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Consensus Seeking Using Multi-Hop Relay Protocol

Zhipu Jin and Richard M. Murray

Abstract

We consider the problem of average consensus seeking in networked multi-agent systems. Based

on local information and a simple distributed algorithm, states of all agents automatically converge to

the average value of the initial conditions, where the convergence speed is determined by the algebraic

connectivity of the underlying communication network. In order to achieve an average consensus quickly,

we propose a new type of consensus protocol, multi-hop relay protocol, in which each agent expands

its knowledge by employing multi-hop communication links. We explicitly show that multi-hop relay

protocol increases the convergence speed without physically changing the network topology. Moreover,

accumulated delays along communication links are discussed. We show that, for multi-hop relay protocol,

the faster the protocol converges, the more sensitive it is to the delay. This tradeoff is identified when

we investigate the stable delay margin using frequency sweep method.

Index Terms

Networked multi-agent system, average consensus, multi-hop relay protocol, distributed algorithm,

convergence speed, time delay.

I. INTRODUCTION

Consensus seeking based on simple distributed protocols in networked multi-agent systems

has attracted many researchers from different disciplines. Vicseket al. [1] proposes a simple

and popular model for self-driven particles alignment problem in which each agent updates its

heading based on the average of its own heading and its neighbors’. Based on simulation results,

they show that all agents move in the same direction eventually. A theoretical explanation for
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Vicsek’s model is given by Jadbabaieet al. in [2], where a discrete-time consensus protocol is

proposed based on stochastic matrix theory. Supposexi(k) is the state of agenti at timek. The

consensus protocol can be summarized as

xi(k + 1) =
∑

j∈N (i)∪{i}
αij(k)xj(k) (1)

whereN (i) represents the set of agents who can directly communicate with agenti at stepk,

αij ≥ 0, and
∑

j αij(k) = 1. In other words, each agent’s state is updated by a weighted average

of its current value and its neighbors’. Correspondingly, a continuous-time consensus protocol

is proposed by Olfati-Saber and Murray in [3] as

ẋi(t) = −
∑

j∈N (i)

wij(t)
(
xi(t)− xj(t)

)
(2)

wherewij(t) are positive weights. It has been shown that, for balanced communication topologies,

this protocol solves the average consensus problem,i.e., the states of all agents converge to the ex-

act average of the initial values exponentially. Moreover, consensus seeking over general directed

communication topologies is discussed in [4], [5], [6], [7]. When the dynamics of agent state

updating is nontrivial, the consensus behavior can be treated as the synchronization problem of

interconnected dynamical systems. Different approaches are reported, such as Lyapunov’s direct

method in [8] and Laplacian matrix decomposition method in [9], [10]. Also, sufficient conditions

for interconnected dynamical systems synchronization over general interaction topologies are

discussed in [11].

The idea and technic of consensus seeking has been employed in many engineering problems.

For coordinated control, consensus schemes have been applied to achieve vehicle formations [5].

In rendezvous problems, consensus seeking is used to control agents arrive at a certain location

simultaneously [12]. In sensor networks, it has been used for data fusion [13] and distributed

Kalman filters [14]. Other applications include spacecraft attitude alignment [15], distributed

decision making [16], asynchronous peer-to-peer networks [17], and synchronization over robot

networks [18].

For all of those applications, fast consensus convergence speed is important. Xiao and Boyd

treat the consensus seeking process as an optimal linear iteration problem and show in [19] that,

if the global topology of the communication network is known beforehand, the convergence

speed can be increased by finding the optimal weights associated with communication links.
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Recent work on designing the fastest averaging algorithm on arbitrary network is reported in

[20], in which a distributed sub-gradient method is used. In [21], Kim and Mesbahi consider

maximizing the algebraic connectivity of the state-dependent communication network by finding

the optimal vertex configuration. Besides these optimization approaches, Olfati-Saber proposes

a “random rewiring” procedure in [22] to change the network topology into a “small-world”

graph so that the consensus process can be boosted dramatically.

It has been noticed that current consensus protocols restrict information exchange among

agents inside the local connectivity and the information propagation is slow. In order to enlarge

the information exchange region in a systematic way, we propose a multi-hop relay protocol based

on multi-hop paths in the network. The idea is simple: each agent can get more information by

passing its neighbors’ states to others. The improvement in the convergence speed is given

explicitly and is verified by simulation results. This protocol does not change the network

topology and is easy to implement.

Furthermore, delays along communication links are considered. Previous work on consensus

protocol with time delays includes [3], where a necessary and sufficient condition for the stability

of the consensus protocol with homogeneous communication delays is given, and [23], where

delays are only associated with neighbor’s states and the final value of the consensus state is

hard to predict. In this paper, we investigate delay accumulations along multi-hop communication

links. By searching the stable delay margin, a tradeoff between convergence speed and delay

sensitivity is identified.

The remainder of this paper is organized as follows: In Section II, after introducing some

necessary notations, we propose a multi-hop relay protocol for fast consensus seeking. We

explicitly show the improvement on the convergence speed in Section III. Section IV is devoted

to investigating the stability of the protocol with homogeneous communication delays. Examples

and simulation results are provided in Section V and conclusions are summarized in Section VI.

II. M ULTI -HOP RELAY PROTOCOL

We introduce some notation and concepts that will be used through this paper. A graph

G = (V , E) is used to represent the communication topology in a networked multi-agent system

whereV is a set of vertices, which stand for the agents, andE ⊆ V2 is a set of edges, which stand

for the communication links. Each edge in the graph is denoted by(vi, vj), in which we callvi
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the headand vj the tail. A graphG is calledsymmetricif, whenever(vi, vj) ∈ E , (vj, vi) ∈ E
as well. In this paper, we focus on symmetric graphs.

In a symmetric graph, the number of edges whose head isvi is called thedegreeof nodevi.

The set of neighbors of vertexvi is denoted byN(vi) = {vj ∈ V : (vi, vj) ∈ E}. A path is a

sequence of distinct vertices[u0, · · · , ur] such that(ui−1, ui) ∈ E for i from 1 to r. We say a

path is anm-hop pathif it has m edges. A symmetric graph isconnectedif any two vertices in

the graph can be joined by a path.

An adjacencymatrix A = {aij} for graphG with n vertices is an× n matrix defined as

aij =





1, (vi, vj) ∈ E
0, otherwise.

More generally, aweighted adjacencymatrixA = {αij} is defined as

αij = aij · wij

wherewij > 0 is the weight associated with edge(vi, vj). For symmetric graphs, we assume

that wij = wji. The degree of nodevi is
∑

j αij. Let D be a diagonal matrix with the degree of

each vertex along the diagonal and theLaplacianmatrix L is defined byL = D −A.

Let xi denote the state of agentvi. A networked multi-agent system reaches aconsensus

if xi = xj for all vi and vj ∈ V. This common value is called theconsensus state, which

is denoted byη. The dynamics of the whole state updating process with the continuous-time

consensus protocol in Equation (2) can be represented by

Ẋ = −LX (3)

whereX = [x1, · · · , xn]′. It is known that for a connected graph protocol (2) solves the average

consensus problem,i.e., limt→∞ xi(t) = η =
∑

i xi(0)/n for any vi ∈ V. Moreover, eigenvalues

of L are real and denoted by0 = λ1(L) < λ2(L) ≤ · · · ≤ λn(L). The convergence speed is

bounded by the second smallest eigenvalueλ2(L), which is called thealgebraic connectivityof

graphG.

Clearly, information exchange is restricted between a single agent and its “immediate” neigh-

bors in protocol (2). In order to enlarge the information exchanging region, we use those multi-

hop paths in the graph. First, we introduce the two-hop relay protocol as

ẋi = −
∑

j∈N(vi)

wij

(
(xi − xj) +

∑

k∈N(vj)

wjk(xi − xk)
)

(4)
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where what agentvj sends tovi is not only its own state, but also a collection of its immediate

neighbors’ states. In other words, the information of agentvk can be passed tovi along the

two-hop communication link[vk → vj → vi]. Generally, we can write anm-hop relay protocol

over graphG as

ẋi = −
∑

j

wij

(
(xi − xj) +

∑

k

wjk((xi − xk) + · · · ))

︸ ︷︷ ︸
m layers

(5)

where the information is passed around along all possible multi-hop paths inG as long as the

length of the path is no larger thanm.

We call Equation (5) themulti-hop relay protocolwith the parameterm, which is the number of

the layers for state updating at each agent, or the longest length of multi-hop paths the information

goes through. But control the value ofm, we can directly control the size of information exchange

region of each agent. Note that the consensus protocol in Equation (2) is also a multi-hop relay

protocol withm = 1, which we call thesingle-hop relay protocol.

III. D YNAMICS ANALYSIS FOR MULTI -HOP REPLAY PROTOCOL

A. Dynamics of Two-Hop Relay Protocol

Let us start with two-hop relay protocol in Equation (4). Since agentvj sends its state and a

collection of its immediate neighbors’ states tovi, it is equivalent to adding virtual edges to the

original graphG corresponding to those two-hop paths. We definetwo-hop graphĜ = (V , Ê) as

a graph that has the same vertex set but all the edges are “two-hop” paths ofG. Figure 1 shows

an example of two-hop graph.

Original graph Two−hop graph

Fig. 1. A graph and its two-hop graph
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Since we focus on symmetric graphs, there exist self-loops in the two-hop graphĜ, i.e., the

head and tail of an edge are the same. However, according to Equation (4), those self-loops

have no contribution to the dynamics since they are cancelled out in the second layer. We omit

them in following discussion. Also, multiple two-hop paths may exist between the same pair of

vertices. In that case, we consider them as one edge and the weight equals the sum of those

paths. Thus, givenA of G andA2 = {βik}, the adjacency matrix̂A = {α̂ik} of Ĝ is

α̂ik =





∑
j wijwjk = βik, i 6= k

0, i = k.

Let the corresponding Laplacian matrices inG and Ĝ are denoted byL1 andL2, respectively.

For graphG with two-hop relay protocol, we consider the joint graphG̃ = G⋃ Ĝ = (V , E ⋃ Ê)

and the dynamics of the whole system is described as

Ẋ = −L̃X = −(L1 + L2)X. (6)

It is not true thatĜ is always connected whenG is connected. Figure 2 shows a simple

example. The original graph on the left is connected, but the two-hop graph on the right is

composed of two disconnected subgraphs. However, the following lemma states that two-hop

relay protocol still solves the average consensus problem.

Fig. 2. An example of disconnected two-hop graph

Lemma 3.1:For a connected graphG, Equation (6) converges to the average consensus state.

Proof: SinceL2 is still a Laplacian matrix of a symmetric graph, thus then-dimensional

vector1n = [1, . . . , 1]T is still an eigenvector associated with the eigenvalue0. It is easy to show

that the joint graphG̃ is connected and the result follows.
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The two-hop relay protocol needs extra communication bandwidth. We rewrite the single-hop

relay protocol (2) as:

ẋi = −xi

∑

j∈N(vi)

wij +
∑

j∈N(vi)

wijxj (7)

and the two-hop relay protocol (4) as

ẋi = −xi

∑
j∈N(vi)

wij(1 +
∑

k∈N(vj)
wjk)

+
∑

j∈N(vi)
wij

(
xj +

∑
k∈N(vj)

wjkxk

)
.

(8)

For protocol (2), what link(vi, vj) transmits is the value ofxj. For protocol (4), what link

(vi, vj) transmits is the value ofxj,
∑

wjkxk, and
∑

wjk. However, for a static graph,
∑

wjk

is a constant and only needs to be transmitted once. Thus, the two-hop relay protocol needs

as twice the communication bandwidth as single-hop relay protocol needs except at the very

beginning.

For the consensus converge speed, we have the following theorem.

Theorem 3.2:If graph G is connected, then

λ2(L̃) ≥ λ2(L1) + λ2(L2). (9)

Proof: For any vectorx, it is true that

xT L̃x = xTL1x + xTL2x

=
∑

(vi,vj)∈E w2
ij(xi − xj)

2

+
∑

(vi,vj)∈Ê w2
ij(xi − xj)

2.

Assume thatx is a unit vector and orthogonal to1n, then

xTL1x

xT x
=

∑
(vi,vj)∈E(xi − xj)

2

∑
vi∈V x2

i

≥ λ2(L1)

and the equality holds only whenx is an eigenvector associated withλ2(L1).

If we takex to be a unit eigenvector of̃L, orthogonal to1n, associated with eigenvalueλ2(L̃),

then we have

λ2(L̃) =
xT L̃x

xT x
=

xT (L1 + L2)x

xT x
≥ λ2(L1) +

xTL2x

xT x
. (10)

When Ĝ is connected,xTL2x/xT x ≥ λ2(L2) > 0. When Ĝ is disconnected,xTL2x/xT x ≥
λ2(L2) = 0. Thus, two-hop relay protocol improves the convergence speed by at leastλ2(L2).

Theorem 3.2 shows that two-hop relay protocol improves the convergence speed and the

improvement depends on the topology ofĜ.
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B. Dynamics of Multi-Hop Relay Protocol

For the multi-hop relay protocol (5) withm > 2, we think that the protocol adds more virtual

edges to the original graph to enforce the connectivity. The dynamics of multi-hop relay protocol

can be written as

Ẋ = −(L1 + L2 + · · ·+ Lm)X (11)

whereLi is the Laplacian of thei-hop graph.

Theorem 3.3:For a connected graphG, the multi-hop relay protocol (5) solves the average

consensus problem.

Proof: We have shown that, form = 1 and m = 2, the dynamics (11) converges to the

average value of the initial states. Form > 2, it is true that(L1 + L2 + · · · + Lm) is still a

Laplacian of the joint graph with all virtual edges corresponding to those multi-hop paths. Since

the joint graph is connected, the result follows.

Following a similar argument in Theorem 3.2, it is easy to show that increasingm will

increase the consensus convergence speed. However, there exist a couple of drawbacks. First,

the worst case computation complexity of them-hop relay protocol on each agent isO(nm−1).

For large scale networks, it quickly becomes infeasible. Second, at leastm-times communication

bandwidth are needed and the network is easy to get congested. Third, communication delays

will accumulate alongm-hop paths and result in instability. We will discuss the sensitivity to

the communication latency in the next section.

IV. M ULTI -HOP RELAY PROTOCOLS WITHTIME DELAYS

For time delays along communication links, we consider the transfer function associated with

edge(vi, vj) and latencyτij is e−τijs. In the multi-hop relay protocol, delays can accumulate

along those multi-hop paths. We study the simplest case where all delays are identical,i.e.,

τij = τ for any (vi, vj) ∈ E . Protocol (5) can be written as

ẋi = −∑
j∈N (i) wij

(
(xi(t− τ)− xj(t− τ))

+
∑

k∈N (j) wjk(xi(t− 2τ)− xk(t− 2τ)) · · ·
) (12)

and the dynamics is

Ẋ = −L1 ·X(t− τ)− L2 ·X(t− 2τ)− · · · − Lm ·X(t−mτ). (13)
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Let Z = V −1X where

V −1 =


 1 1n−1

1n−1 −I


 . (14)

We can change Equation (13) into

Ż = −
m∑

i=1

V −1LiV Z(t− iτ). (15)

It has been shown in [24] that

V −1 LiV =


 0 0n−1

0n−1 Li,22


 .

Taking the Laplace transform of Equation (15), all states exceptz1 of this autonomous system

exponentially converge to0 if and only if the following characteristic polynomial

p22(s, e
−τs) = det

(
sI +

m∑
i=1

Li,22e
−iτs

)
(16)

has no zeros in the closed right half plane (RHP). This condition is equivalent to the case where

the characteristic polynomial

p(s, e−τs) = det
(
sI +

m∑
i=1

Lie
−iτs

)
(17)

has no zeros in RHP except a simple one at the origin. In [25],p22(s, e
−τs) andp(s, e−τs) are

called realquasipolynomialsof s. In the rest of this paper, we will consistently use this name.

One essential property of quasipolynomials is the continuity of the zeros with respect to the

time delay. In other words, whenτ increases continuously, zeros in the left half plane (LHP)

continuously move to RHP except the zeros = 0. We need to find the minimum value ofτ such

that the first stable zero crosses the imaginary axis. Besides, the conjugate symmetry property of

quasipolynomials makes it possible to calculate the value ofτ and the corresponding crossing

frequency.

Definition 4.1: Given initial valueX(0) and assumptionX(t) = 0 for t < 0, the smallest

value ofτ such that the multi-hop relay protocol does not converge to a consensus is determined

as

τ ∗ = min{τ > 0 | p(jω, e−jτω) = 0 and ω 6= 0}, (18)

which is called thedelay marginof the multi-hop relay protocol.
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It is easy to show that, for anyτ ∈ [0, τ ∗), the system (13) converges to an average consensus.

For the single-hop relay protocol, based on the Schur decomposition theorem, there exists a

unitary matrix T such thatU = T−1LT is upper triangular with the eigenvalues along the

diagonal. Then the quasipolynomial is

det(sI + L1e
−τs) = det(T (sI + Ue−τs)T−1)

= s · Πn
i=2(s + λi(L1)e

−τs).

Let ω is the crossing frequency, thens = jω and we have at least one equation as following

jω = −eτjωλi(L1). (19)

Solving this equation gives us 



ω = λi(L1) 6= 0

τ = π/2λi(L1).
(20)

So the delay margin

τ ∗ = min
π

2λi(L1)
= π/2λn(L1). (21)

For the multi-hop relay protocol withm > 1, we cannot decompose multiple Laplacian

matrices simultaneously. The following theorem gives the explicit result onτ ∗ by using frequency

sweep method in [25].

Theorem 4.2:For system (13), suppose rank(Lm,22) = q and define

τ̄i = min
1≤k≤n−1

θi
k/ω

i
k

when the generalized eigenvaluesλi(G(s), H) satisfy the following equation:

λi(G(jωi
k), H) = e−jθi

k

for someωi
k ∈ (0,∞) andθi

k ∈ [0, 2π), where

G(s) =




0 I 0 · · · 0
...

...
.. .

...
...

0 0 · · · I 0

0 0 · · · 0 I

−sI −L1,22 · · · −Lm−2,22 −Lm−1,22




(22)

and

H = diag(I, . . . , I,Lm,22). (23)
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Then the consensus delay margin of (13) is

τ ∗ = min
1≤i≤(n−1)(m−1)+q

τ̄i.

Re

Im

0

Re

Im

0

Fig. 3. Locus of the zero of the quasipolynomial and the generalized eigenvalue

Proof: Generalized eigenvaluefor matrix pair (A,B) is defined as a scalarλ(A,B) that

satisfiesAy = λ(A,B) · By for an nonzero vectory. The vectory is called thegeneralized

eigenvector. WhenB = I, λ(A,B) = λ(A). It is a well-known fact that the number of finite

generalized eigenvalues for(A,B) is at most equal to rank(B). Also, if rank(B) is constant,

λ(A,B) is continuous with respect to the elements ofA.

Based on the aforementioned similarity transform, system (13) converges to a consensus if

the following system 


ż2

...

żn


 = −

m∑
i=1

Li,22




z2(t− iτ)
...

zn(t− iτ)


 (24)

is stable. Based on Schur determinant complement, we have

det
(
sI +

m∑
i=1

Li,22e
−iτs

)
= (−1)(n−1)m det(G(s)− e−τsH) (25)

whereG andH have the format as in Equation (22) and (23), respectively. Then, the quasipoly-

nomial with multiple delay terms transfers to a new equation with a single delay term.

Since τ ∈ R, whenever a zero is located on the imaginary axis, there existss = jω so

that e−jωτ is a generalized eigenvalue of(G(s), H). Figure 3 shows this correspondence by
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plotting the zero locus of the quasipolynomial and the eigenvalue locus. Thus, we can transfer

the problem of findingτ so that the quasipolynomial has zeros with pure imaginary parts to the

problem of finding aω so that(G(s), H) has a generalized eigenvalue with magnitude1.

Since rank(H) = q + (m − 1)(n − 1), there are at mostq + (m − 1)(n − 1) generalized

eigenvalues of(G(s), H). Whens moves along the imaginary axis from0 to j∞, there exists

at mostn− 1 frequencyωi
k so that‖λi(G(jωi

k), H)‖2 = ‖e−jθi
k‖2 = 1. Thus, the delay margin

τ ∗ is the minimum value of all possiblēτ i
k = θi

k/ω
i
k.

Because there exist many efficient algorithms for generalized eigenvalue searching, it is much

easier for us to findλ(G(s), H) than to solve the quasipolynomial directly. However, for large

scale graphs, it is still a difficult problem due to the sizes ofG andH.

V. EXAMPLES AND SIMULATION RESULTS

In order to verify the efficiency of the multi-hop relay protocol, we test it on three different

networks listed in Figure 4, denoted asG1, G2, and G3 from left to right. TopologyG1 is a

2-regular graph,G2 is a net in which each vertex connects to other vertices located inside a

certain range, andG3 is a complete graph. All of them have ten vertices. They are all symmetric

and connected. For simplicity, we assume thatwij = 1 for any edge.

Fig. 4. Three different topologies:G1, G2, andG3

Figure 5, 6, and 7 show the simulation results ofG2 with the same initial conditions and

different delays. It is clear that, two-hop relay protocol converges much faster, but only tolerates

much smaller time delays than single-hop relay protocol. Note that, even though the system

becomes unstable, the sum of all states is still constant.

Table I shows the values of convergence speed and delay margin for all three graphs with

different multi-hop relay protocols. Delay margins with single-hop relay protocol are calculated
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Fig. 5. Consensus convergence for graphG2 with no delay.
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Fig. 6. Consensus convergence for graphG2 with delayτ = 0.05.
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Fig. 7. Consensus convergence for graphG2 with delayτ = 0.25.

according to Equation (21). Delay margins for other multi-hop relay protocols are computed

based on Theorem 4.2. Note that magnitudes of generalized eigenvalues inevitably exceed1 after

a certain value ofω. The computation is done only over a finite frequency interval. We actually

run the computation twice. The first time we try to find an appropriate frequency interval using

larger frequency steps. The second time we use much smaller frequency step over the interval

to find an accurate value of the delay margin.

For each network, the multi-hop relay protocol improves the convergence speed by increasing

m. However, the robustness against time delays is impaired due to the delay accumulation along

multi-hop paths. Moreover, along the columns of the table, we can tell that convergence speed

increases and delay margin decreases when the graph includes more links. We put these data in

Figure 8, which clearly marks that multi-hop relay protocol actually boosts convergence speed

while sacrificing the robustness.

VI. CONCLUSIONS

In this paper, we propose a multi-hop relay protocol for fast consensus seeking over networked

multi-agent systems, which efficiently improves the convergence speed without physically chang-
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TABLE I

PERFORMANCE VS. ROBUSTNESS FORRELAY PROTOCOLS

Convergence speedλ2 Delay margin τ∗

single-hop two-hop three-hop four-hop single-hop two-hop three-hop four-hop

G1 0.382 1.7639 5.5279 14.674 0.3927 0.1796 0.0332 0.0176

G2 0.9118 7.3846 40.245 178.18 0.2167 0.0396 0.0051 9.731× 10−4

G3 10 90 820 7380 0.1571 0.0095 0.00068 5.545× 10−5
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Fig. 8. Tradeoff between convergence speedλ2 and delay marginτ∗.

ing the network topology. By employing multi-hop paths, we enlarge the information exchanging

region of each agent in a systematical way. The cost we need to pay are extra communication

bandwidth and local computation load.

Due to delay accumulation along multi-hop communication links, the multi-hop relay protocol

may becomes unstable. Necessary and sufficient conditions for the stability are listed by explicitly

giving the delay margin with homogeneous time delays. A tradeoff between the performance

and the robustness is identified. It is true that, the largerm is, the faster the convergence speed
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is, and the more sensitive the protocol is to time delays. Also, with the same multi-hop relay

protocol, the topology with more edges has faster convergence speed and smaller delay margin.
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