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Abstract

In this paper, we treat the string stability as a kind
of performance of a linear multi-vehicle system with
acyclic formation structures. By using a double-graph
model, we can describe information flows and formulate
the string stability. This paper provides a systematic
way to design the local controller and the system con-
trol strategy with the performance constrains. We also
present the connection failure tolerance problem and
give some essential conclusions.
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1 Introduction

The development of powerful control theories and tech-
niques for large scale, decentralized and coupled sys-
tems of multiple vehicles is a problem with considerable
interests in the control community. People are increas-
ingly interested in how to use multiple vehicles to ac-
complish, in the presence of uncertainty and adversity,
more challenging tasks beyond the ability of individual
vehicle. The applications of multi-vehicles systems in-
clude coordination of micro-satellite clusters, formation
flight of unmanned aerial vehicles (UAVs), autonomous
underwater vehicles and automated highway systems.
These theories can also be useful to understand the
movement of flocks of birds, schools of fish, and other
group motions in the nature.

In most of the applications, vehicles are coupled with
each other according to the feedback control laws. Bar-
bieri [1] has studied the interconnected systems by us-
ing z-transform. Swaroop and Hedrick [11, 12] stud-
ied the string stability and compared the different con-
trol strategies used in the Automated Highway Sys-
tem (AHS). Eyre [4] discussed string stability of au-
tomated vehicles by a mass-spring-damper framework.
Stankovic [10] proposed a decentralized overlapping

control strategy of a platoon of vehicles. Shladover [9]
gave a good review of the development of advanced
vehicle control systems. It has been shown that the
leader’s and neighbors’ information play the key roles
in the formation control problem. However, those re-
sults only concern a single string platoon. In many
applications, the vehicles need to form a more compli-
cated formation. The formation structure depends on
the inter-vehicle communication channels and sensing,
and is subject to change. Pant, Seiler and Hedrick be-
gan to study the mesh stability in [8] and give some
useful results.

In this paper, we consider the string stability as the
disturbance resistance performance of an acyclic for-
mation and study the relationships among the informa-
tion flows in the formation, local controllers and control
strategy with which we can achieve the string stabil-
ity. The paper is organized as follows: In Section 2,
we provide some useful preliminaries about the graph
theory and formation stability, and we put the string
stability problems into the formation performance area.
We introduce the double-graph model and a formation
control strategy in Section 3 and formulate the string
stability in the next section. Section 5 is used to de-
scribe the connection failure tolerance. Finally, we give
out conclusions based on our researches.

2 Preliminaries

In this section, we provide some useful preliminaries
about the graph theory and the stability of vehicle for-
mations, and also give some assumptions to simply our
questions.

2.1 Laplacian and Weighted Adjacency Matrix
It is well known that the adjacency matrix A = {aij}
of a directed graph (digraph) G = (V, E) of order n is
a n× n matrix defined as:

aij =
{

1, (vi, vj) ∈ E
0, otherwise
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where V is the set of vertices and E is the set of edges.
If let D be the diagonal matrix with the out-degree of
each vertex along the diagonal, then Laplacian matrix
is defined as:

L = D−1(D −A).

Let Φi is the out-degree of vertex i. According to this
definition, the Laplacian will have such properties.

• The i-th diagonal element equals 1 if Φi 6= 0,
otherwise, equals 0.

• Any other element of i-th row is 0 or 1/Φi.

• 0 is one of the eigenvalues, and the corresponding
eigenvector is [1, 1, . . . , 1]T .

The weighted adjacency matrix is defined as:

Θ = I − L = D−1A.

For a multi-vehicle system, it’s natural to describe the
inter-vehicle connections by digraphs. In this paper,
we only study these cases that the graph G is a con-
nected, acyclic digraph. We call such a formation as
a look-ahead system [8] and most of the leader-follower
systems belong to this class with only one leader whose
out-degree equals zero. There always exists an index-
ing method so that the leader is the vertex 1, and if an
edge (vi, vj) ∈ E, then i > j. The resulting Laplacian
matrix L has the following properties:

• L is a lower triangular matrix.

• The first row is zero.

• The eigenvalues of L are 0(1) and 1(n−1).

2.2 Formation stability
Suppose in a leader-follower system, there are n vehi-
cles, whose identical linear dynamics are denoted by

ẋi = Axi + Bui,

where i ∈ [1, n] is the index of the vehicles. Each vehicle
can get information of itself and from its neighbors as

yi = C1xi

zij = C2(xi − xj)

where j ∈ Ji and Ji ⊂ [1, n] represents the set of ve-
hicles which vehicle i can sense. Note that a single
vehicle cannot drive all the zij terms to zero simul-
taneously, the errors must be synthesized into a single
signal. We assume that all relative state measurements
are weighted equally to form one error measurement as:

zi =
1
Φi

∑
zij , j ∈ Ji.

According to [5], a local controller stabilizes the whole
formation dynamics if and only if it simultaneously sta-
bilizes the set of n systems

ẋ = Ax + Bu
y = C1x
z = λiC2x

where λi are the eigenvalues of the Laplacian L.

Assume that C1 = C2, i.e., the sensed information is
the same kind of information as we can measured. For
a look-ahead system, the eigenvalues are only 0 and
1s and the local controller stabilizes the formation dy-
namics if and only if it stabilizes the individual vehicle:

ẋ = Ax + Bu
y = z = C1x.

2.3 String stability and formation performance
For a look-ahead system, we need a local controller so
that all vehicles will eventually reach their equilibri-
ums and we also hope that the whole formation has
good disturbance resistance performance. One inter-
esting phenomena in the multi-vehicle system is that a
disturbance of one single vehicle may affect other vehi-
cles and propagate through out the formation. When a
bounded disturbance is transferred, it may be become
bigger and bigger and result in vehicle collisions if the
scale of the formation (the number of vehicles) is large
enough. This means a bad disturbance resistance per-
formance, and we say this formation is string unstable.
If the local controller can make sure that this distur-
bance will be attenuated as it is transferring, then we
say the formation is string stable.

For a look-ahead system with n vehicles, we treat it
as a n-input n-output system. A disturbance can be
introduced at every single vehicle and may result rel-
ative position errors at every other vehicle. If we use
a n-by-n transfer function matrix to describe these re-
lationships, then the disturbance performance can be
evaluated by these transfer functions. Obviously, this
transfer function matrix is a lower triangular matrix
and every diagonal element equals 1.

3 Double-graph model

We can find some perfect examples in [11, 12] and get
an instinct that in order to keep the string stability
of a leader-follower system, it is important to design a
local controller that can adjust its behavior based on
the leader as well as its neighbors. The double-graph
model is specifically used for this idea.

Definition 1 (Double-graph model) Suppose
there is a look-ahead system with only one leader.



Each vehicle can get the neighbor vehicles’ and leader’s
information by onboard sensors or by communication
channels.

• A digraph G1 is used to describe the leader infor-
mation flow. Every edge (vi, vj) ∈ G1 represents
a directed communication channel from vj to vi.
All of the edges in this graph are only used to
distribute the leader’s information.

• A digraph G2 is used to describe the sensor in-
formation flow. If there is a edge (vi, vj) ∈ G2, it
means vehicle i can sense vehicle j.

• A double-graph model Ω is a combination of the
leader information flow graph and the sensor in-
formation flow graph. Since those two graphes
have same vertices, we can write this look-ahead
system as Ω = (G1, G2).

Here is an example of the double-graph model. The
solid lines represent sensor information, and the dashed
lines represent the leader information.
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Figure 1: Double-graph model of a formation

The Laplacian of G2 are

L =




0 0 0 0 0 0 0
−1 1 0 0 0 0 0
−1 0 1 0 0 0 0
0 −1/2 −1/2 1 0 0 0
0 0 0 −1 1 0 0
0 0 −1/2 −1/2 0 1 0
0 0 0 −1 0 0 1




.

We introduce a control strategy as
{

Y1(s) = H(s)U(s)
Yi(s) = H(s)

(
αY1(s) + 1−α

Φi

∑
j Yij(s)

)
, i 6= 1

where U(s) is the reference of the leader, H(s) is the
stable transfer function of individual vehicle, Yij(s) is
the neighbors of vehicle i so that j ∈ Ji, and 0 <
α < 1. According to Section 2, the whole formation is
stable. By this way, we separate the contributions of
G1 and G2 by the weight coefficients α and 1 − α. In
the next section, we assume G1 is perfect to distribute
the leader’s information and focus on how G2 affects
the formation’s performance.

Individual
Vehicle

Local
Controller

Leader

Information
Neighbors

Information α +

1−α

H(s)

Figure 2: Diagram of the control strategy

4 Performance of a look-ahead formation

In this section, we will find the transfer function matrix
and formulate the performance of a look-ahead system.
Let us begin with a simple case, string formation, then
generalize to arbitrary look-ahead systems.

4.1 String formation performance
In a string formation, each follower i can only sense the
previous vehicle (i − 1). So G2 is like a string whose
root is the leader. In this case, we have
{

Y1(s) = H(s)U(s)
Yi(s) = H(s)

(
αY1(s) + (1− α)Yi−1(s)

)
, i 6= 1.

In order to avoid collisions, it is important to study the
relative position error as εi = yi − yi−1 − Li,i−1 where
Li,i−1 is the offset to achieve the desired inter-vehicle
spacing. We can get

εi(s) = Yi(s)− Yi−1(s) = (1− α)H(s)εi−1(s)

and
εi+m(s) = (1− α)mH(s)mεi(s).

So the transfer function matrix is



1 0 0 . . . 0
N(s) 1 0 . . . 0
N2(s) N(s) 1 . . . 0
...

...
...

...
...

Nn(s) Nn−1(s) . . . N(s) 1




where N(s) = (1− α)H(s).



Now we can analysis the string formation’s perfor-
mance.

• It is clear that if α = 1, then the relative posi-
tion errors cannot propagate among the forma-
tion. This is the best string stability we can
achieve [11]. But the cost is that each vehicle
cannot sense any neighbors except the leader. It
is unsafe and the connection failure tolerance is
very bad. We will discuss this issue in the next
section.

• If α = 0, then graph G1 doesn’t affect the per-
formance. If ‖H(s)‖∞ > 1, there always exists
some disturbance at specific frequencies that will
be amplified along G2 and cause string instabil-
ity. If ‖H(s)‖∞ ≤ 1, then the formation is string
stable, but this is a very strong constrain on the
local controller design.

• The necessary and sufficient condition of the
string stability is that

‖(1− α)H(s)‖∞ < 1.

We just need to choose a proper α so that 1− 1
‖H(s)‖∞ <

α < 1. Moreover, we can even design a rational, stable
transfer function α(s) so that

‖(1− α(s)) ·H(s)‖∞ ≤ β < 1.

By this way, not only can we control the converging
speed of the disturbance with respect to the index num-
ber, but also adjust the weight coefficients of G1 and
G2 with respect to the frequency.

4.2 Arbitrary look-ahead system
For an arbitrary look-ahead system, it may be hard
to find out some sort of simple recursive equations to
describe the propagation of the disturbance. We also
need to redefine the relative position error εi since ve-
hicle i may sense multiple neighbors simultaneously.
From now on, let

εi(t) = yi(t)− 1
Φi

∑

j

yij(t)− 1
Φi

∑

j

Lij

to be the relative position errors where yij(t) is the
output of vehicle j so that j ∈ Ji. Before giving out
the main theorem, we list 3 lemmas about the digraph
G2.

Lemma 1 The relative error εi(s) of vehicle i is

εi(s) = (1− α)H(s)
∑

j

(
θij · εij(s)

)

where j ∈ Ji, εij(t) is the error of vehicle j, and θij

are the elements of the weighted adjacency matrix Θ
of G2.

Proof: According to the definition of εi, we have

εi(s) = Yi(s)− 1
Φi

∑
j Yij(s)

= H(s)
(

1−α
Φi

∑
j Yij(s) + αY1(s)

)
−H(s) 1

Φi

∑
j

(
1−α
Φij

∑
k Yijk(s) + αY1(s)

)

= 1−α
Φi

·H(s)
∑

j

(
Yij(s)−

P
k Yijk(s)

Φij

)

= 1−α
Φi

H(s)
∑

j εij(s)
= (1− α)H(s)

∑
j

(
θij · εij(s)

)

where Φij is the out-degree of vehicle j ∈ Ji, and
Yijk(s) is the output of vehicle k so that j ∈ Ji and
k ∈ Jj .

This lemma says that the error of an individual vehicle
depends on the errors of its neighbors. Consider any
two distinct vertexes m and n in the formation with
m < n, the disturbance of m will propagate to n by
any possible directed paths exist in G2. Of course,
the number of the paths, the length of each path, and
weighted edges in these paths are the factors we must
concern about.

Lemma 2 Elements of Θk represent the paths in G2

with length k.

• If (Θk)ij = 0, then there is no path between i and
j with length k.

• If (Θk)ij 6= 0, the there is at least one path be-
tween i and j with length k.

• For any 1 ≤ i, j ≤ n, 0 ≤ (Θk)ij ≤ 1 and

(Θk)ij =
M∑

m=1

( k∏

l=1

θml

)

where M is the number of the paths between i
and j with length k, θml is the weight factor of
edge l in path m. Let’s call

∏k
l=1 θml the weight

of path m.

• Θn = 0 where n is the number of vertexes in G2.

Proof: It is obvious for k = 1 since Θ is the weighted
adjacency matrix of G2. For k = 2, the i-th row of Θ
represents the weights of all edges from the vertex i,
the j-th column of Θ represents all edges connected to
the vertex j. So (Θ2)ij is the sum of all paths’ weights
from i to j with length 2. By induction, it is easy to
prove for any 1 < k < n. Since n is the number of
vertexes, there is no path with length n in G2 if G2 is
an acyclic digraph, so Θn = 0.

Lemma 3 For a look-ahead system, we define the
path matrix Q as

Q = Θ + Θ2 + · · ·+ Θn−1.



The matrix Q = qij is a lower triangular matrix with
zero diagonal elements, and 0 ≤ qij ≤ 1 for any 1 ≤
j < i ≤ n.

Proof: Since Θ is a lower triangular matrix with zero di-
agonal elements, so is Q. Actually, Q describe any pos-
sible paths between any two vertexes in graph G2. For
example, qij is the sum of any possible path’s weight
with length from 1 to n− 1. It is obviously true when
there is only one path between i and j. If there exists
multiple paths, by induction we get

qij = 1
Φi

∑
l qil

≤ 1
Φi
· Φi = 1

where l ∈ Ji.

By using these lemmas, we get an upper bound of the
infinity norm of the disturbance transfer functions be-
tween any two vehicles.

Theorem 1 In the double-graph model of a look-
ahead system, if ‖(1 − α)H(s)‖∞ < 1, then the dis-
turbance transfer function between any two vehicles is
bounded by

‖Hij(s)‖∞ =
∥∥ εi(s)

εj(s)

∥∥
∞ ≤ ‖(1− α)H(s)‖∞.

Proof: According to lemma 1, we can easily get that

Hij(s) = (1− α)H(s)θij + (1− α)2H(s)2(Θ2)ij

+ · · ·+ (1− α)n−1H(s)n−1(Θn−1)ij ,

since the disturbance can transfer from j to i by any
possible path. So

‖Hij(s)‖∞ ≤ ‖(1− α)H(s)θij‖∞
+‖(1− α)2H(s)2(Θ)2ij‖∞ + . . .

+‖(1− α)n−1H(s)n−1(Θ)n−1
ij ‖∞

≤ ‖(1− α)H(s)‖∞
(
θij + (Θ)2ij

+ · · ·+ (Θ)n−1
ij

)
= ‖(1− α)H(s)‖∞ · qij

≤ ‖(1− α)H(s)‖∞

We notice that this conclusion is totally independent on
n, i.e., the scale of the formation. The transfer function
matrix is




1 0 0 . . . 0
H21(s) 1 0 . . . 0
H31(s) H22(s) 1 . . . 0
...

...
...

...
...

Hn1(s) Hn2(s) . . . Hn,n−1(s) 1




where ‖Hij(s)‖∞ ≤ ‖(1 − α)H(s)‖∞ < 1. It is clear
that ‖(1 − α)H(s)‖∞ < 1 is a sufficient condition for

string stability. Also we can tell that the performance
of disturbance resistance of the whole formation will be
no worse than ‖(1− α)H(s)‖∞.

So for a look-ahead system, we can first design the
local controller without considering the formation, then
select a proper α to achieve the desired disturbance
resistance performance. We use the formation in figure
1 as an example and get the path matrix

Q =




0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0.5 0.5 0 0 0 0
1 0.5 0.5 1 0 0 0
1 0.25 0.75 0.5 0 0 0
1 0.5 0.5 1 0 0 0




.

Suppose the transfer function of the individual vehicle
system is a typical second order system as

H(s) =
2s + 3

s2 + 2s + 3
.

We select α = 0.5 and can get the transfer function
matrix. For instance, the transfer function between
vehicle 2 and 7 is

H72 =
0.5s2 + 1.5s + 1.125

s4 + 4s3 + 10s2 + 12s + 9
.

The magnitude bode plot is shown below:
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Figure 3: Magnitude bode plots

The solid curve is for H(s), the dashed curve is (1 −
α)H(s), and the dotted is H72(s). It is clear that the
disturbance is attenuated by at least −12.6 dB, and
easy to verify that any other element in the transfer
function matrix satisfies ‖Hij(s)‖∞ ≤ ‖(1−α)H(s)‖∞
if 0 < i < j ≤ n.

5 Connection failure tolerance

We have mentioned that if α = 1, then the disturbance
will not propagate among the formation. This is the
best string stability performance we can achieve. But
this strategy also has its fatal disadvantages:



• It cannot avoid the internal collisions naturally
since every vehicle does not sense its neighbors.

• It cannot tolerate any connection failure. We fo-
cus on this issue in this section.

The discussions in the previous section are based on one
assumption: every follower can get the leader’s infor-
mation through the digraph G1. But in the real system,
the communication channels of G1 may be broken due
to the interferences, moving obstacles, or devices fail-
ures. We use connection failure tolerance to describe
how those communication channels’ failures will affect
the formation performance.

When α = 1, G2 will not affect the formation any more.
Each individual vehicle only try to follow the leader
through G1. Any connection failure in G1 will cause at
least one vehicle lose its target. This will result that
the formation becomes instable since this vehicle will
be separated from the formation.

When α 6= 1, each vehicle has two references: one is the
leader vehicle, the other is the equilibrium point among
its neighbors. The coefficients α and 1−α indicate how
these two references contribute to the vehicle’s move-
ment. Any connection failure in G1 or in G2 will impair
one reference of at least one vehicle. The formation still
can keep stable since every vehicle still has references
to follow. The only problem is that each vehicle need
to update the value of its out-degree.

Since the probability of the connection failures in G1

and G2 occur simultaneously is relative very small, we
can say the double-graph strategy has good connection
failure tolerance. Of course, part of the formation will
suffer a reduction in the string stability performance
when a connection failure happens.

6 Conclusion and future work

In this paper, we use digraphs to describe the connec-
tions between vehicles in a look-ahead system. The
double-graph model is a new method to describe the
different information flows. By using this model, we
introduce a local control structure so that the whole
formation can has good disturbance resistance perfor-
mance, i.e., be string stable. By giving an example, we
verify the validity of this control strategy.

We also describe another formation performance: con-
nection failure tolerance. This performance concerns
about if the formation can still be stable with inter-
vehicle connection failures. A look-ahead system with
double-graph strategy has good connection failure tol-
erance.

There are still some interesting issues need to study.
For example, if there exists loops in G2, how we can
keep the whole system still has good performance. This
may result more constrains on the local controller de-
sign since individual stable vehicle will not guarantee
the whole formation stable. Another future work may
focus on how to formulate the trade-off between distur-
bance resistance and connection failure tolerance.
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