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Abstract— For state estimation in networked control systems,
the impact of packet dropping and delay over network links is
an important problem. In this paper, we introduce multiple de-
scription (MD) source coding scheme to improve the statistical
stability and performance of the estimation error covariance
of Kalman filtering with packet loss. We consider about two
cases: when the packet loss over network links occurs in an i.i.d.
fashion or in a bursty fashion. Compared with the traditional
single description source coding, MD coding scheme can greatly
improve the performance of Kalman filtering over a large set
of packet loss scenarios in both cases.

I. INTRODUCTION

A standard assumption in classical control theory is that
the data can be transmitted to the controller or state estimator
reliably and with infinite precision, or at most corrupted by
an additive Gaussian white noise. Thus we need reliable
communication channels with infinite bandwidth. However,
in the real world, any communication link has a limited
channel capacity and data packets may be dropped. There
is increasing attention being given to consider the effects of
finite bit rate and stochastic packet losses, especially in the
field of networked control systems (NCS) where the standard
assumption is challenged most severely. Works like [1], [18],
[19], [23], [25] have focused on answering the question:
how much capacity do we need to achieve a certain control
performance or estimation accuracy? In this paper, we are
interested in another issue: how does the unreliability of the
communication network affect NCS and what can we do to
compensate for this unreliability? More specifically, we want
to find out how we can improve the state estimation with the
presence of stochastic packet loss.

Most of the modern digital communication systems are
implemented using packet-based communication protocols.
Typically packet-based systems use a progressive source
encoder to generate packets and deliver them with standard
protocol like the transmission control protocol (TCP). For
real-time networked control systems, this scheme faces cou-
ple of serious problems:

• TCP automatically retransmits lost packets which gen-
erates large delays.

• For progressive coding, the arriving order of the packets
is critical. This coding scheme works well only when
the packets are sent and received in order without loss.
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• There may not be reliable or cheap reverse channels
from decoders to encoders to introduce feedbacks and
cannot guarantee efficient retransmission.
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Fig. 1. Diagram of a networked control system

We make the following general assumptions:
• Each data packet is time-stamped and protected from

channel noise by perfect channel coding. The packet
will be either received and decoded successfully at the
end of the links or totally lost.

• There are not computation delays, such as coding delay,
shaping delay, packetisation delay, or receiver play out
delay. Also we omit WAN propagation and queueing
delay. The only delay may be considered here is the
transmission delay.

• We model the packet losses either according to an i.i.d.
process (the Bernoulli model in [26]) or according to
a Markov chain (the Gilbert-Elliott channel model in
[2], [6]). The Markov chain model can handel bursty
channel losses.

• The network does not provide preferential treatment to
some packets. In other words, the network treats each
single packet equally without inspecting the content.
Thus a multiple resolution code or a layered source code
is not a good choice for us.

• There is no feedback from decoders to encoders over
the networks.

In this paper, we focus on state estimation of a dynamical
system over a packet dropping link. We choose the error
covariance matrix of the estimation as our metric of the
performance of the estimator. In their outstanding work,
Sinopoli et al. [17] used a Modified Algebraic Riccati
Equation (MARE) to solve the Kalman filtering problem
with intermittent observations and discussed the statistical
convergence properties of the estimation error covariance.
Liu et al. [14] extended the approach to solve the case
with partial observation losses in sensor network. These
works showed that the packet loss degrades the performance
of Kalman filtering. In this paper, we are interested in

Submitted, 2005 Conference on Decision and Control
http://www.cds.caltech.edu/~murray/papers/2005d_jghm05-cdc.html



improving the performance of the estimator by using network
source coding [4]. The specific scheme we consider is the
multiple description (MD) source coding. MD coding has
been studied in information theory for over 30 years [5],
[7] and has been successfully used in transmission real-time
speech, audio/video over internet [9], [11], [13]. It has been
showed that MD has very good performance in the cases
where the data can be used at various quality levels. However,
this is the first time such schemes have been applied to NCS.

This paper is organized as follows. In Section II, we
introduce the MD source coding and briefl y describe the
theoretical limits. Then, in Section III, the quantization noise
of MD is modelled by gaussian white noise asymptotically.
We formulate the problem in Section IV and present results
for i.i.d. Bernoulli loss model. Some examples and simu-
lation results are listed in Section V. We then study MD
over Markov chain model in Section VI and summarize the
conclusions in Section VII.

II. MULTIPLE DESCRIPTION SOURCE CODING

Multiple description source coding [4] is used to generate
a network source code that can achieve good rate-distortion
performance over lossy links. The unique feature of MD
is that instead of using one single description to represent
one possible output of the source, MD coding uses two
or more descriptions. The distortion of the decoder output
depends on how many descriptions it receives and can be
in various quality levels. The order of descriptions is not
important since MD coding is not hierarchical. The design
of MD coding is a problem of optimizing the code over the
redundance and independence between descriptions. Since
losses in transmission are inevitable, MD coding must make
all the received descriptions as useful as possible and has to
sacrifice some compression efficiency.

Source

Channel 1

MD Encoder

Channel 2

Side Decoder 1

Central Decoder

Side Decoder 2

Fig. 2. Scenario for MD source coding with two channels and three
receivers

In its original form, MD coding refers to the case de-
picted in Fig. 2 and we call it 2-description MD problem.
A sequence of source values {Xk}N

k=1 is sent to three
receivers over two noiseless channels. The encoder generates
2 descriptions for each source value and sends them through
two different channels. One decoder receives the descriptions
from both channels and we call it the central decoder. The
reconstruction sequence at the central decoder is {X̂0

k}N
k=1.

The other two decoders receive the information only over
their respective channels and we call them the side decoders.
The reconstruction sequences are {X̂i

k}N
k=1, i = 1, 2. The

transmission rate over channel i is denoted by Ri, i = 1, 2.

The three distortions are defined as:

Di =
1
N

N∑
k=1

E
[
δi

(
Xk, X̂i

K

)]
,

for i = 0, 1, 2, where the δi(·, ·)s are distortion measures.
For now on, we let

δi

(
Xk, X̂i

K

)
= δ

(
Xk, X̂i

K

)
= ‖Xk − X̂i

K‖2.

If R1 = R2 and D1 ≈ D2, then we call the MD code is
balanced. The MD problem can be generalized to L(> 2)
channels and we call it L-description MD coding [22].

The main theoretical problem in MD coding is to de-
termine the achievable quintuple (R1, R2, D0, D1, D2). As
pointed out in [5], the fundamental tradeoff in MD is making
descriptions individually good and sufficiently different at the
same time.

For the packet-based network, we use balanced MD coding
and assume R1 = R2 = R � 1 and D1 = D2 � 1. Then
we have the inequality [20]

D0 · D1 ≥ 1
4
2−4R.

This means the product of central and side distortions is
approximately lower-bounded by 4−12−4R. If D1 ≈ D2 ≈
2−2(1−α)R with 0 < α ≤ 1, then the best distortion of the
central distortion is

D0 ≈ 1
4
2−2(1+α)R.

This shows the tradeoff between central and side distortions.
The penalty in the exponential rate of decay of D1 (the
difference from the optimal decay rate) is exactly the increase
in the rate of decay of D0.

These bounds can be approached when a long sequence
of source symbols is coded. Since in NCS, the source
data are the real values of the observations, so the MD
scalar quantizer (MDSQ) is a natural choice. The balanced
2-description MDSQ can be developed by the algorithm
proposed in [21], and can be easily extended to 3-description
or 4-description case. The first part of Table I shows some
examples of the Mean Square Errors (MSE) for different
description loss cases when we keep the central distortion
constant. In order to get same accuracy, we need more bits
per source sample (bpss). The second part shows that MSE
becomes bigger when the number of descriptions per sample
increases when we keep bpss constant. On the table, “lost k”
means k of the descriptions has been lost, and “N/A” means
not available.

For some other MD codes whose central decoder have
same distortions, the MSEs are also listed in second part of
table I. It shows that we have to use more bits for MD if
we want to get same central MSE. The MD coding actually
provides various quality levels corresponding to how many
descriptions the decoder receives.

The similarity between the original 2-channel MD case
(shown in Fig.2) and the 2-description MD with packet-
based networks in NCS is obvious. We put 2 descriptions of



TABLE I

MSE FOR DIFFERENT MD CODING

Coding type No loss Lost 1 Lost 2 Lost 3 Total bpss

single description 8.33 × 10−6 N/A N/A N/A 10
2-description 8.33 × 10−6 1.56 N/A N/A 12
3-description 8.33 × 10−6 4.41 × 10−3 1.53 N/A 15
4-description 8.33 × 10−6 7.46 × 10−3 1.34 × 10−2 2.61 20

Coding type No loss Lost 1 Lost 2 Lost 3 Total bpss

single description 4.97 × 10−7 N/A N/A N/A 12
2-description 8.33 × 10−6 1.56 N/A N/A 12
3-description 9.87 × 10−5 1.97 × 10−2 2.15 N/A 12
4-description 9.32 × 10−4 8.04 × 10−2 0.113 2.18 12

each source sample value into 2 different packets and sent
out in one sampling cycle. Each packet goes through the
network independently. At the end of the link, the distortion
of the MD decoder only depends on how many descriptions
successfully pass the networks. Overtime delay equals to
packet dropping since old data will not be used for real-time
state estimation or control laws.

The MD coding increases the computation complexity
since the size of look-up tables increases a lot at the decoder
side. For example, for the traditional uniform quantizer with
N levels, the look-up tables for L-description coding will
be (2L − 1) · N . Obviously, we need to consider this issue
when choosing the number of the descriptions. In most cases,
2-description MD code should be good enough.

III. MODELLING QUANTIZATION NOISE

As discussed in [15], the quantization error of a uniform
scalar quantizer with the assumptions of small cells, repro-
duction levels at the cell’s midpoints, and large support re-
gion can be approximately modelled as additional orthogonal
white noise to the quantizer input.

Uniform Scalar
Quantizer

X Y

X Y

N

Fig. 3. Additive noise model of uniform scalar quantization

According to Section II, the central decoder actually is a
uniform scalar quantizer with the midpoints as the outputs
and the mean square error (MSE) is D0 ≈ Δ2

12 where Δ
denotes the width of a quantization cell.

As discussed in [20], the side decoders introduce a slight
asymmetry between the two side distortions and cause a
small increase in distortion. However, as the bit rate in-
creases, this asymmetry asymptotically disappears as does
the increase in distortion. According to the relationship we
discussed in Section II, we have

D1 ≈ D2 ≈ C1 ·
(C2

12
) 1+α

1−α · (Δ 1−α
1+α

)2
.

For the balanced 2-description MD coding, when α is a
constant, D1 will be asymptotically negligible relative to(
Δ

1+α
1−α

)2
. So as long as the rate R1(= R2) is big enough,

the addition noise model is good enough to represent the
quantization noise for the side decoders. In this paper, we
model the MD quantization noise as Gaussian white noise
with zero mean and covariance matrices is D0 for central
decoder and D1 for side decoder.

IV. STATISTICAL CONVERGENCE OF KALMAN FILTER

USING MD

A. Problem Formulation

Consider the following discrete time linear dynamic sys-
tem:

xt+1 = Axt + wt

yt = Cxt + vt

where xt ∈ Rn is the state vector, yt ∈ Rm is the
output vector, wt and vt are Gaussian white noise vectors
with zero mean and covariance matrices are Q ≥ 0 and
R > 0 respectively. It is well known that if the pair
(A,Q

1
2 ) is controllable, the pair (A,C) is detectable, and

no measurement is lost, the estimation error covariance of
Kalman filter converges to a unique value from any initial
conditions. The encoded measurement is transmitted through
the network. The packets are lost stochastically. In this
Section, we concentrate on the case that packet dropping are
independent, identically distributed. Section VI deals with
the bursty loss case.

In this work, we use 2-description balanced MD coding
scheme. The measurement output yt goes through a MD
encoder and is changed into two descriptions (it, jt). These
two descriptions are put into two packets and transmitted
separately. We use the variables γi,t and γj,t to indicate
whether the description it and jt are received correctly. If it
is received correctly, then γi,t = 1, otherwise, γi,t = 0, and
similarly for γj,t. As stated above, we assume that γi,t and
γj,t are i.i.d. Bernoulli random variables with the probability
distribution P (γi,t = 1) = P (γj,t = 1) = λ.

Since it and jt are independently lost or received, we can
have three measurement rebuild scenarios. First, we may re-
ceive both of the descriptions correctly and the measurement
noise will be the white noise vt plus the central distortion. We



use R0 = R+D0 to indicate its covariance. Second, we may
receive only one description correctly and the measurement
noise will be R1 = R + D1 where D1 is the side distortion.
Third, we may receive none of the descriptions correctly, then
the measurement corrupted with a infinitely large noise. So
the measurement noise is changed into a random variable v̂t

after the decoder at the end of the link and for the covariance
Covt we have:

Covt =

⎧⎨
⎩

R0 : probability is λ2

R1 : probability is 2(1 − λ)λ
σ2I : probability is (1 − λ)2

where σ → ∞.
The Kalman filter recursion thus becomes stochastic and

the error covariance evolves as

Pt+1 = APtA
′ + Q

−γ(i, t)γ(j, t)APtC
′[CPtC

′ + R0]−1CPtA
′

−(1 − γ(i, t))γ(j, t)APtC
′[CPtC

′ + R1]−1CPtA
′

−γ(i, t)(1 − γ(j, t))APtC
′[CPtC

′ + R1]−1CPtA
′.

This is a stochastic recursion and the sequence of the error
covariance matrix P∞

t=0 is a random process for a given initial
value. Using the same approach discussed in [17], we define
the Modified Algebraic Riccati Equation (MARE) for the
Kalman filter with MD coding shceme as follows

gλ(X) = AXA′ + Q
−λ2AXC ′(CXC ′ + R0)−1CXA′

−2(1 − λ)λAXC ′(CXC ′ + R1)−1CXA′

where λ is the probability that a single packet can be received
correctly.

B. Convergence Conditions and Boundaries

This subsection lists all the theorems which are used to
study the convergence properties of the MARE. For brevity,
we omit the proofs which follow the ones given in [17], [?]
and can be found in [12]. Considering the new MARE, we
have the following theorem which states the uniqueness of
the solution.

Theorem 4.1: Let the operator

φ(K0,K1, X) = (1 − λ)2(AXA′ + Q)
+λ2(F0XF ′

0 + V0)
+2(1 − λ)λ(F1XF ′

1 + V1)

where F0 = A+K0C, F1 = A+K1C, V0 = Q+K0R0K
′
0,

and V1 = Q + K1R1K
′
1. Suppose there exists K0, K1, and

P > 0 such that P > φ(K0,K1, P ), then we have

(a) for any initial condition P0 ≥ 0, the MARE converges,
i.e. the iteration Pt+1 = gλ(Pt) converges, and the limit
is independent of the initial value:

lim
t→∞Pt = lim

t→∞ gt
λ(P0) = P̄ ;

(b) P̄ is the unique positive semi-definite solution of MARE
function P̄ = gλ(P̄ ).

The following theorem relates the packet receiving prob-
ability and the convergence of the MARE.

Theorem 4.2: If (A, Q
1
2 ) is controllable, (A, C) is de-

tectable, and A is unstable, then there exists a λc ∈ [0, 1)
such that

(a) limt→∞ E[Pt] = +∞ for 0 ≤ λ ≤ λc and some initial
condition P0 ≥ 0,

(b) E[Pt] ≤ MP0 ∀t for λc < λ ≤ 1 and any initial
condition P0 ≥ 0,

where MP0 > 0 depends on the initial condition P0.
This theorem states that there exists a critical value of the

packet receiving probability. If λ is smaller than that value,
the MARE doesn’t converge and the error covariance matrix
will diverge.

Theorem 4.3: Let

λ = arg infλ[∃Ŝ | Ŝ = (1 − λ)2AŜA′ + Q] = 1 − 1
α

λ = arg infλ[∃X̂ | X̂ > gλ(X̂)]
= arg infλ[∃(K̂0, K̂1, X̂)|X̂ > φ(K̂0, K̂1, X̂)]

where α = maxi |σi| and σi are the eigenvalues of A. Then

λ ≤ λc ≤ λ.
This theorem states the upper and lower bound of the

critical value of the packet receiving probability. The lower
bound is in closed form and the next theorem states how
to get the upper bound. For some special cases, these two
bounds are identical and we will discuss them later. Ac-
cording to [17], for the traditional single description coding,
the lower bound is 1− 1

α2 . So MD coding pushes the lower
bound to a smaller value and guarantee the convergence over
a larger area.

Theorem 4.4: Assume (A,Q
1
2 ) is controllable and (A, C)

is detectable, then the following statements are equivalent:

(a) ∃X̄ such that X̄ > gλ(X̄);
(b) ∃(K̄0, K̄1, X̄) > 0 such that X̄ > φ(K̄0, K̄1, X̄);
(c) ∃Z̄0, Z̄1 and 0 < Ȳ ≤ I such that Ψλ(Ȳ , Z̄0, Z̄1) > 0

where
Ψλ(Y, Z0, Z1)

=

⎡
⎢⎢⎣

Y Δ(Y, Z1) Ω(Y, Z0) Π(Y )
Δ(Y, Z1)′ Y 0 0
Ω(Y,Z0)′ 0 Y 0

Π(Y )′ 0 0 Y

⎤
⎥⎥⎦ ,

Δ(Y, Z1) =
√

2(1 − λ)λ(Y A + Z1C), Ω(Y, Z0) =
λ(Y A + Z0C), and Π(Y ) = (1 − λ)Y A.

According to this theorem, we can get the following corol-
lary to reformulated the computation of λ as the iteration of
an LMI feasible problem.

Corollary 4.5: The upper bound λ is given by the solution
of the following optimization problem,

λ = arg min
λ

(
Ψλ(Y, Z0, Z1) > 0

)
where 0 < Y ≤ I .

Theorem 4.6: Assume (A,Q
1
2 ) is controllable, (A, C) is

detectable, and λ < λ, then for any initial condition E[P0] ≥
0,

0 ≤ S ≤ lim
t→∞E[Pt] ≤ V



where S and V are solutions of the equations S = (1 −
λ)2ASA′ + Q and V = gλ(V ) respectively.

This theorem shows the upper and lower bound of the error
covariance matrix when MARE converges. The lower bound
S can be computed by standard Lyapunov Equation Solvers
and the upper bound V can be either computed via iterating
Vt+1 = gλ(Vt) from any initial condition or transferred to a
semi-definite programming (SDP) problem.

C. Special Cases

There are some special cases in which the upper and lower
bound of the critical value λc are identical.

(a) C is invertible. In this case, we choose K0 = K1 =
−AC−1 to make F0 = F1 = 0. Then the LMI in
theorem 4.4 is equivalent to

X − (1 − λ)2AXA′ > 0.

Since X ≥ 0 exists if and only if (1 − λ)A is stable,
i.e. the eigenvalues of (1 − λ)A is smaller than 1, we
get λ = λ = 1

1−α .
(b) The matrix A has a single unstable eigenvalue. As long

as (A,C) is detectable, we can always use decom-
position to transform the system so that the Kalman
filter only needs to estimate a single system state. Then
it follows that the lower bound and upper bound are
identical.

V. EXAMPLES AND SIMULATIONS

In this section some examples and simulation results are
given to show how the MD coding affects the performance
of the Kalman filtering. As discussed above, when C is
invertible, the upper and lower bound on the critical value
λc coincide. We choose the discrete time LTI system with
A = −1.25, C = 1. The noise wt and vt have zero means
and variance R = 2.5 and Q = 1. The 2-description MD
code is designed according to [21] such that the central MSE
D0 ≈ 8.33× 10−6 and D1 ≈ 1.56. According to the results
in Section III, we can get R0 ≈ 2.5 and R1 ≈ 4.06.

Fig. 4 shows the expected estimation error covariance with
different coding schemes. Using MD coding, the asymptote
λc has been pushed from 0.36 to 0.2. The convergence
properties of error covariance at high packet loss rate region
has been improved dramatically.

Some simulations have also been done in MATLAB by
implementing the MD encoder and decoder. We repeated
each scenario 2000 times and used the average values as
the approximations. In Fig. 4, the simulation results are
consistent to the theoretical limits very well. Some of the
simulation points are below the lower bound near the critical
λc value because we only run simulation over 2000 time
steps and the covariances take longer time to converge.

Fig. 5 shows some additional simulation results. For each
certain packet dropping rate, the center of the error bar is
the mean value and 95% of the simulation results are inside
the error bar. It’s clear that if we use 3-description coding,
the critical value λc will be pushed even further. So the
benefits of using MD are clear and the cost we need to pay
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is more bpss. When we keep bpss constant, as shown in Fig
6, generally speaking, we will lose some accuracy as long
as the number of descriptions increases. Comparing with the
previous figure, there are not obvious differences due to the
accuracy loss. Of course, this depends on how sensitive the
dynamic system and kalman filter are to the accuracy of the
sample values.

Fig 7 shows the details about the error covariance when
packet dropping rate is relative low, say smaller than 40%,
and MD scheme gives much better performance and robust-
ness than single-description scheme. Note, the 2-description
MD achieves almost as good performance as sending single
description code twice and saves up to 40% bandwidth at
the same time.
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VI. MD CODING OVER GILBERT-ELLIOT MODEL

So far, we have dealt with the situation when the packet
loss due to the channel is according to an Bernoulli loss
model. However, as it is well known, another popular model
for packet drops in many channels (such as the wireless
channel) is one in which the losses occur in bursts. This
bursty error behavior can be captured by a discrete-time
Markov chain model. The simplest of such models is the
famous Gilbert-Elliot channel model. This model considers
the channel as existing in two possible states - ‘Good’ and
‘Bad’. In the good state, the packet drop probability is 0
while the bad state corresponds to packets being dropped.
The channel transitions between these two states according
to a Markov chain with transition probability matrix Q.
Clearly, the model can easily be made more complicated by
considering more than 2 states with different probabilities of
packet drop. However, for reasons of simplicity and without
loss of generality, we will consider only the 2-state model.

The analysis of the Markov channel case proceeds along
similar lines as outlined above. Suppose the channel can be
modeled as a 2-state Markov chain with transition probability

matrix Q given by

Q =
[

q00 q01

q10 q11

]
,

where 0 is the good state, 1 is the bad state, and qij is
the probability from the previous state j to the next state
i. For the case of 2-MD code, we are thus interested in a
4-state Markov chain where the states correspond to both
packets lost, only the 1st description packet lost, only the
2nd description packet lost and no packet lost. The transition
probability matrix of this chain is given by

Q̄ =

⎡
⎢⎢⎣

q2
00 q00q01 q01q10 q01q11

q10q00 q10q01 q11q10 q2
11

q2
00 q00q01 q01q10 q01q11

q10q00 q10q01 q11q10 q2
11

⎤
⎥⎥⎦ .

Note that the state in which both packets are lost is equiv-
alent to no observation coming through, while all the rest
of the states correspond to the system being observed. We
need results analogous to the Bernoulli case when packets
are being dropped according to a Markov chain. We use the
following results proven in [10].

Proposition 6.1: Consider the system

xk+1 = Axk + wk,

being observed through n sensors with the i-th sensor of the
form

yi
k = Cixk + vi

k.

Suppose only one sensor can be active at any time instant
and the choice of the sensor is done according to a Markov
chain with transition probability matrix Q = [qij ]. Denote
the Ricatti update in error covariance when the i-th sensor
is used by fi (.) and denote

fk
i (.) = fi (fi (· · · (.) · · · ))︸ ︷︷ ︸

k times

.

Then the expected error covariance at time step k, denoted
by E [Pk] is bounded as follows.

• Upper bound 1: Denote qi = maxj qji and πi is the
initial probability of states i. Then an upper bound for
E [Pk] is Xk where

Xk+1 =

{∑
i qifi (Xk) k ≥ 1∑
i πifi (P0) k = 0.

Thus a sufficient condition for convergence of the error
covariance is that Xk converges as k progresses.

• Upper bound 2: Another upper bound for E [Pk] can be
given by Zk, where

Zk =
n∑

j=1

Zi
k,

and Zi
k’s evolve according to the coupled equations

Zi
k+1 =

∑
qjifi

(
Zj

k

)
.



• Lower bound: Denote the probability of being in
Markov state j at time step k by πj

k. Then a lower
bound for E [Pk] is Yk where

Yk = qk−1
jj πj

0f
k
0 (P0)

+
∑k

i=1 qi−1
jj

(
πj

k+1−i − qjjπ
j
k−i

)
f i

j (Σ) ,

where Σ is the covariance matrix of the process noise
wk. Note that one such lower bound exists for each j.
Thus a necessary condition for divergence of the error
covariance is that

qjj |λmax

(
Āj

) |2 > 1,

where λmax

(
Āj

)
is the maximum magnitude among the

eigenvalues of the unobservable part of A when
(
A,Cj

)
is put in observer canonical form.

We can easily apply these results to our case with the
transition probability matrices described above. We consider
the same example as in the previous section. When no MD
code is applied, the system transitions according to a Markov
chain between a state in which the system is observed and
one in which it is not. With a 2-MD code, the four states
corresponding to the transition probability matrix shown
before. We can easily see the improvement in performance
by using MD codes. In figure 8 we plot the upper and lower
bounds for the error variance as a function of q10 for the
value q11 = 0.95. Although only the bounds are plotted, the
lowering of the lower bound is indicative of the performance
getting better with MD-codes. This fact can be verified by
actually simulating the system in the two cases. The results
for parameters q11 = 0.05 and q11 = 0.95 are shown in
figure 9.
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Fig. 8. Upper and lower bounds for Markov chain case

It can be seen from the figures and the expressions given
above that while the system diverges at q10 = 0.36 for no
MD code case, for the 2-MD code case, it diverges at q10 =
0.2. Thus the system stability margin is increased. It can
actually be proven in this case (when the observation matrix
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Fig. 9. Simulation results for Markov chain case

C is invertible) that the necessary condition for divergence
is sufficient as well.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we present a new scheme for the state
estimation in NCS to compensate packets dropping: using
multiple description source coding to transfer the observer’s
outputs. In this scheme, we use L ≥ 2 descriptions to
represent each source sample instead of one description.
The accuracy of the output of decoder only depends on
how many descriptions has been successfully received in
a certain time interval. We consider about two channel
models: Bernoulli loss model and Gilbert-Elliott model. In
the high rate case, the estimation error covariance converges
over a much larger receiving probability area than using
traditional single description source coding. Also, the scheme
is better than sending measurement L times because it saves
considerable bandwidth.

The main purpose of this paper is trying to understand
NCS from another angle: at the high bit rate scenario, what
can we do to compensate the packet loss? The work in
this paper is very helpful to understand the impact of lossy
networks and how to counteract it.

There are several issues we can look into in the future.
First of all, we need a more complete theory to understand
the MD coding for L > 2 case. Second, the validity of
the quantization noise model of MD coding may need to
be verified more carefully. Third, since MD coding will
greatly increase the computation complexity of the decoder,
a more efficient search algorithm for the source coding will
be greatly helpful. Last, we hope to get some similar results
for the stability of the closed loop NCS.
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