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Abstract— Consensus protocols in coordinated multi-agent
systems are distributed algorithms. Just using local information
available to each single agent, all agents converge to an identical
consensus state and the convergence speed is determined by
the algebraic connectivity of the communication topology. In
order to achieve a faster consensus seeking, we propose multi-
hop relay protocols based on the current “nearest neighbor
rules” consensus protocols. By employing multiple-hop paths
in the network, more information is passed around and each
agent enlarges its “available” neighborhood. We demonstrate
that these relay protocols can increase the algebraic connec-
tivity without physically adding or changing any edges in
the graph. Moreover, time delay sensitivity of relay protocols
are discussed in detail. We point out that a trade off exists
between convergence performance and time delay robustness.
Simulation results are also provided to verify the efficiency of
relay protocols.

Index Terms— Coordinated multi-agent systems, consensus
protocol, multi-hop relay protocol, distributed algorithms, con-
vergence speed, time delay.

I. INTRODUCTION

Collective behaviors of coordinated multiple agents using
nearest neighbor rules have attracted attentions of researchers
from different disciplines. One of them is the consensus
behavior, i.e., the states of all agents convergence to an
identical value. Vicseket al. proposed a simple but popular
model for multiple agents in which each agent updates its
headings based on the average of its own heading and its
neighbors’ [1]. Using simulation results, they showed that all
agents move in the same direction eventually. A theoretical
explanation for Vicsek’s model is given by Jadbabaieet al.
in [2]. Olfati-Saber and Murray proposed a simple consensus
protocol and showed that, for balanced directed graphs, this
protocol could solve the average consensus problem. More-
over, consensus seeking under general connected directed
graphs were studied in [3], [4].

When agents’ dynamics are considered, the consensus
behavior was treated as the synchronization problem for
coupled dynamical systems. Different approaches were em-
ployed such as Lyapunov’s direct method in [5] and Lapla-
cian matrix decomposition method in [6], [7]. Also, sufficient
conditions for multiple dynamical systems synchronization
over general connected directed graphs were discussed in
[8].

Average consensus seeking has many applications in peer-
to-peer networks [9], sensor fusion [10], and distributed
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Kalman filter [11]. The consensus convergence speed is very
important. Xiao and Boyd treated a consensus process as an
optimal linear iteration problem and increased the conver-
gence speed by finding the optimal weights associated with
each edge [12]. Olfati-Saber proposed a “random rewiring”
procedure to boost the convergence speed for large scale
graphs. However, physically changing the topology may be
difficult in some applications. The question is can we get a
better convergence speed without changing edges and their
weights?

Fortunately, the answer is yes. In this paper, we propose
multi-hop relay consensus protocols that use multi-hop paths
in a graph to improve the convergence performance. The
idea is simple: each vertex could get more information
by passing its neighbors states to other neighbors. The
improvement with two-hop relay protocol is given explicitly.
Since relay protocols do not change the topology, it is easy
to be implemented in practice. Furthermore, the effect of
communication time delays are considered. An effective
method to find the delay margin of two-hop relay protocol
is given. A trade off between convergence speed and delay
sensitivity is discussed.

The remainder of this paper is organized as follows. In sec-
tion II, a brief review of concepts in algebraic graph theory
and some preliminary results about consensus protocols are
presented. We then propose multi-hop relay protocols for fast
consensus seeking in section III and emphasize on the two-
hop relay protocol. Section IV is devoted to investigating
the stability of the relay protocols with communication
time delays. Explicit result of delay margins is presented.
Examples and simulation results are provided in section V
and conclusions are listed in section VI.

II. CONSENSUSPROTOCOLS ANDCONSENSUSSTATE

We use a directed graphG = (V, E) to represent the
interaction topology in a multi-agent system whereV is a
set of vertices andE ⊆ V2 is a set of edges. Each edge of
the graph is denoted by(vi, vj) and represents that agentvi

has access to the state of agentvj . For any edge(vi, vj), we
call vi theheadandvj thetail. The directed graphG is called
symmetricif, whenever(vi, vj) ∈ E , then (vj , vi) ∈ E also.
In a directed graph, the number of edges whose head isvi is
calledout-degreeof nodevi; the number of edges whose tail
is vi is calledin-degreeof nodevi. If edge(vi, vj) ∈ E , then
vi is one of theparent verticesof vj . The set of neighbors
of vertexvi is denoted byN(vi) = {vj ∈ V : (vi, vj) ∈ E}.

A path in a directed graph is a sequenceu0, · · · , ur of
distinct vertices such that(ui−1, ui) ∈ E for i from 1 to r.
A path is also called an-hop pathif there aren edges in it. A
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weak pathis a sequenceu0, · · · , ur of distinct vertices such
that either(ui−1, ui) or (ui, ui−1) belongs toE . A directed
graph isweakly connectedif any two vertices in the graph
can be joined by a weak path, and it isstrongly connectedif
any two vertices can be joined by a n-hop path. If a directed
graph is neither strongly connected nor weakly connected,
it is disconnected. For same vertices set, Fig. 1 reveals the
relationships between these concepts. In some literature, a
symmetric, connected directed graph is just calledconnected
when only symmetric graphs were considered. In this paper,
we focus on symmetric connected graphs.

Directed Graphs

Symmetric disconnected Symmetric connected

Strongly connected

Weakly connected

Disconnected

Fig. 1. Classification of directed graphs

An adjacencymatrix A = {αij} of G with n vertices is
defined as:

αij =
{

1, (vi, vj) ∈ E
0, otherwise.

More generally, aweighted adjacencymatrix A = {aij} of
a weighted directed graphG is defined as:

aij = αij · wij

wherewij > 0 is the weight associated with vertices pair
(vi, vj). For a weighted directed graph, the out-degree of
nodevi is

∑
j aij ; the in-degree of nodevi is

∑
j aji. Let

D be the diagonal matrix with the out-degree of each vertex
along the diagonal, then theLaplacian matrix L is defined
by L = D −A.

Let xi denote the state of agentvi. A multi-agent system is
called to reach aconsensusif xi = xj for all vi andvj ∈ V.
This common value is called theconsensus statewhich is
depicted byη. A consensus protocol using nearest neighbor
rules is represented by :

ẋi = −
∑

j∈N(vi)

wij(xi − xj), (1)

and the multi-agent system can be presented by

Ẋ = −LX (2)

whereX = [x1, · · · , xn]′ andL is the Laplacian matrix.
For a symmetric connected graph, protocol (1) solves the

average consensus problem andη =
∑

xi(0)/n.

III. M ULTI -HOP REPLAY PROTOCOLS

According to [13], for a symmetric connected directed
graph, suppose the eigenvalues ofL are denoted by0 =
λ1 < λ2 ≤ · · · ≤ λn, the consensus convergence speed is

bounded by the second smallest eigenvalueλ2. Clearly, the
value of λ2 is determined by the topology and the weight
associated with each edge. If we only consider the aspect of
topology, the more links there are in the graph, the bigger
the algebraic connectivity is, and the faster the convergence
is. An upper bound of the convergence speed can be found
for consensus protocol (1).

Lemma 3.1:The maximum value of the second smallest
eigenvalueλ2 of L for a symmetric connected directed graph
G with n vertices is

∑
i6=j wij/(n− 1).

Proof: We know that0 is a simple eigenvalue ofL
associated with eigenvector1 = [1, · · · , 1] and all the other
eigenvalues are real positive sinceL is symmetric.

For a directed graphG with n vertices, we have

(n− 1)λ2 ≤
n∑

i=1

λi = tr(L) ≤
∑

i 6=j

αijwij

wheretr(L) is the trace ofL. Thus,

λ2 ≤
∑

i 6=j

wij/(n− 1).

The equation holds only whenG is complete and all weights
wij are identical.

The consensus protocol (1) reaches its maximum conver-
gence speed if we configure the topology to be a complete
graph with uniform weights. In this section, we extend
protocol (1) to multi-hop relay protocols which employ
multi-hop paths in the graph instead of changing edges and
weights.

A. Two-Hop Relay Protocol

The distributed two-hop relay protocol is described as

ẋi = −
∑

j∈N(vi)

wij

(
(xi−xj)+

∑

k∈N(vj)

wjk(xi−xk)
)
. (3)

In two-hop relay protocol, what each vertex sends to its
parent vertices is not only its own state, but also a collection
of its instantaneous neighbors’ states. It is equal to adding
virtual “two-hop” paths as additional edges to original graph.
For a directed graphG, a two-hop directed grapĥG = (V, Ê)
is a graph that has the same vertex set and all the edges are
“two-hop” paths ofG. Fig. 2 shows an example of the two-
hop directed graph.

Original graph Two−hop graph

Fig. 2. A directed graph and its two-hop directed graph

For G, there may exist self-loops in two-hop grapĥG,
i.e., the head and tail of an edge are same. This is very



common whenG is symmetric. However, according to the
relay protocol (3), these self-loops have no contributions
to the dynamics. Thus, these self-loops are omitted if we
don’t consider communication delays. Moreover, between
any pair of vertices inG, multiple two-hop paths may exist.
We consider them as one edge inĜ and the weight associated
with it is equal to the sum of two-hop paths’ weights. Thus,
the adjacency matrix̂A = {âik} of Ĝ are:

âik =
{ ∑

j∈V wijwjk, (vi, vk) ∈ Ê
0, otherwise.

The corresponding out-degree diagonal and Laplacian matri-
ces are denoted bŷD and L̂ respectively.

Proposition 3.2:For a directed graphG with two-hop
relay protocol (3), the dynamics of the whole system is
described as

Ẋ = −L̃2X. (4)

whereL̃2 = L + L̂.
Proof: Consider the joint graphG̃ = G⋃ Ĝ =

(V, E ⋃ Ê), it is obvious that the two-hop relay protocol is a
consensus protocol of̃G.

Another issue is how much extra communication band-
width the two-hop relay protocol needs. We assume that the
graph is static and link weights associated with instantaneous
neighbors are prior knowledge of each agent. We rewrite the
protocol (1) as:

ẋi = −xi

∑

j∈N(vi)

wij +
∑

j∈N(vi)

wijxj (5)

and the two-hop relay protocol (3) as

ẋi = −xi

∑
j∈N(vi)

wij(1 +
∑

k∈N(vj)
wjk)

+
∑

j∈N(vi)
wij

(
xj +

∑
k∈N(vj)

wjkxk

)
.

(6)

For protocol (1), what link(vi, vj) transmits is the value of
xj . For protocol (3), what link(vi, vj) transmits is the value
of xj ,

∑
wjkxk, and

∑
wjk. However, for a static graph,∑

wjk is a constant and only need to be transmitted once.
Thus, two-hop relay protocol needs double communication
bandwidth except at the beginning.

B. Performance of the two-hop relay protocol

SupposeG is symmetric and connected, thenL is sym-
metric and positive semi-definite, the two-hop graphĜ is
symmetric, and the joint graph̃G is also symmetric and
connected.

Theorem 3.3:Assume a directed graphG is connected and
symmetric, then

λ2(L) ≤ λ2(L̃) (7)
Proof: For any vectorx, it is true that

xT L̃x = xT Lx + xT L̂x
=

∑
(vi,vj)∈E w2

ij(xi − xj)2

+
∑

(vi,vj)∈Ê w2
ij(xi − xj)2.

According to [14], ifx a unit vector and orthogonal to1,

xT Lx

xT x
=

∑
(vi,vj)∈E(xi − xj)2∑

vi∈V x2
i

≥ λ2(L)

and the equation holds only whenx is an eigenvector
associated withλ2(L).

Combine these two results, if we takex to be a unit
eigenvector of̃L, orthogonal to1, associated with eigenvalue
λ2(L̃), then we have

λ2(L̃) =
xT L̃x

xT x
=

xT (L + L̂)x
xT x

≥ λ2(L) +
xT L̂x

xT x
. (8)

Theorem 3.3 shows that two-hop relay protocol increases
the convergence speed. The improvement depends on the
topology of Ĝ. Obviously, Ĝ is symmetric too. It also can
be shown that the edge set ofĜ is not empty if the original
graph has more than two vertices,

Proposition 3.4: If Ĝ is connected,

λ2(L̃) ≥ λ2(L) + λ2(L̂). (9)
Proof: When Ĝ is connected,xT L̂x/xT x ≥ λ2(L̂) >

0. Thus, two-hop relay protocol improves the algebraic
connectivity by at leastλ2(L̂).

However, it is not true that̂G is always connected. Fig.
3 shows a simple example. The original graph on the left
is symmetric and connected, but the two-hop graph on the
right is composed by two disconnected subgraphs.

Fig. 3. An example for disconnected two-hop directed graph

C. Multi-hop relay protocol

It is possible to extend the two-hop relay protocol to multi-
hop relay protocol. The protocol form-hop relay protocol
can be written as

ẋi = −
∑

j

wij

(
(xi − xj) +

∑

k

wjk((xi − xk) + · · · ))

︸ ︷︷ ︸
m layers

.

(10)
Clearly it adds more virtual edges to the original graph and
enforces the convergence speed. However, there are three
drawbacks. First, the worst case computation complexity
of m-hop relay protocol on each agent isO(nm−1). For
large scale networks, it will be quickly infeasible asm
increases. Second,m-times communication bandwidth are
needed. Third, communication delays will accumulate along
m-hop paths and that makes the protocol very sensitive to
communication latency.

IV. T WO-HOP RELAY PROTOCOLS WITHTIME DELAYS

For communication delay in relay protocols, we consider
the transfer function associated with edge(vi, vj) with
latencyτij is hij(s) = e−τijs. Delays will be accumulated in
two-hop relay protocol. We focus on the simplest case where



all delays are identical, i.e.,τij = τ for any(vi, vj) ∈ E . The
protocol (1) can be written as:

ẋi = −
∑

j∈N(vi)

wij(xi(t− τ)− xj(t− τ)) (11)

and the two-hop relay protocol is:

ẋi = −∑
j∈N(vi)

wij

(
(xi(t− τ)− xj(t− τ))

+
∑

k∈N(vj)
wjk(xi(t− 2τ)− xk(t− 2τ))

)
.

(12)
Equations (2) and (4) change to

Ẋ = −LX(t− τ) (13)

and
Ẋ = −LX(t− τ)− L̂X(t− 2τ) (14)

respectively.
Let Z = V −1X where

V −1 =
[

1 1
1 −I

]
. (15)

For two-hop relay protocol, we have to

Ż = −V −1LV Z(t− τ)− V −1L̂V Z(t− 2τ). (16)

Note that

V −1LV =
[

0 0
0 L22

]
and V −1L̂V =

[
0 0
0 L̂22

]

whereL22 is full rank.
Let us assume thatX(t) = 0 for any t < 0. Then the

system asymptotically converges toη =
∑

xi(0)/n if and
only if the partition characteristic polynomial

p22(s, e−τs) = det
(
sI + L22e

−τs + L̂22e
−2τs

)
(17)

has no zero in the closed right half plane (RHP). This
condition is equivalent to that the characteristic polynomial

p(s, e−τs) = det
(
sI + Le−τs + L̂e−2τs

)
(18)

has no zero in the closed RHP except the simple zero at the
origin. In [15], p(s, e−τs) is also called a real quasipolyno-
mials of s. A similar result also holds for (13).

One of the essential properties of quasipolynomials is
the continuity of the zeros with respect to delay. In other
words, whenτ increases, zeros in left half plane (LHP)
move to RHP. Time delay does not affect the zeros = 0.
Thus, we need to find minimum value ofτ such that the
first stable zero crosses the imaginary axis. Besides, the
conjugate symmetry property of quasipolynomials make it
possible to calculate the critical value of time delay and the
corresponding crossing frequency.

Definition 4.1: Given initial valueX(0) and assumption
X(t) = 0 for any t < 0, the smallest value ofτ such that
the system cannot converge to a consensus is determined as

τ∗ = min{τ > 0 | p(jω, e−jτω) = 0 and ω 6= 0}. (19)

We call τ∗ the delay marginof the consensus protocol.

For anyτ ∈ [0, τ∗), the system of (13) or (14) converges to
the consensus stateη =

∑
xi(0)/n.

Lemma 4.2:Let τ∗ and τ̃∗ indicate the delay margin of
(13) and (14) respectively, thenτ∗ ≥ τ̃∗.

Proof: First, let us findτ∗. According to Schur theorem,
there exists a unitary matrixT such thatU = T−1LT is an
upper triangular with the eigenvalues along the diagonal. So

det(sI + Le−τs) = det(sI + TUT−1e−τs)
= det(T (sI + Ue−τs)T−1)
= s ·Πn

i=2(s + λi(L)e−τs).

We need to find the smallestτ > 0 such that the first
stable zero reaches the imaginary axis. Lets = jω and we
have have

jω = −eτjωλi(L) (20)

Solving this equation gives us
{

ω = λi(L) 6= 0
τ = π/2λi(L). (21)

So the delay margin

τ∗ = min π/2λi(L) = π/2λn(L). (22)

Then we considerτ̃∗. The approach above fails for
det(sI + Le−τs + L̂e−2τs). However, it is obvious that̃τ∗

should be no bigger than the delay margin fordet(sI +(L+
L̂)e−τs), which is π/2λn(L̃). Moreover,λn(L̃) ≥ λn(L)
according to [14]. So we have

τ∗ = π/(2λn(L)) ≥ π/(2λn(L̃)) ≥ τ̃∗.

Lemma 4.2 just shows us the delay sensitivity of two-
hop relay protocol is no better than consensus protocol (1).
Following theorem gives us explicit results oñτ∗ by using
frequency-sweeping test.

Theorem 4.3:For system (14), let rank(L̂) = q and define

τ̄i = min
1≤k≤n−1

θi
k/ωi

k

when the generalized eigenvaluesλi(G(s), H) satisfy the
following equation:

λi(G(jωi
k),H) = e−jθi

k

for someωi
k ∈ (0,∞) andθi

k ∈ [0, 2π), where

G(s) =
[

0 I
−sI −L22

]
and H =

[
I 0
0 L̂22

]
.

Then the consensus delay margin of (14) is

τ̃∗ = min
1≤i≤n+q−1

τ̄i.

Proof: Finding generalized eigenvalues for matrix pair
(A,B) is the problem of findingλi and non-zero vectory
such thatAy = λiBy.



Fig. 4. Three examples with different topologies:G1, G2, andG3

According to the aforementioned similarity transform,
if the system (14) converges to the average consensus is
determined by if the system
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...
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is asymptotically stable. Since none of the generalized eigen-
values of (G(jω), H) can be strictly larger than1 for all
ω ∈ (0,∞), the result follows by adopting the frequency-
sweeping test for multiple commensurate delay systems in
[15].

V. EXAMPLES AND SIMULATION RESULTS

In order to verify the efficiency of two-hop relay consensus
protocol, we test it on three graphs. Fig. 4 shows the
topologies ofG1, G2, andG3 from left to right, whereG1 is a
2-regular graph,G2 is a net in which each vertex connects to
neighbors located inside a certain range, andG3 is a complete
graph. All of them have ten vertices. They are symmetric and
connected. Each pair of edges(vi, vj) and(vj , vi) belong to
those graphs is denoted by a single link and we assume that
wij = 1 for any vertices pair.

Fig. 5 to Fig. 8 show the simulation results ofG2 with
same initial conditions and different delays. Note that, even
the system can become unstable, the sum of the states keeps
constant. Table I shows the algebraic connectivities and
delay margins for all three graphs with or without two-hop
relay protocols. Delay margins without relay protocols are
calculated according to equation (22) in Lemma 4.2. Delay
margins with relay are computed using frequency sweep
method mentioned in Theorem 4.3. Note that the magnitudes
of generalized eigenvalues inevitably exceed1 after a certain
ω, the computation needs to be done only over a finite
frequency interval [15]. We actually run the computation
twice. First time we try to find an appropriate frequency
interval. Second time we use a much smaller frequency step
over the interval in order to find more accurate value of delay
margin.

For each graph, relay protocol improves the convergence
speed. However, time-delay robustness is impaired due to
the delay accumulation along the two-hop paths. Moreover,
along the columns of the table, we can tell that algebraic
connectivity increases and delay margin decreases when the

TABLE I

PERFORMANCEV.S. ROBUSTNESS FORRELAY PROTOCOLS

Algebraic connectivity λ2 Delay margin τ∗

Without relay With relay Without relay With relay

G1 0.382 1.7639 0.3927 0.1796

G2 0.9118 7.3846 0.2167 0.0396

G3 10 90 0.1571 0.0095

graph includes more links. We put these data in Fig. 9. For
each bar, the right lower point corresponds to protocol (1)
and left upper point corresponds to two-hop relay protocol.
It is true that relay protocols actually boost up algebraic
connectivity by sacrificing delay margin.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose multi-hop relay protocols for
fast consensus seeking and emphasize on the two-hop relay
protocol. When the topology is symmetric and connected,
using relay protocols can efficiently improve the convergence
speed without physically changing the topology. The cost we
need to pay is that extra communication bandwidth.

A trade off between the convergence performance and
robustness of communication time delay are shown by in-
vestigating three typical topologies with relay protocols. The
more edges the graph includes, the faster the convergence
speed is, while the more sensitive the protocol is to the time
delay. Moreover, frequency sweep method can efficiently find
the delay margin with multiple commensurate delays and it is
a power tool to study the time delay sensitivity of multi-hop
relay protocols.

Future work will include studying large group of graphs
and putting their performance/robustness data into Fig. 9. Re-
lationship between patterns and topology characters should
be carefully examined. Comprehensively describe and deeply
understand this trade off will benefit us for topology and
protocol design for multi-agent networks.
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Fig. 5. States of graphG2 with no delay.
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Fig. 6. States of graphG2 with delayτ = 0.038.
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Fig. 7. States of graphG2 with delayτ = 0.05.
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Fig. 8. States of graphG2 with delayτ = 0.25.
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