, they modulate wingstroke amplitude to

turn away from the expanding stimulus [63]. When expansion occurs directly in front, this

tends to elicit a landing response where the insect will rapidly extend their legs and increase

wingbeat frequency [3]. The centering methodology proposed in this chapter can handle

a wide range of spatially distributed environments. However, frontally symmetric object

distributions, such as the one a vehicle would experience when oriented ninety degrees to a

wall or a tunnel that converges symmetrically to a point, will not produce a lateral imbalance

signal when the vehicle is maintaining a forward reference trajectory. In these types of cases

a more general obstacle avoidance methodology, such as one that takes advantage of the

expansion detection circuitry and algorithms utilized by insects, could be implemented to

increase robustness of an optic flow based approach.
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4.4 Comparisons with Previous Work

Local navigation of planar corridors and obstacle fields by wheeled robots utilizing optic flow

information has been demonstrated in several approaches; an excellent review and summary

is given in [20]. Typically in these implementations the optic flow is measured in all or part of

the 360◦ field of view using one of several methods, including image interpolation techniques

based on captured camera images [57], the ratio of temporal to spatial image derivatives [53],

or local motion detector (EMD) arrays based on photoreceptor inputs [17]. A centering

response is achieved by uniformly balancing the lateral image motion, as was previously

suggested in [55] based on data from honeybee experiments. The resulting controlled input

is generated by a control law of the form

u = K( ¯̇QL − ¯̇QR), (4.43)

where K is a static gain and ¯̇QL and ¯̇QR represent the averaged image flow on the left

and right sides, respectively. This type of implementation is based on the motion parallax

formulation by [68] that assumes that the components of the optic flow due to rotary and

lateral motion are negligible, i.e. the angular speed of an object at retinal angle γ, distance

d, and due to forward translatory motion v0 is

Ω =
v0
d

sin γ. (4.44)

In this case, if v0 is known and Ω(γ) is measured, equation (4.44) can be averaged to generate

a signal, representing the spatial imbalance, which is reflective the spatial distribution of

objects d(γ) located in the two lateral fields of view.

The assumption of zero lateral velocity holds for wheeled or rolling robots, assuming the

sensor location is mounted along the axis of rotation, as these types of vehicles are subject to

a nonholonomic constraint that precludes lateral motion (4.8). The controlled input (4.43),

being a uniform average of the actual optic flow (4.9) experienced by wheeled robots, is

composed of contributions from both rotational and translational motion. In applications

where the rotational motion is significant, implementation required active removal of the

rotary component [8], [66] or minimization to a sufficiently low level [53], [14].

The necessity for extraction of the rotary optic flow component under closed loop control
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utilizing (4.43) is very clear once the theory developed in previous chapters is applied. In

the corridor navigation case with a 360◦ field of view as in [17] and [66], the resulting control

action (4.43) is the DC component of the azimuthal retinal motion field

a0 =
1

π

∫ 2π

0
Q̇γ · 1√

2
dγ, (4.45)

which linearized about a centerline trajectory (Table 4.1) is given by

za0
= −

√
2θ̇ +

v0√
2a2

y. (4.46)

With the rotational contribution
√

2θ̇ is removed, the resulting signal is proportional to

the lateral displacement y from the centerline. Similarly, for a partial lateral field of view

(Figure 4.3), spanning 0 < γ0 ≤ π and symmetric about both the xb and yb body axes as

in [9] and [53], we have a scaled version of (4.46):

z = −
√

2γ0

π
θ̇ +

v0(γ0 + sin γ0)√
2a2π

y, (4.47)

which again provides the lateral displacement information once the rotation component has

been removed. If this rotary term is not removed or minimized, it necessarily adds positive

(destabilizing) rotational damping.

In alternative navigation strategies where vehicle dynamic stabilization is assumed or

inherent, optic flow (image motion) has been considered as a source of depth information

directly versus the more common stereo vision implementations that compute range. The

advantage of the optic flow approach is that the computation times required are significantly

less than the traditional stereo vision algorithms which solve the correspondence problem

[55]. In [17], incremental translational motion is imposed on the wheeled robot so that in

between small forward steps at a known velocity it can utilize (4.44) to back out estimates of

depth. A similar type of wheeled robot implementation can be found in [54], where a zig-zag

motion behavior is the result of imposing a forward motion constraint. The robot is only

allowed to travel forward short distances incrementally at a known speed while it computes

lateral optic flow to determine estimates of range, then prior to the subsequent translation

it turns toward a known obstacle, where it can then travel a short distance safely and gather

information about additional obstacles. This methodology is also a result of utilizing (4.44),
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as it is difficult to accurately compute range measurements in the direction of translation

(γ = 0) since the image velocity is small and measurements can be rendered unreliable due

to noise.

A 3-D optic flow based ranging strategy has been examined in [7]. In this effort, an

algorithm was developed for obtaining omnidirectional range maps from a panoramic image

sensor positioned on a robotic gantry. The range, once again, is computed by translating the

panoramic sensor through a known distance. In this case, however, an image interpolation

algorithm was used to compute image deformation [57]. Once the instantaneous range map

is computed, the various parts of the range image were tested for an obstacle free tunnel of

a given width, resulting in a local navigation strategy.

There are two drawbacks to the range-based navigation approaches described above. In

all three cases, incremental forward translational kinematics were imposed on the robots

in order to compute accurate range information. Therefore, in realistic MAV/UAV types

of vehicles where rotary and lateral motions are not negligible, especially micro-helicopter

or flapping flight based realizations, the techniques (as implemented) are not extendable.

Additionally, velocity measurements were required in all cases in order to back out the range

information from the measured optic flow.

In conclusion, the planar navigation demonstrations to date have only utilized a limited

part of the information that is available from optic flow. Through the LPTC-inspired

wide-field integration approach developed in this thesis, additional information is available

that can be used to significantly increase closed loop stability and performance, as well

as simplify sensory and actuation requirements. Specifically, the lateral imbalance can

be directly estimated from a F (γ) = cos 2γ motion sensitivity function, which eliminates

the need for actively removing the rotation term from the DC component and allows for

the possibility of injecting rotational damping using the F (γ) = 1/
√

2 motion sensitivity

function. In addition, the orientation with respect to a balanced nearness function can be

determined using a F (γ) = cos γ sensitivity, which can be used to add rotational stiffness to

the loop, and the global translational image velocity can be extracted using the F (γ) = sin γ

sensitivity, which can be used in forward speed regulation.

These conclusions become important when extending optic flow stabilization and naviga-

tion methodologies to the planar flight (hovercraft) problem posed in Section 4.3, as lateral

and rotational stiffnesses are required in order to achieve a stable closed loop configuration.
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To the author’s knowledge, this is the first demonstration of planar, 3 DOF flight stabiliza-

tion, as well as obstacle avoidance and forward speed regulation behaviors utilizing solely

optic flow sensory information. Comparable implementations have not successfully solved

the problem of simultaneous planar navigation and stabilization as they require additional

types of sensory modalities and enforce kinematic constraints on the vehicle’s motion.
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Chapter 5

Pitch-Altitude Control and Terrain

Following

In this chapter we demonstrate WFI-based hovering, pitch-altitude stabilization, and terrain

following behaviors with planar rotorcraft flight dynamics via dynamic output feedback. We

will assume a circular optic flow sensor oriented in the vertical plane (Figure 2.4), which

measures the optic flow (Section 2.18):

Q̇(β,q, q̇) = −φ̇+ µ(β,q) (ẋb sinβ − żb cosβ) . (5.1)

The rotorcraft (Figure 5.1A) admits planar translational motion in the x (thrust) and z

(altitude) coordinates and has a single axis of rotary motion φ (pitch). In the inertial

configuration q = (x, z, φ) the equations of motion are

mẍ = −(Fs + Fp) sinφ

mz̈ = (Fs + Fp) cosφ−mg (5.2)

Jφ̈ = r0(Fs − Fp).

The starboard and port thruster forces are denoted by Fs and Fp, respectively, and r0

denotes the rotor moment arm. The vehicle mass is given by m, and the rotational inertia

about the pitch axis is J .
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Figure 5.1: (A) Planar surface geometry and rotorcraft kinematic definitions (B) Altitude
and pitch perturbations of the nearness function µ

5.1 Hover Stabilization Methodology

In this section we consider the interpretation of WFI outputs in the context of what is re-

ferred to as the hover response, where to achieve hover, the control system for the rotorcraft

must zero the image velocity everywhere on the retina or optic flow sensor [2]. Since the

measured optic flow at each point on the retina is proportional to the linear and angular

velocity of the body frame, this can be achieved by zeroing the body frame velocities, as-

suming a rigid environment. In the following we propose a WFI-based control methodology

that will stabilize the equilibrium point of the rotorcraft where the body frame velocities ẋb,

żb, and φ̇ are zero, along with the pitch orientation φ. This methodology will not stabilize

about a prescribed altitude, which is consistent with the author’s observations of hoverflies

that stabilize about the above equilibrium very effectively, but do not necessarily have a

preferred height above ground to maintain.

If we assume a nearness function (3.8) describing a planar surface geometry, we can

explicitly compute the spatial Fourier harmonics of the resulting optic flow in terms of

kinematic variables x = (ẋb, z, żb, φ, φ̇) (Table 5.1). These signals contain information

with respect to general velocity perturbations from a balanced nearness function (Figure

5.1B), composed of a fundamental sine harmonic B1 and DC and even (negative) cosine

harmonics {A0, Ak, k = 2, 4, . . .}. Table 5.1 also shows their linearization y(x) = y(x0) +
∑

i
∂y
∂xi

(x0) (xi − x0i) with respect to the hover equilibrum point xh
0 = (0, 0, 0, 0, 0). To

leading order, we find the a0 signal contains terms proportional to the pitch rate φ̇ and

the lateral velocity ẋb, the a1 signal is proportional to the vertical velocity żb, and the a2
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Table 5.1: Spatial Fourier Decomposition of Planar Surface Optic Flow and Linearizations
about the Hover Equilibrium

Mode Planar Surface Geometry Linearization (xh
0)

a0 −
√

2φ̇−
√

2
4(z+h) (ẋb cosφ− żb sinφ) −

√
2φ̇+ 1

2
√

2h
ẋb

a1
2

3π(z+h)

[

ẋb sinφ cosφ+ żb(cos2 φ− 2)
]

− 2
3πh żb

b1
2

3π(z+h)

[

ẋb(cos2 φ+ 1) − żb sinφ cosφ
]

4
3πh ẋb

a2
1

4(z+h) (ẋb cosφ+ żb sinφ) 1
4h ẋb

b2
1

4(z+h) (−ẋb sinφ+ żb cosφ) 1
4h żb

signal is proportional to the lateral velocity ẋb only. In this case we cannot expect to locally

stabilize (5.2) with these three signals, but rather the pitch orientation φ is required for

full state feedback. Insects possess additional sensors that can provide an estimate of φ,

namely the ocelli which provide an estimate of horizon orientation [65], [61], as well as the

halteres which are small biological gyroscopes that measure pitch rate through sensing or

coriolis forces that could be integrated for pitch orientation [44], [45]. For our analysis we

will assume φ to be measurable and will demonstrate a stable hover response utilizing the

a0, a1 and a2 spatial harmonics of optic flow.

5.1.1 Local Asymptotic Stability Analysis

As in the previous chapters, the intent is to show feasibility of the proposed output feedback

methodology, and hence a linearized control design that guarentees local asymptotic stability

of the hover equilibrium is discussed. Introducing the state definitions vx = ẋ and vz = ż,

rewriting the three independent signals a0, a1, and a2 in terms of inertial states x =

(vx, vz, φ, φ̇), and computing their respective linearizations along x0 = (0, 0, 0, 0), we form

the observation equation y = Cx:











ya0

ya1

ya2











=











− 1
2
√

2h
0 0 − 1√

2

0 − 2
3πh 0 0

1
4h 0 0 0



























vx

vz

φ

φ̇

















. (5.3)
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Introducing the following input definitions

u1 =
1

m
(Fs + Fp) − g

u2 =
r0
J

(Fs − Fp), (5.4)

and assuming small states and control inputs, the linearized equations of motion for the

above equilibrium hover trajectory become

v̇x = −gφ

v̇z = u1 (5.5)

φ̈ = u2.

Vertical Velocity Control

In the linearization (5.5) the vz dynamics and the lift input u1 are decoupled from the vx

and φ dynamics and the torque input u2. In order to stabilize the vertical velocity dynamics,

we would like to have access to an estimate of vz. In this case we can utilize the a1 signal.

With the choice of a static gain Ka
11, the vertical velocity control becomes

u1 = Ka
11a1, (5.6)

hence u1 = 〈Q̇, Fu1
〉w, corresponding to the motion sensitivity function

Fu1
(β) = Ka

11 cosβ. (5.7)

To leading order, this force control input is

u1 = −2Ka
11

3πh
vz. (5.8)

Therefore, with the appropriate choice of gain Ka
11 we can arbitrarily place the closed loop

eigenvalue in the left-half plane, guaranteeing local stability of the vertical velocity dynamics

of the nonlinear system.
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Lateral Velocity and Pitch Control

In (5.5) the lateral speed vx dynamics are coupled to pitch through the gφ term, and

therefore, even though we do not have an available input in lateral thrust we can utilize

the torque input to stabilize both the φ and vx dynamics. In order to stabilize this coupled

system, we require estimates of the lateral velocity vx, the pitch rate φ̇, and the pitch

attitude φ. Utilizing the a0 and a2 signals, we can obtain φ̇ and vx since to leading order

we have

φ̇ = −
(√

2

2
ya0

+ ya2

)

(5.9)

To add rotational stiffness, we assume an attitude φ measurement is available through other

sensory modalities, as described in Section 5.1. The resulting torque control input is

u2 = −
√

2

2
Ka

20a0 −Ka
22a2 +Kφφ, (5.10)

and hence

u2 = 〈Q̇, Fu2
〉w +Kφφ (5.11)

corresponding to the motion sensitivity function

Fu2
(β) = −

√
2

2
Ka

20 −Ka
22 cos 2β. (5.12)

To leading order, this torque control law is

u2 =
1

2h
(Ka

20 −Ka
22)vx +Kφφ+Ka

20φ̇. (5.13)

With this choice of torque control, the characteristic equation for the linearized closed loop

dynamics is

s3 −Ka
20s

2 −Kφs−
g(Ka

22 −Ka
20)

2h
= 0. (5.14)

The natural dynamics (5.5) contain only inertial terms, and therefore to stabilize the at-

titude response we require Kφ < 0 and Ka
20 < 0, and to stabilize the lateral velocity we
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Fu2( )¯

Figure 5.2: Connections between closed loop rotorcraft behavior (eigenvalues) and retinal
motion sensitivity shape. (A) Root locus plot for Kφ = −90.0, Ka

22 = −30.0, and −25 ≤
Ka

20 ≤ 5. (B) Once the desired closed loop eigenvalues (solutions to (5.14)) are selected, the
shape of the motion sensitivity function is determined by the coefficients of the characteristic
polynomial.

require Ka
22 −Ka

20 < 0. An example plot of the closed loop eigenvalues is shown in Figure

5.2.

5.1.2 Simulations of Hover Stabilization

Simulations were constructed based on the full nonlinear planar flight dynamics (4.26) to

study the performance of the proposed WFI-based control methodology for hover in gen-

eral environments composed of surface landscapes with obstacles. A spatially-discrete WFI

processing model was used, modeled after the simulation environment described in Section

4.2.3. Environments were defined as bitmaps, and the instantaneous optic flow was com-

puted by estimating the depth at the current position and orientation at 60 equally-spaced

circumferential points and combining it with the current kinematics according to the ro-

torcraft version of (4.20). WFI outputs are generated at each time instant by taking the

discrete inner product of the instantaneous optic flow with weighting functions correspond-

ing to Fu1
and Fu2

. The WFI output gains used in the simulation were chosen based on the

the performance index of maximizing the bandwidth of the slow (altitude) flight mode in

the linearized closed loop system (5.14). Figure 5.3 plots the path of the vehicle along with

the time traces of various kinematic states and control outputs for a perfectly flat surface.

In this case the closed form expressions for the WFI outputs were computed and used in
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Figure 5.3: Simulations of WFI-based hovering behavior for an initial velocity (vx, vy) =
(0.2,−0.2) m/s over a flat surface.

simulation. For comparison purposes, Figure 5.4 plots the same information for a textured

surface with obstacles.

5.2 Forward Flight Stabilization Methodology

In this section we consider the interpretation of WFI outputs in the context of maintaining

a trajectory with a forward reference velocity v0, fixed height h, and pitch orientation

φ = 0 with respect to the ground. If we assume a nearness function (3.8) describing a

planar surface geometry, we can explicitly compute the spatial Fourier harmonics of the

resulting optic flow in terms of kinematic variables x = (ẋb, z, żb, φ, φ̇) (Table 5.2). These

signals contain information with respect to general pitch and altitude perturbations from a
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Figure 5.4: Simulations of WFI-based hovering behavior for an initial velocity (vx, vy) =
(0.3,−0.4) m/s over a textured surface.

balanced nearness function (Figure 5.1B), composed of a fundamental sine harmonic B1 and

DC and even (negative) cosine harmonics {A0, Ak, k = 2, 4, . . .}. Table 5.2 also shows their

linearization y(x) = y(x0) +
∑

i
∂y
∂xi

(x0) (xi − x0i) with respect to the reference trajectory

x0 = (v0, 0, 0, 0, 0). To leading order, we find that the a0, b1, and a2 signals contain state

coupling between ẋb and z, due to the 1/(z+h) dependence in the spatial harmonics of the

nearness function that contributes a first order term that is proportional to z. In addition,

the a1 and b2 modes contain coupling between φ and żb. In this case we cannot expect to

be able to arbitrarily place closed loop eigenvalues since at best we have constrained state

feedback.

In the following we will introduce a nested loop controller, based on the a0, a1, and
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Table 5.2: Spatial Fourier Decomposition of Planar Surface Optic Flow and Linearizations
about the Forward Flight Equilibrium

Mode Planar Surface Geometry Linearization (x0)

a0 −
√

2φ̇−
√

2
4(z+h) (ẋb cosφ− żb sinφ) − 1√

2

[

2φ̇+ 1
2h

(

ẋ− v0

h z
)

]

a1
2

3π(z+h)

[

ẋb sinφ cosφ+ żb(cos2 φ− 2)
]

2
3πh (v0φ− żb)

b1
2

3π(z+h)

[

ẋb(cos2 φ+ 1) − żb sinφ cosφ
]

4
3πh

(

ẋb − v0

h z
)

a2
1

4(z+h) (ẋb cosφ+ żb sinφ) 1
4h

(

ẋb − v0

h z
)

b2
1

4(z+h) (−ẋb sinφ+ żb cosφ) − 1
4h (v0φ− żb)

a2 signals, that stabilizes the x and φ dynamics and a separate altitude controller that

stabilizes the z dynamics that utilizes the a2 signal. It is important to note that since we are

attempting exact altitude tracking for the forward flight case, we will need an independent

measurement of forward speed (or altitude) as the optic flow information is only a relative

speed/depth measure [37]. In the obstacle avoidance problem in Chapter 4, we did not

experience this difficulty with the relative nature of the optic flow measurement since the

goal of the control system was to navigate between obstacles, not maintain a prescribed

distance from any one obstacle in particular (in this case a surface).

5.2.1 Local Asymptotic Stability Analysis

As in previous section, the intent is to show feasibility of the proposed output feedback

methodology, and hence a linearized control design which guarentees local asymptotic sta-

bility of the equilibrium point in the nonlinear system is discussed. Rewriting the three

independent signals a0, a1, and a2 in terms of inertial states x = (ẋ, z, ż, φ, φ̇), and com-

puting their respective linearizations along x0 = (v0, 0, 0, 0, 0), we form the observation
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equation y = Cx:











ya0

ya1

ya2











=











− 1
2
√

2h
v0

2
√

2h2
0 0 −

√
2

0 0 − 2
3πh

4v0

3πh 0

1
4h − v0

4h2 0 0 0

































ẋ

z

ż

φ

φ̇























. (5.15)

Introducing the following input definitions

u1 =
1

m
(Fs + Fp) − g

u2 =
r0
J

(Fs − Fp), (5.16)

along with the state definition v = ẋ − v0, and assuming small states and control inputs,

the linearized equations of motion for the above equilibrium flight trajectory become

v̇ = −gφ

z̈ = u1 (5.17)

φ̈ = u2.

Altitude Control

In the linearization (5.17) the z dynamics and the lift input u1 are decoupled from the v and

φ dynamics and the torque input u2. Ideally in order to stabilize these altitude dynamics, we

would like to have access to estimates of z and ż. However, WFI outputs that are a function

of these states are linearly coupled with v, φ, and φ̇. Additionally, since the WFI outputs

we have available are derived from an optic flow field which is purely a relative measurement

of speed/depth, we require either an absolute height or a forward velocity measurement to

obtain zero steady-state tracking error in altitude. If we assume the forward velocity ẋ is

available for feedback, we can decouple the ẋ and z states to leading order using the the

a2 output. Therefore, with the choice of static gains Kz and Kż, we obtain stiffness and
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damping in the z coordinate with PD feedback of the a2 signal:

u1 =

(

Kz +Kż
d

dt

)

a2, (5.18)

where a2 = 〈Q̇, Fu1
〉w with Fu1

= cos 2β. To leading order, this force control input is

u1 = −Kzv0
4h2

z − Kżv0
4h2

ż. (5.19)

Therefore, with the appropriate choice of gains Kz and Kż, one will be able to locally

stabilize the altitude dynamics of the nonlinear system.

Pitch Control

In (5.17) the forward speed v dynamics are coupled to pitch through the gφ term, and

therefore, even though we do not have an available input in the thrust direction we can

utilize the torque input to stabilize both the φ and v dynamics. The only WFI output that

is a function of pitch rate φ̇ is the DC component ya0
; however this is also a function of

the optic flow imbalance term 1
4h

(

ẋ− v0

h z
)

. To leading order this is proportional to the ya2

output, and therefore the combination yields a pitch rate signal that can be used to add

rotational damping:

φ̇ = −
(√

2

2
ya0

+ ya2

)

(5.20)

To add rotational stiffness, we require feedback of the ya1
output, which unfortunately is

also a function of ż. With the appropriately signed gain to provide a stabilizing stiffness, this

term will also add positive altitude damping. However, it will still be possible to stabilize

this inner loop combination using the feedback

u2 = Kφa1 −Kφ̇

(√
2

2
a0 + a2

)

, (5.21)

and hence u2 = 〈Q̇, Fu2
〉w, corresponding to the motion sensitivity function

Fu2
(β) = −

√
2

2
Kφ̇ +Kφ cosβ −Kφ̇ cos 2β. (5.22)
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Figure 5.5: Connections between closed loop pitch-altitude behavior (eigenvalues) and reti-
nal motion sensitivity shape. (A) Root locus plot for Kφ = −140.0, Kφ̇ = 5.0, Kz = 10.0,
Kż = 15.0, and 27 ≤ Kv ≤ 70. (B) Once the desired closed loop eigenvalues (solutions
to (5.26)) are selected, the shape of the motion sensitivity function is determined by the
coefficients of the characteristic polynomial.

To leading order, this torque control law is

u2 = −2Kφ

3πh
ż +

4Kφv0
3πh

φ−Kφ̇φ̇. (5.23)

Forward Speed Regulation

We have assumed in the design of the altitude control (force) input u1 (5.18) that a mea-

surement of forward velocity ẋ is available for feedback. Therefore, in order to regulate the

v dynamics, the torque input (5.21) requires an additional term Kv(ẋ − v0) composed of

the forward velocity and a reference v0:

u2 = 〈Q̇, Fu2
〉w +Kvv. (5.24)

Linearized Closed Loop Dynamics

With these choices of control inputs, we can write down the linearized constrained state
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feedback equation u = Kx where u = (u1, u2), x = (v, z, ż, φ, φ̇), and

K =





0 −Kzv0

4h2 −Kżv0

4h2 0 0

Kv 0 −2Kφ

3πh
4Kφv0

3πh −Kφ̇



 . (5.25)

This results in the closed loop chracteristic equation

s5 +
( v0

4h2
Kż −Kφ̇

)

s4 +

(

v0
4h2

Kz −
4v0
3πh

Kφ +
v0
4h2

Kφ̇Kż

)

s3

+

(

gKv +
v0
4h2

KzKφ̇ − v2
0

3πh3
KφKż

)

s2

+

(

v0g

4h2
KvKż −

v2
0

3πh3
KzKφ

)

s+
v0g

4h2
KvKz = 0. (5.26)

The natural dynamics (5.17) contain only inertial terms, and therefore to stabilize the

altitude response we require Kz > 0 and Kż > 0, and to stabilize the pitch response we

require Kφ < 0, and Kφ̇ > 0, and Kv > 0. An example plot of the closed loop eigenvalues

is shown in Figure 5.5.

5.2.2 Simulations of General Terrain Navigation

Simulations were constructed based on the full nonlinear planar flight dynamics (4.26) to

study the performance of the proposed WFI-based control methodology in general environ-

ments composed of surface landscapes with obstacles. A spatially-discrete WFI processing

model was used, modeled after the simulation environment described in Section 4.2.3. En-

vironments were defined as bitmaps, and the instantaneous optic flow was computed by

estimating the depth at the current position and orientation at 60 equally-spaced circum-

ferential points and combining it with the current kinematics according to the rotorcraft

version of (4.20). WFI outputs are generated at each time instant by taking the discrete

inner product of the instantaneous optic flow with weighting functions corresponding to

Fu1
and Fu2

. The WFI output gains used in the simulation were chosen based on the the

performance index of maximizing the bandwidth of the slow (altitude) flight mode in the

linearized closed loop system (5.26). Figure 5.6 plots the path of the vehicle along with the

time traces of various kinematic states and control outputs for an initial height of h = 1 m

above a flat surface, Figure 5.7 and Figure 5.8 plot the same for a landscape with a hill and

with various obstacles. The rotorcraft was able to successfully navigate landscapes with
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Figure 5.6: Simulations of WFI-based pitch-altitude stabilization and terrain following over
a flat surface for h = 1 m.

various sizes and shapes of obstacles, warranting further work to completely characterize

the stability and performance of this control methodology.

5.3 Comparisons with Previous Work

Optic flow cues have been previously utilized, in conjunction with other sensory modalities,

to accomplish altitude regulation and terrain following. In the 3 DOF tethered vertical

flight experiments of [47], the optic flow over a patch of the visual space that extended over

a portion of the frontal and downward regions is computed and averaged, then compared to

a reference averaged optic flow, corresponding to a pre-programmed altitude and ground-

speed. The difference produces a new reference altitude, and terrain following is achieved
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Figure 5.7: Simulations of WFI-based terrain following and pitch-altitude stabilization of a
forward reference trajectory over a landscape with a hill.

by adjusting the vertical thrust such that the computed optic flow average is adjusted to

the reference optic flow average. The pitch (attitude) and forward airspeed are regulated

via a PID control loop that utilizes inertial sensory information.

Similarly in the free-flying experimental platforms of [65], altitude regulation and terrain

following were demonstrated. An optic flow sensor was placed on the ventral part of the

vehicle covering a downward patch of the ground. The optic flow was computed using an

interpolation algorithm [57], and interpreted based on the the motion parallax formulation

(4.44) by [68], as described in Section 4.4. It is assumed that the components of the optic flow

due to rotary and (in this case) vertical motion are negligible, hence the resulting measured

optic flow can be averaged to generate a signal, representing the spatial imbalance, which

is reflective the height above ground if the forward speed of the aircraft is known. In this
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Figure 5.8: Simulations of WFI-based terrain following and pitch-altitude stabilization of a
forward reference trajectory over a landscape with various obstacles.

implementation the aircraft was stabilized using a complete suite of inertial sensors.

Based on the analysis in this chapter, we conclude the terrain following applications to

date have only utilized a limited part of the information that is available from optic flow.

Through the LPTC-inspired wide-field integration approach developed in this thesis, addi-

tional information is available that can be used to significantly improve closed loop stability

and performance, as well as simplify sensory and actuation requirements. Specifically, the

optic flow altitude imbalance due to a textured surface can be directly estimated from a

F (γ) = cos 2γ motion sensitivity function, which eliminates the need for actively removing

the rotation term from the DC (averaged) component, or assuming it is negligible, and

allows for the possibility of injecting rotational damping about the pitch axis using the

F (γ) = 1/
√

2 motion sensitivity function. Additionally, the pitch orientation (attitude)
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with respect to a textured surface can be determined using a F (β) = cosβ motion sensitiv-

ity function, which can be used to add rotational stiffness to the loop. However, the ability

to extract pitch orientation information did not extend to the hover equilibrium behavior

as forward speed is required to generate optic flow with pitch orientation information.

These conclusions become important when extending optic flow stabilization and navi-

gation methodologies to the planar hover and flight problems posed in Sections 5.1 and 5.2.

This work presents a methodology which demonstrates planar vertical 3 DOF flight stabi-

lization and terrain following behaviors utilizing a minimum of sensory information from

other modalities, unlike comparable implementations which use optic flow as an indicator

of range to the ground but require significantly more inertial sensory information in order

to stabilize flight as well as kinematic motion constraints in order to utilize the optic flow

measurements. Specifically, in the methodology presented in this chapter, only an outside

measurement of forward speed was required to achieve zero steady state error in tracking

an altitude reference, and only an outside measurement of pitch orientation was required

to stabilize the hover equilibrium.
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Chapter 6

Conclusions and Future Work

In this thesis a rigorous characterization of the information available from wide-field inte-

gration of retinal image flow for environments with non-homogeneous, non-uniform spatial

distributions of objects was performed. A spatial inner product model for LPTCs was pre-

sented and analyzed with an emphasis on extraction of behaviorally-relevant optic flow cues

by selection of appropriate retinal motion sensitivity functions. A static output feedback

control structure was proposed, where force and torque inputs are computed (as would be

the case with LPTCs) by taking the inner product of the instantaneous optic flow with

pre-determined sensitivity functions for each required control input. Sensitivity function

shape was then tied to behavior (closed loop eigenvalues) via a local asymptotic stability

analysis.

Through balancing various spatial harmonics of optic flow, we can obtain generalized

feedback terms that are functions of rotational and lateral stiffness with respect to a bal-

anced nearness function, as well as terms that contain rotational, lateral, and forward

velocities, which are useful for designing closed loop stabilization and performance. The

computationally efficient wide-field integration outputs require no direct estimation of depth

or kinematic states, nor any prior knowledge of the environment. It is shown that this

methodology has sufficient complexity to give rise to the centering (obstacle avoidance) and

clutter (forward speed regulation) responses exibited in experiments with insects (Section

1.3). Additional behaviors for pitch-altitude rotorcraft dynamics were demonstrated, in-

cluding hovering and terrain following tasks. Hence, the global optic flow cues extracted

by LPTCs, which are generalized combinations of speed/depth, provide control-relevant

information, as well as a novel methodology for utilizing optic flow sensory information in

autonomous robotic navigation and control applications.
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These successful results suggest two future avenues for research, including experimental

validation and demonstration of embedded planar optic flow sensors, as well as an extension

of this analysis approach to 3-D environments and vehicles with 6 DOF dynamics. We

provide some additional results along these lines in the remainder of the chapter.

6.1 Experimental Validation of WFI-Based Planar Naviga-

tion and Control

As an initial demonstration and experimental verification of the hovercraft navigation

methodology proposed in Section 4.3.2, the torque and forward force control laws were

implemented on a vehicle (Figure 6.1A) from the Caltech Multi-Vehicle Wireless Testbed

(MVWT) [10]. The vehicle laptops receive sensory input directly over a wireless network

and generate control (force) commands to the fans (Figure 6.1B). In this arrangement, the

inertial configuration q = (x, y, θ) of the vehicle is estimated from an overhead vision sys-

tem, and the vehicle velocity q̇ = (ẋ, ẏ, θ̇) is computed from the configuration estimates.

At the time of implementation, a planar optic flow sensor was under construction, but

not available. However, if we assume a planar tunnel environment (Section 3.3.1), we can

explicitly compute the force and torque control inputs, assuming estimates of the current

vehicle position q and velocity q̇ are available. In this case, as in (4.31) and (4.34) the force

and torque inputs are

u1 = Kb
11(Nv0 − b1)

u2 = Ka
20a0 +Ka

21a1 +Ka
22a2, (6.1)

where the spatial harmonics for tunnel optic flow, in terms of inertial coordinates (q,q̇), are

given by

b1(q, q̇) =
4a

3π(a2 − y2)
(2ẋ cos θ − ẏ sin θ)

a0(q, q̇) = −
√

2θ̇ +
y√

2(a2 − y2)
ẋ

a1(q, q̇) =
4a

3π(a2 − y2)
(2ẋ sin θ − ẏ cos θ) (6.2)

a2(q, q̇) = − y

2(a2 − y2)
(ẋ cos 2θ + ẏ sin 2θ) .
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em
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Figure 6.1: Experimental setup for centering and clutter response verification. (A) The
Kelly vehicle, composed of a laptop on three castor wheeles, two fans, and associated elec-
tronics. (B) Structure of the MVWT experiment: Vehicles receive wireless input and output
thrust commands to their fans. An overhead vision system measures the vehicle configura-
tion.

A tunnel width of a = 1.5 meters was assumed along with a reference velocity of v0 = 0.4

m/s. The hovercraft was started at rest in a position with a lateral and rotary displacement.

Figure 6.2 plots the measured states θ(t), y(t), ẋ(t), and ẏ(t) against the simulation results.

The vehicle path x(t) versus y(t) is also plotted against the prediction from the simulation.

The experimental results agree well with the simulation that used the methodology described

in Section 4.3.2 to design the gains.

These results are a promising first step towards practical real-time implementation of

embedded optic flow sensory systems for autonomous navigation and control. To further

this goal, a collaborative effort has been initiated with Tanner Research, Inc., to develop
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Figure 6.2: Experimental validation of WFI-based centering and clutter response behavior
for planar hovercraft versus simulation.

an analog VLSI chip that will demonstrate the feasibility of navigation using wide-field

motion detection and integration. Through several DoD-funded projects, Tanner Research

has developed a silicon version of an optic flow estimation array, based on principles of

insect neurobiology, that is exceptionally robust to stimulus characteristics unrelated to

motion. Through this highly synergistic collaboration that combines Tanner’s electronic

design and packaging capabilities with the advances in bio-inspired control methodologies

described herein, we seek to significantly improve the capability of autonomous UAVs to

navigate extensive near-ground obstacle fields.
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6.2 Extensions to 3-D Environments with 6 DOF Dynamics

By coupling planar (1-D) optic flow information to 3 DOF dynamics, we were able to

develop a remarkable amount of insight for designing optic flow based navigation and control

methodologies for planar vehicles. Given this success, the next logical step in the theory

is a generalization of the analysis approach to 3-D environments, i.e., 2-D optic flow fields,

coupled with 6 DOF vehicle dynamics. If the analysis presented in this thesis can be

successfully extended to the 3-D, 6 DOF case, it will provide a tremendous opportunity

to analyze the LPTC receptive field organizations that have already been mapped out by

various researchers [32], [42].

In the planar case, we were able to formalize the spatial decomposition performed by

LPTCs in L2[0, 2π], the space of square-integrable periodic functions of angle, hence a

trigonometric Fouier series was the natural choice for an orthogonal basis. For the more

general case, the spherical optic flow equation developed in Chapter 2,

Q̇(γ, β,q, q̇) = A(γ, β) · ω + µ(γ, β,q) ·B(γ, β) · v, (6.3)

has two components Q̇ = Q̇γ êγ + Q̇β êβ , each of which live in the function space

L2

(

[0, 2π] × [−π
2 ,

π
2 ]
)

. The most general approach would involve utilization of spherical

harmonics as the orthogonal basis to decompose (6.3). This analysis approach will defi-

nitely be investigated; however since the azimuth and elevation components of (6.3) are

tangential and normal to the directions of various control-relevant quantities such as pitch,

roll and yaw rates, some initial intuition might be extracted from first examining the in-

dividual spherical components. In this case, azimuthal and elevation sensitivities would

be modeled as weights Fi(γ, β) ∈ L2

(

[0, 2π] × [−π
2 ,

π
2 ]
)

, and the WFI operation would be

represented by a transformation W , representing a spatial inner product over the sphere S2

with the optic flow kernels Q̇γ and Q̇β , which acts on elements Fi(γ, β) to produce a sensor

output signal zi, and hence

W : Fi ∈ L2

(

[0, 2π] × [−π
2
,
π

2
]
)

7→ zi ∈ R.

Therefore, a similar analysis approach as outlined in this thesis could be utilized.
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Figure 6.3: Off-axis retinal motion field components Q̇A
β , Q̇B

γ , and Q̇C
γ for three concentric

circular sensor bands A, B, and C.

6.2.1 Off-Axis Retinal Motion Spatial Harmonics

In the analysis of planar retinal motion fields in this thesis the tangential components to

planar cross sections through equation (6.3) were examined (Sections 2.3.1 and 2.3.2). The

normal, or off-axis, components of the optic flow on these circular retinas were considered

to be zero, due to the fact that the kinematics of the vehicles were restricted 3 DOF. If we

relax this assumption, the off-axis components become nonzero, and it is useful to consider

a sensory arrangement (Figure 6.3) where there are three concentric circular bands, one

about the horizon β = 0 (band A) and one about the two verticals γ = 0, π/2 (bands B,C),

coupled to 6 DOF vehicle dynamics.

For band A, the off-axis component Q̇A
β is

Q̇A
β (γ, 0,q, q̇) = −ψ̇ sin γ + φ̇ cos γ − µ(γ, 0,q) żb, (6.4)

and the first several spatial Fourier harmonics are computed in Table 6.1. Note that the no-

tation AA
k and BA

k corresponds to the spatial Fourier harmonics of the nearness function for
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Table 6.1: Off-Axis Retinal Motion Field Spatial Fourier Decomposition

Mode Q̇A
γ Q̇B

β Q̇C
β

a0 − żb√
2
AA

0 − ẏb√
2
AB

0
ẋb√

2
AC

0

a1 φ̇− żbA
A
1 −θ̇ − ẏbA

B
1 −φ̇+ ẋbA

C
1

b1 −ψ̇ − żbB
A
1 ψ̇ − ẏbB

B
1 φ̇+ ẋbB

C
1

a2 −żbAA
2 −ẏbA

B
2 ẋbA

C
2

b2 −żbBA
2 −ẏbB

B
2 ẋbB

C
2

the particular band in question. For band A, the nearness function of interest is µ(γ, 0,q),

and hence

AA
k (q) =

1

π

∫ 2π

0
µ(γ, 0,q) · cos kγ dγ

BA
k (q) =

1

π

∫ 2π

0
µ(γ, 0,q) · sin kγ dγ. (6.5)

Similarly for bands B and C, the off-axis components of the retinal motion field are

Q̇B
γ (0, β,q, q̇) = ψ̇ sinβ − θ̇ cosβ − µ(0, β,q) ẏb (6.6)

Q̇C
γ (π/2, β,q, q̇) = ψ̇ sinβ − θ̇ cosβ − µ(π/2, β,q) ẏb. (6.7)

From Table 6.1, we see that the first several spatial harmonics are relatively simple combi-

nations of linear and angular velocities and nearness function spatial harmonics, as opposed

to the on-axis harmonics for each respective case. Therefore, if one is able to make progress

utilizing the analysis approach presented in previous chapters, this would provide a sub-

stantial first step in developing a general theory for retinal image motion based autonomous

navigation and flight control of 6 DOF vehicles, i.e., MAV/UAVs, in 3-D environments.
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Appendix A

Useful Mathematical Properties of

Inner Product Spaces

The space of square-integrable functions over [0, 2π], defined as

L2[0, 2π] =

{

f : [0, 2π] → R :

∫ 2π

0
|f(γ)|2 dγ <∞

}

,

holds significant importance in the analysis presented in this thesis as it is the space where

the optic flow Q̇, the nearness µ, and, as we will see in this chapter, the retinal motion

sensitivities Fi reside. In the following we list several definitions and properties that will be

useful in subsequent analysis. For additional detail, see references [1], [46]. Throughout let

V denote a linear space over the field F = (R or C).

Definition An inner product on a linear space V is a mapping 〈·, ·〉 : V ×V → F such that

∀ x, y, z ∈ V and ∀ α, β ∈ R:

(i) 〈x, x〉 ≥ 0

(ii) 〈x, x〉 = 0 ⇒ x = 0

(iii) 〈x, y〉 = 〈y, x〉

(iv) 〈αx+ βy, z〉 = α〈x, z〉 + β〈y, z〉

Definition An inner product space is a linear space V with an inner product 〈·, ·〉 defined

on V , and is denoted (V, 〈·, ·〉).

Remark When refering to topological properties of inner product spaces, this is a reference

to the metric defined by d2(x, y) = {〈x− y, x− y〉}1/2.
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Definition A Hilbert space is a complete inner product space.

Definition A maximal orthonormal set B in a Hilbert space H is referred to as an ortho-

normal basis for H.

Theorem A.0.1. Fourier Series Theorem

(i) A Hilbert space H has a countable orthonormal basis {en : n ∈ Z
+} if and only if it

is separable.

(ii) (Fourier series expansion) In a separable Hilbert space any x ∈ H can be written

uniquely in the form

x =
∑

n

〈x, en〉 en

Proof. See references [1] and [46].

Remark A.0.2

(i) The linear space of Lebesgue square-integrable functions L2[0, 2π], defined on the

interval [0, 2π], is a Hilbert space under inner product

〈x, y〉 =

∫ 2π

0
x(γ) · y(γ) dγ

because (L2[0, 2π], d2) is complete.

(ii) L2[0, 2π] is a separable Hilbert space [1].

(iii) The orthonormal set

Φ = {1/
√

2} ∪ {cosnγ : n = 1, 2, . . .} ∪ {sinnγ : n = 1, 2, . . .}

is an orthonormal basis for Lr
2[0, 2π] under the inner product

〈x, y〉w =
1

π

∫ 2π

0
x(γ) · y(γ) dγ.
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