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Multi-Hop Relay Protocols for Fast Consensus Seeking

Zhipu Jin and Richard M. Murray

Abstract— Consensus protocols in coordinated multi-agent Kalman filter [11]. The consensus convergence speed is very
systems are distributed algorithms. Just using local information jmportant. Xiao and Boyd treated a consensus process as an
available to each single agent, all agents converge to an identical optimal linear iteration problem and increased the conver-

consensus state and the convergence speed is determined by d by finding th timal iaht iated with
the algebraic connectivity of the communication topology. In 9&NCe Speed by finding the optimal weights associated wi

order to achieve a faster consensus seeking, we propose multi- €ach edge [12]. Olfati-Saber proposed a “random rewiring”
hop relay protocols based on the current “nearest neighbor procedure to boost the convergence speed for large scale
rules” consensus protocols. By employing multiple-hop paths graphs. However, physically changing the topology may be
in the network, more information is passed around and each difficult in some applications. The question is can we get a

agent enlarges its “available” neighborhood. We demonstrate bett d without ch . d d thei
that these relay protocols can increase the algebraic connec- etier convergence speed without changing edges an el

tivity without physically adding or changing any edges in Weights?
the graph. Moreover, time delay sensitivity of relay protocols Fortunately, the answer is yes. In this paper, we propose
are discussed in detail. We point out that a trade off exists multi-hop relay consensus protocols that use multi-hop paths

between convergence performance and time delay robusiness., 4 graph to improve the convergence performance. The
Simulation results are also provided to verify the efficiency of . - . . - .
relay protocols. idea is simple: each vertex could get more information

Index Terms— Coordinated multi-agent systems, consensus DY Passing its neighbors states to other neighbors. The
protocol, multi-hop relay protocol, distributed algorithms, con-  improvement with two-hop relay protocol is given explicitly.

vergence speed, time delay. Since relay protocols do not change the topology, it is easy
to be implemented in practice. Furthermore, the effect of
I. INTRODUCTION communication time delays are considered. An effective

Collective behaviors of coordinated multiple agents usingethod to find the delay margin of two-hop relay protocol
nearest neighbor rules have attracted attentions of researcérgiven. A trade off between convergence speed and delay
from different disciplines. One of them is the consensu§ensitivity is discussed.
behavior, i.e., the states of all agents convergence to anlhe remainder of this paper is organized as follows. In sec-
identical value. Vicselet al. proposed a simple but popular tion Il, a brief review of concepts in algebraic graph theory
mode| for mu|t|p|e agents in Wh|Ch each agent updates |%nd some preliminary results about consensus pr0t0C0|S are
headings based on the average of its own heading and REesented. We then propose multi-hop relay protocols for fast
neighbors’ [1]. Using simulation results, they showed that affonsensus seeking in section Ill and emphasize on the two-
agents move in the same direction eventually. A theoreticBPP relay protocol. Section IV is devoted to investigating
explanation for Vicsek's model is given by Jadbabeieal. the stability of the relay protocols with communication
in [2]. Olfati-Saber and Murray proposed a simple consenstigne delays. Explicit result of delay margins is presented.
protocol and showed that, for balanced directed graphs, tHixa@mples and simulation results are provided in section V
protocol could solve the average consensus problem. Morad2d conclusions are listed in section VI.
over, consensus _see_king under general connected directeﬂ' CONSENSUSPROTOCOLS ANDCONSENSUSSTATE
graphs were studied in [3], [4]. i

When agents’ dynamics are considered, the consensusVe use a directed grapf = (V,€) to represent the
behavior was treated as the synchronization problem fétéraction topology in a multi-agent system whereis a
coupled dynamical systems. Different approaches were et Of vertices and C V? is a set of edges. Each edge of
ployed such as Lyapunov’s direct method in [5] and Laplath® graph is denoted bi;, v;) and represents that agent
cian matrix decomposition method in [6], [7]. Also, sufficienth@s access to the state of agentFor any edggv;, v;), we
conditions for multiple dynamical systems synchronizatiof@!l v: theheadandv; thetail. The directed grapti is called
over general connected directed graphs were discussedSynmetricif, whenever(v;,v;) € €, then(v;, v;) € € also.

[8]. In a directed graph, the number of edges whose headiss _

Average consensus seeking has many applications in peg@lledout-degreeof nodev;; the number of edges whose tail
to-peer networks [9], sensor fusion [10], and distributedf v: iS calledin-degreeof nodev;. If edge(v;, v;) € €, then

v; is one of theparent verticesof v;. The set of neighbors
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weak pathis a sequencey, - - - , u,. of distinct vertices such bounded by the second smallest eigenvalyeClearly, the

that either(u;_1,u;) or (u;,u;—1) belongs tof. A directed value of Ay is determined by the topology and the weight
graph isweakly connectedf any two vertices in the graph associated with each edge. If we only consider the aspect of
can be joined by a weak path, and itsisongly connected  topology, the more links there are in the graph, the bigger
any two vertices can be joined by a n-hop path. If a directetthe algebraic connectivity is, and the faster the convergence
graph is neither strongly connected nor weakly connectets. An upper bound of the convergence speed can be found
it is disconnectedFor same vertices set, Fig. 1 reveals thdor consensus protocol (1).

relationships between these concepts. In some literature, d.emma 3.1:The maximum value of the second smallest
symmetric, connected directed graph is just catlednected eigenvalue\, of L for a symmetric connected directed graph
when only symmetric graphs were considered. In this papeg, with n vertices is}_,_,; w;;/(n —1).

we focus on symmetric connected graphs. Proof: We know that0 is a simple eigenvalue of.
_ associated with eigenvectar=[1,---,1] and all the other
Directed Grephs eigenvalues are real positive sinfeis symmetric.
Weskly conected For a directed graply with n vertices, we have
n
Di ected
= Strongly connected (n — 1))\2 < Z )\z = tT’(L) < Z Q5 Wi 5

i=1 i#]

wheretr(L) is the trace ofL. Thus,

Ao <Y wij/(n—1).

[S\/mmetricdisconnected Symmetric connected }

i#]
Fig. 1. Classification of directed graphs The equation holds only whef is complete and all weights
w;; are identical. [ |

An adjacencymatrix A = {a;;} of G with n vertices is  The consensus protocol (1) reaches its maximum conver-
defined as: 1, (o) €€ gence speed if we configure the topology to be a complete

%y —{ O’ otﬁer]wise. graph with uniform _Welghts. In this sectlon,_we extend

’ protocol (1) to multi-hop relay protocols which employ
More generally, aveighted adjacencynatrix A = {a,;} of multi-hop paths in the graph instead of changing edges and

a weighted directed graply is defined as: weights.
Aij = Q5 - Wij A. Two-Hop Relay Protocol

wherew;; > 0 is the weight associated with vertices pair The distributed two-hop relay protocol is described as

(vs,v;). For a weighted directed graph, the out-degree of

nodew; is Zj a;j; the ir_1-de_gree of node; is >, aj;. Let B = — Z wi <(Ii_xj)+ Z wjk(xi_xw). @)

D be the diagonal matrix with the out-degree of each vertex JeN () KEN(0;)

along the diagonal, then tHeaplacian matrix L is defined )

by L=D — A In two-h(_)p re_Iay protOC(_)I, what each vertex sends to _|ts
Letz; denote the state of agent A multi-agent system is par.ent. vertices is not only its own state, bgt also a coIIecupn

called to reach @onsensu#f z; = z; for all v; andv; € V. of its instantaneous neighbors’ states. It is equal to adding

This common value is called theonsensus statehich is  Virtual “two-hop” paths as additional edges to original graph.

depicted by;. A consensus protocol using nearest neighbdrOr @ directed grapi, atwo-hop directed graply = (V, €)

rules is represented by : is a graph that has the_ same vertex set and all the edges are
“two-hop” paths ofG. Fig. 2 shows an example of the two-
Bi=— > wi(wi — ), (1)  hop directed graph.

JEN(v;) .

and the multi-agent system can be presented by /O i A
X = _LX @) i
where X = [z1,---,2,] and L is the Laplacian matrix. i
For a symmetric connected graph, protocol (1) solves the & o

average consensus problem ape- > x;(0)/n. Original graph Two~hop graph

IIl. MuULTI-HOP REPLAY PROTOCOLS

According to [13], for a symmetric connected directed A
graph, suppose the eigenvalues Iofare denoted by = For G, there may exist self-loops in two-hop gragh
A1 < A2 < --- < ), the consensus convergence speed ise., the head and tail of an edge are same. This is very

Fig. 2. A directed graph and its two-hop directed graph



common wheng is symmetric. However, according to theand the equation holds only when is an eigenvector
relay protocol (3), these self-loops have no contributionassociated with\y(L).

to the dynamics. Thus, these self-loops are omitted if we Combine these two results, if we take to be a unit

don’t consider communication delays. Moreover, betweeeigenvector off, orthogonal tal, associated with eigenvalue
any pair of vertices irg, multiple two-hop paths may exist. X\o(L), then we have

We consider them as one edgedirand the weight associated

with it is equal to the sum of two-hop paths’ weights. Thus, ,(f) — xTTLx _ xT(L; L)z > M(L) + l‘TTLl" ®)
the adjacency matri = {a,;} of G are: 0T - xror
. | |
Gik = { 2jev WigWsks (Vi V) € € Theorem 3.3 shows that two-hop relay protocol increases
0, otherwise.

the convergence speed. The improvement depends on the

The corresponding out-degree diagonal and Laplacian mattépology of G. Obviously, G is symmetric too. It also can

ces are denoted hi) and L respectively. be shown that the edge set @fis not empty if the original
Proposition 3.2:For a directed graply with two-hop graph has more than two vertices,

relay protocol (3), the dynamics of the whole system is Proposition 3.4:1f G is connected,

described as

X = —L,X. (4) A2(L) = Ao(L) + )\2T(§)- . 9
B ) Proof: Wheng is connectedg” Lx/x* x > Ao(L) >
where Ly = L + L. . X 0. Thus, two-hop relay protocol improves the algebraic
Proof: ~ Consider the joint graphg = GUG = connectivity by at leash,(L). [
(V,€¢E), itis obvious that the two-hop relay protocol is a However, it is not true thag is always connected. Fig.
consensus protocol @. B 3 shows a simple example. The original graph on the left

Another issue is how much extra communication banqs Symmetric and Connected, but the two_hop graph on the

width the two-hop relay protocol needs. We assume that thgyht is composed by two disconnected subgraphs.
graph is static and link weights associated with instantaneous

neighbors are prior knowledge of each agent. We rewrite the

protocol (1) as: \

T; = —T; Z wij + Z Wi T (5)
JEN (v;) JEN (v;)

and the two-hop relay protocol (3) as

. Fig. 3. An example for disconnected two-hop directed graph
Ti = —Tidien(o) Wii (L + Xren(v,) Wik)
+ 2 eN (o) Wi (zj + DokeN(v;) WjTE). ,
. - C. Multi-hop relay protocol
For protocol (1), what link(v;, v;) transmits is the value of ) ) )
2;. For protocol (3), what linkv;, v;) transmits is the value It is possible to extend the two-hop relay protocol to multi-
of z;, S wjkry, and Y w;y,. However, for a static graph, hop relay .protocol. The protocol fan-hop relay protocol
S wjy, is a constant and only need to be transmitted onc&2"N be written as
Thus, two-hop relay protocol needs double communication ;. _ wor (2 —
' L i = — ij i — L)+ Wik((T; — X)) +---)).

bandwidth except at the beginning. ‘ 27: i (@1 =) zk: (@i =) )

(6)

B. Performance of the two-hop relay protocol m layers

Supposeg is symmetric and connected, thénis sym- ) , - (10)
metric and positive semi-definite, the two-hop gra@his Clearly it adds more virtual edges to the original graph and

symmetric, and the joint graph is also symmetric and enforces the convergence speed. However, there are three

connected. drawbacks. First, the worst case computation complexity
Theorem 3.3:Assume a directed graghis connected and ©f m-hop relay protocol on each agent @(n™"). For
symmetric, then !arge scale networks_, it will be qu_lckl_y |nfea5|bl_e as
Ao (L) < Mo(L) (7) Increases. Secondn-tlmgs gommumcaupn bandwidth are
Proof: For any vectorr, it is true that needed. Third, communication delays will accumulate. glong
. . - m-hop paths and that makes the protocol very sensitive to
v Lr = o’ Lr+a” Lx communication latency.
= Z(vi,vj)eg wZ'Qj (mi - xj)Q
+ Z(/le)eé w?j(:vyz — ;)% IV. Two-Hop RELAY PROTOCOLS WITHTIME DELAYS
According to [14], ifz a unit vector and orthogonal tb, For communicat?on delay i_n relay protocols, we cqnsider
) the transfer function associated with edge;,v;) with
a’ L _ Z(vi,vj)es(xi ) > Mo(L) latencyr;; is h;;(s) = e~ 74°. Delays will be accumulated in

zTx Doy z? - two-hop relay protocol. We focus on the simplest case where



all delays are identical, i.er;; = 7 for any (v;,v;) € £. The  For anyr € [0,7*), the system of (13) or (14) converges to

protocol (1) can be written as: the consensus state= > z;(0)/n.
. Lemma 4.2:Let 7* and 7* indicate the delay margin of
Ti=— Z wij(zi(t —7) —z;(t—7))  (11) (13) and (14) respectively, thert > 7*.
JEN(v) Proof: First, let us findr*. According to Schur theorem,
and the two-hop relay protocol is: there exists a unitary matriX such that/ = T-'LT is an

) upper triangular with the eigenvalues along the diagonal. So
Bo= = e wii (@t =) =t =)

+ ke () Wik(@i(t = 27) — @y (t — 27))) - det(sI + Le™™) = det(s] + TUT 1e~7%)
(12) = det(T(sI +Ue )T~ 1)
Equations (2) and (4) change to = 5" o(s+ N(L)e ™).
X=-LX(t—) (13) We need to find the smallest > 0 such that the first
and stable zero reaches the imaginary axis. ket jw and we
X = —LX(t—7)— LX(t - 27) (14 have have |
Jjw = —e")\; (L) (20)
respectively.
Let Z = V!X where Solving this equation gives us
1 1
vl= [ } . (15) w = N(L)#0
1 -1 = x2n(0). (1)

For two-hop relay protocol, we have to So the delay margin

Z=-VLVZ(t—7) -V ILVZ({t—2r). (16)

7F =min7/2)\; (L) = 7/2X\,(L). (22)
Note that
0 0 ) 0 o Then we considerr*. The approach above fails for
VLV = [ ] and V'LV = [ R ] det(sI + Le™ ™ 4 Le~27*). However, it is obvious that*
0 L2 0 Lo should be no bigger than the delay margin dot(sI + (L +
where Loy is full rank. L)e=7%), which is w/2\,,(L). Moreover,\,,(L) > A,(L)

Let us assume thak () = 0 for any ¢t < 0. Then the according to [14]. So we have
system asymptotically converges #o= Y z;(0)/n if and

only if the partition characteristic polynomial T =m/(2A (L)) Z 7/ (2An(L)) = 77

paa(s,e” %) = det (sI 4 Loge™ ™% + f/22€_27—s) a7 u
_ _ ~ Lemma 4.2 just shows us the delay sensitivity of two-
has no zero in the closed right half plane (RHP). Thigqgp relay protocol is no better than consensus protocol (1).
condition is equivalent to that the characteristic polynom|a|:o||owing theorem gives us explicit results 6# by using
p(s,e7™) = det (SIJF Le ™ 4 £672Ts) (18) frequency-sweeping test. R _
Theorem 4.3:For system (14), let rarfi) = ¢ and define

has no zero in the closed RHP except the simple zero at the o
origin. In [15], p(s,e~7*) is also called a real quasipolyno- T = 1<§€n<i;17192/w12
mials of s. A similar result also holds for (13). -

One of the essential properties of quasipolynomials when the generalized eigenvaluag(G(s), H) satisfy the
the continuity of the zeros with respect to delay. In othefollowing equation:
words, whenr increases, zeros in left half plane (LHP) , »
move to RHP. Time delay does not affect the zere- 0. Xi(G(jwy), H) = e 7%
Thus, we need to find minimum value ef such that the _
first stable zero crosses the imaginary axis. Besides, tff¥ SOMew;
conjugate symmetry property of quasipolynomials make it 0 I I 0
possible to calculate the critical value of time delay and the G(s) = { sl —L ] and H = [ o i ] .
corresponding crossing frequency. 22 22

Definition 4.1: Given initial value X (0) and assumption Then the consensus delay margin of (14) is
X(t) = 0 for any ¢t < 0, the smallest value of such that

€ (0,00) and#;, € [0,27), where

~ %

the system cannot converge to a consensus is determined as T = 1<i31732q_1ﬂ'
7 =min{r > 0| p(jw,e ™) =0 andw #0}. (19) Proof: Finding generalized eigenvalues for matrix pair

(A, B) is the problem of finding\; and non-zero vectoy
We call 7* the delay marginof the consensus protocol. such thatdy = \; By.



Fig. 4. Three examples with different topologi&s:, G2, andGs

TABLE |
PERFORMANCEV.S. ROBUSTNESS FORRELAY PROTOCOLS

According to the aforementioned similarity transform,
if the system (14) converges to the average consensus is

determined by if the system Algebraic connectivity Ay Delay margin 7*
%o A (t _ T) 22(t _ 27_) Without relay | With relay || Without relay | With relay
] “ ] g1 0.382 1.7639 0.3927 0.1796
S ey o : — Lo : Gs 0.9118 7.3846 0.2167 0.0396
Zn Zn(t—T) Zn(t — 27) Gs 10 90 0.1571 0.0095

is asymptotically stable. Since none of the generalized eigen-
values of (G(jw), H) can be strictly larger than for all
w € (0,00), the result follows by adopting the frequency-graph includes more links. We put these data in Fig. 9. For
sweeping test for multiple commensurate delay systems @fch bar, the right lower point corresponds to protocol (1)
[15]. m and left upper point corresponds to two-hop relay protocol.
It is true that relay protocols actually boost up algebraic
V. EXAMPLES AND SIMULATION RESULTS connectivity by sacrificing delay margin.

In order to verify the efficiency of two-hop relay consensus
protocol, we test it on three graphs. Fig. 4 shows the
topologies ofg1, G, andgs from left to right, whereg, is a In this paper, we propose multi-hop relay protocols for
2-regular graphg, is a net in which each vertex connects togast consensus seeking and emphasize on the two-hop relay
neighbors located inside a certain range, @nts a complete  protocol. When the topology is symmetric and connected,
graph. All of them have ten vertices. They are symmetric angsing relay protocols can efficiently improve the convergence
connected. Each pair of edges;, v;) and(v;, v;) belong to gpeed without physically changing the topology. The cost we
those graphs is den.oted by a single link and we assume thataq 1o pay is that extra communication bandwidth.

w;j = 1 for any vertices pair. _ _ A trade off between the convergence performance and

Fig. 5 to Fig. 8 show the simulation results G¢ with  5pystness of communication time delay are shown by in-
same initial conditions and different delays. Note that, eVefiestigating three typical topologies with relay protocols. The
the system can become unstable, the sum of the states kegpie edges the graph includes, the faster the convergence
constant. Table | shows the algebraic connectivities angeeq s, while the more sensitive the protocol is to the time
delay margins for all three graphs with or without two-hoRye|ay. Moreover, frequency sweep method can efficiently find
relay protocols. Delay margins without relay protocols argne gelay margin with multiple commensurate delays and it is

calculated according to equation (22) in Lemma 4.2. Delay power tool to study the time delay sensitivity of multi-hop
margins with relay are computed using frequency sweegjay nrotocols.

method mentioned in Theorem 4.3. Note that the magnitudes,;uture work will include studying large group of graphs

of generalized eigenvalues inevitably excdeafter a Certair_1 _and putting their performance/robustness data into Fig. 9. Re-
w, the computatlon needs to be done only over a f'_n'tfationship between patterns and topology characters should
frequency interval [15]. We actually run the computation,q o4 efylly examined. Comprehensively describe and deeply

twice. First time we try to find an appropriate freqUency ,qerstand this trade off will benefit us for topology and
interval. Second time we use a much smaller frequency St?)‘?otocol design for multi-agent networks.

over the interval in order to find more accurate value of delay
margin.

For each graph, relay protocol improves the convergence
speed. However, time-delay robustness is impaired due toThe authors would like to thank Prof. Reza Olfati-Saber,
the delay accumulation along the two-hop paths. Moreovefirom Dartmouth College, for the fruitful discussions. This
along the columns of the table, we can tell that algebrai@search is partly supported by AFOSR gran®&20 — 04 —
connectivity increases and delay margin decreases when the 0169.

VI. CONCLUSIONS AND FUTURE WORK
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