
Coarse analysis of multiscale systems: diffuser flows, charged
particle motion, and connections to averaging theory

Thesis by

Jimmy Fung

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2005

(Defended May 10, 2005)

ii

c© 2005

Jimmy Fung

All Rights Reserved

iii

to Elizabeth-Sharon

iv

Acknowledgements

I thank my advisors, Richard Murray and Jerrold Marsden, for their support and for their contri-

butions to this thesis. It was my pleasure to observe in them not only their technical insight, but

their inclination towards exploration and their patience in guiding my research.

I also thank Yannis Kevrekidis for many fruitful conversations and guidance throughout the course

of my research, including two prolific visits to Princeton University. I am grateful to Tim Colonius,

who served on my committee, for his help with many of the computational aspects of my work,

including the diffuser code. Michael Ortiz and Mory Gharib also served on my thesis committee and

offered many helpful comments. I also enjoyed many conversations, both personal and professional,

with Wang-Sang Koon and Doug MacMynowski.

During my studies at Caltech I had the pleasure of working with Harish Bhat (without whom the

particles work would not have been done), Matt West, Troy Smith, Abhishek Tiwari, and Raktim

Bhattacharya; I thank them for their patience, persistence, and friendship. I also thank Clancy

Rowley, whose work inspired me towards multidisciplinary research.

Early in my studies at Caltech, I had the pleasure of working with Paul Dimotakis, his staff including

Pavel Svitek and Earl Dahl, and the GALCIT shop guys. To them I owe a great appreciation

v

for experimental fluid mechanics. Michel Tanguay and Jeff Krimmel were extremely effective in

ensuring the reliability of the computers used during my research. I would like to thank the many

staff members who spent much time working to make my life easier: Wendy McKay, Charmaine

Boyd, Betty Sue Herrala, Arpy Hindoyan, Gloria Bain, and Susan Dimotakis. I have many fond

memories of lunches with Phil Harter.

My master’s thesis advisors at Virginia Tech, Muhammad Hajj and Ali Nayfeh, instilled in me a

love for engineering science. They were instrumental in my choice to attend Caltech.

Wei-Jen Su, Tony Chao, and others who entered GALCIT with me at the same time have made

my first year here a wonderfully memorable one. Jerry Shan, Genti Buzi, John Choi, Frederick

Balagadde, Amos Anderson, and the folks at CCF kept me going with their prayers and support.

I am grateful for my fellowship at Trinity Baptist Church. I would also like to thank my parents

Maureen and Kam Chuen for their strength and attention to my education, and to my brother

Kamy for always watching my back. I am very grateful to my wife, Elizabeth-Sharon, for her

support and her confidence in me.

Finally, I would like to thank my Lord and Savior Jesus Christ.

This is a faithful saying, and worthy of all acceptation, that Christ Jesus came into the
world to save sinners; of whom I am chief. Howbeit for this cause I obtained mercy,
that in me first Jesus Christ might shew forth all longsuffering, for a pattern to them
which should hereafter believe on him to life everlasting. Now unto the King eternal,
immortal, invisible, the only wise God, be honour and glory for ever and ever. Amen.

1 Timothy 1:15-17

vi

Abstract

We describe a technique for the efficient computation of the dominant-scale dynamics of a fluid

system when only a high-fidelity simulation is available. Such a technique is desirable when gov-

erning equations for the dominant scales are unavailable, when model reduction is impractical, or

when the original high-fidelity computation is expensive. We adopt the coarse analysis framework

proposed by I. G. Kevrekidis (Comm. Math. Sci. 2003), where a computational superstructure is

designed to use short-time, high-fidelity simulations to extract the dominant features for a multi-

scale system. We apply this technique to compute the dominant features of the compressible flow

through a planar diffuser. We apply the proper orthogonal decomposition to classify the dominant

and subdominant scales of diffuser flows. We derive a suitable coarse projective Adams-Bashforth

time integration routine and apply it to compute averaged diffuser flows. The results include accu-

rate tracking of the dominant-scale dynamics for a range of parameter values for the computational

superstructure. These results demonstrate that coarse analysis methods are useful for solving fluid

flow problems of a multiscale nature.

In order to elucidate the behavior of coarse analysis techniques, we make comparisons to averaging

theory. To this end, we derive governing equations for the average motion of charged particles in

a magnetic field in a number of different settings. First, we apply a novel procedure, inspired by

vii

WKB theory and Whitham averaging, to average the variational principle. The resulting equations

are equivalent to the guiding center equations for charged particle motion; this marks an instance

where averaging and variational principles commute. Secondly, we apply Lagrangian averaging

techniques, previously applied in fluid mechanics, to derive averaged equations. Making compar-

isons to the WKB/Whitham-style derivation allows for the necessary closure of the Lagrangian

averaging formulation. We also discuss the Hamiltonian setting and show that averaged Hamilto-

nian systems may be derivable using concepts from coarse analysis. Finally, we apply a prototypical

coarse analysis procedure to the system of charged particles and generate trajectories that resemble

guiding center trajectories. We make connections to perturbation theory to derive guidelines for the

design of coarse analysis techniques and comment on the prototypical coarse analysis application.

viii

Contents

Acknowledgements iv

Abstract vi

1 Introduction 1

2 Coarse Analysis 6

2.1 Literature Review . 6

2.2 The Coarse Analysis Framework . 8

2.3 Coarse Timestepping . 11

2.4 Numerical Analysis . 13

2.5 Limitations and Challenges . 18

3 Coarse Analysis of Diffuser Flows 19

3.1 Literature Review . 20

3.2 Diffuser Flow Phenomena . 25

3.3 Equations of Motion . 31

3.4 Numerical Simulation . 32

3.5 Fluids: Coarse Analysis Using Grid Representation for Scale Classification 38

ix

3.6 Fluids: Coarse Analysis Using the POD for Scale Classification 43

3.7 Coarse Time Stepping . 47

3.8 Numerical Analysis of a Coarse Adams-Bashforth Routine 53

3.9 Results: Coarse Diffuser Flows . 55

3.9.1 Coarse time integration with projective standard AB3 64

3.9.2 Coarse time integration with projective modified AB3 68

3.10 Conclusions . 73

4 Charged Particle Motion in a Magnetic Field: Connections 88

4.1 Introduction . 88

4.2 Lorentz Equations . 90

4.3 Geometric Mechanics . 94

4.4 Guiding Center Equations . 97

4.5 Variational Averaging Inspired by WKB and Whitham Averaging 102

4.6 Variational Averaging Inspired by LANS Averaging 109

4.7 Coarse Timestepping . 117

4.8 Lifting and Averaging . 120

4.9 Hamiltonian Averaging . 128

4.10 Conclusions . 134

5 Concluding Remarks and Future Directions 137

A Derivative Computation in the diffuser Code 143

A.1 Objective . 143

x

A.2 Implicit Finite-Difference Schemes . 144

A.3 Explicit Finite-Difference Schemes . 146

A.4 Optimized Spatial Discretization . 152

A.5 Implementation . 157

A.6 Error Analysis . 160

A.7 Concluding Remarks . 162

B Parallel Implementation of the diffuser Code 164

B.1 Domain-Splitting Framework . 164

B.2 Setup: the mpi basic Module . 166

B.3 Communication: the mpi advanced Module . 169

B.4 Specifics . 173

B.5 General Revisions to the diffuser Code . 181

B.6 parameters Module . 181

B.7 independents Module . 182

B.8 testing Module . 182

B.9 Results . 183

B.10 Comparision with Serial diffuser Results . 183

B.11 Benchmark Timing Study . 184

B.12 Program Compilation and Execution . 185

B.13 Bugs . 186

xi

List of Figures

2.1 Computational superstructure for a coarse integrator. After Kevrekidis et al. (2003). . 9

2.2 Regions of absolute stability. 15

2.3 Regions of absolute stability for projective schemes. 17

3.1 Representative flow regimes in planar diffusers. 27

3.2 Bifurcation scenario. 28

3.3 Diffuser flow grid and representative snapshot of vorticity contours. 36

3.4 Diffuser flow stagnation pressure ratio. 37

3.5 Grid refinement for scale classification. 39

3.6 Results of coarse time integration using grid refinement. 40

3.7 Comparison of vorticity computed by DNS and by grid-refinement-based coarse time
integration. 42

3.8 Regions of absolute stability. 56

3.9 Stagnation pressure ratio and snapshot time markers. 56

3.10 POD mode energy. 58

3.11 Vorticity computed for the ensemble average of the diffuser flow snapshots. 59

3.12 Vorticity of POD modes. 60

xii

3.13 Trajectories of the DNS simulation projected onto POD modes. 61

3.14 Flow reconstruction using the POD. 63

3.15 DNS data projected onto the first POD mode: time history, phase portrait, and
Poincaré section. 65

3.16 Comparison of fluid flow snapshots computed from DNS and from the coarse timestep-
per after four limit cycles. 67

3.17 Trajectories of the coarse representation compared with the DNS simulation projected
onto POD modes. 69

3.18 Stagnation pressure ratio. 71

3.19 Stagnation pressure ratio comparison between DNS and coarse numerical integration. 72

3.20 Phase portraits of the time derivative of POD mode amplitude, ȧi, versus POD mode
amplitude ai. 74

3.21 time histories of the POD mode amplitude towards the beginning of coarse computation. 78

3.22 time histories of the POD mode amplitude at the end of coarse computation. 82

4.1 Trajectory of a single particle in a toroidal magnetic field. 92

4.2 Coarse trajectory in a toroidal magnetic field, computed with the guiding center ap-
proximation. 101

4.3 Coarse trajectory in a toroidal magnetic field, generated using coarse integration tech-
niques. 118

5.1 POD coefficients for turbulent plane Couette flow in a minimal flow unit. 141

5.2 Vorticity flux control. 141

5.3 Diffuser flow under vorticity flux control. 142

5.4 Root locus for an El Niño model. 142

A.1 Comparison in wavenumber approximation to the first derivative. 154

xiii

A.2 Comparison in wavenumber approximation to the second derivative. 157

A.3 Padé differencing formulation. 158

A.4 Explicit differencing formulation. The primary scheme is optimized fourth-order. . . . 158

A.5 Error analysis for the optimized finite difference scheme. 161

A.6 Residual time-histories for the diffuser results. 162

B.1 Domain-splitting framework. 165

B.2 Timing study on the V2500 for the parallel diffuser code. 184

1

Chapter 1

Introduction

Many fluid flows in natural and scientific environments display features common to complex, mul-

tiscale systems. First of all, descriptions of the system dynamics are readily available at the

fundamental or fully detailed level; for fluids, the common descriptions are the Euler equations,

Navier-Stokes equations, or kinetic theories. Computational simulations are readily constructed

that integrate these governing equations over space and time. Another feature common to these

systems is the development of systems behavior across a range of scales; for example, in turbulent

flows the fluid organizes itself into eddies and other flow structures over a range of temporal and

spatial scales. In addition, coherent structures develop in multiscale systems where a separation of

scales distinguishes dominant (macroscale) structures and associated dynamics. While the system

dynamics are dependent on the component dynamics at every scale, the analyst is usually inter-

ested in answering questions related to the dominant scales. For fluid flows, the largest structures

in the flow affect performance in engineering applications, and in nature the weather analyst is

most interested in the dynamics and trajectories of the large-scale storm fronts.

2

While simulations of the fundamental equations are accurate in computing the dynamics of the

resolved scales, these simulations often incur expensive computational costs. This may prohibit

the rapid analysis of the dominant scales of a fluid system, particularly when efficiency is desired.

For example, the current state of the art in weather prediction is capable of weather forecasting on

the order of days into the future. This may not be adequate for emergency evacuation and safety

procedures.

Many approaches exist that attempt to increase computational efficiency while focusing on ex-

tracting or computing the dominant features of fluid flows. For turbulent flows, RANS and LES

simulations avoid explicit computations of the small scales by making modeling assumptions for

the small-scale (”subgrid”) interactions. Model reduction procedures, such as Galerkin projection,

serve to project the governing equations onto a smaller finite-dimensional subspace. Through this

projection and a truncation of the small-scale dynamics, the reduction will theoretically lead to a

model that accurately accounts for the dominant dynamics. Furthermore, theoretical variational re-

duction procedures such as LANS-α theories represent averaging methods that implicitly construct

models for the small-scale interactions.

The coarse analysis approach being developed by I. G. Kevrekidis avoids both subgrid modeling and

Galerkin projection. His approach assumes that a detailed simulation is available for the multiscale

system of interest and that the identification of the dominant scales of interest has already been

made. Rather than develop equations (and associated simulations) of the dominant scale dynamics,

the coarse analysis approach seeks to update the state of the dominant scales by making efficient use

of bursts of detailed simulation. The utility of this approach is found in its extraction of dominant-

scale dynamics using black-box, possibly legacy, simulation and without explicit knowledge of the

3

governing equations (even the governing equations for the dominant scales). This approach has

been validated for many systems such as chemical reaction-diffusion systems and is being applied

to a growing number of other systems such as mechanical and fluid systems.

Much of the setting is in place to suggest an application to fluid flows, particularly complex internal

flows. As mentioned above, high-fidelity simulations are available that are capable of resolving the

broad range of scales represented in a complex fluid flow, although at high computational cost.

Many fluid flows exist that display dominant-scale behavior and are amenable to averaging theory

and model reduction. Furthermore, the efficient computation of dominant-scale fluid dynamics is

necessary in many prediction, estimation, and control applications; the resources may not be avail-

able to perform long-time, high-fidelity simulation. Finally, although observations and extraction

of the dominant scales of fluid flows are often readily made, their dynamic computation sometimes

eludes attempts at model reduction. As coarse analysis techniques have been applied to other

systems displaying these characteristics, we are motivated to investigate their application to fluid

flows, particularly compressible diffuser flows.

Properties of coarse analysis techniques have been determined by Kevrekidis and collaborators

using standard numerical analysis techniques. For instance, the absolute stability of coarse time

integration schemes may be derived directly from standard numerical analysis. However, there

are other properties of importance, particularly to a class of techniques that purport to extract

averaged information from a multiscale system. In fact, considering coarse analysis algorithms as

multiscale systems in their own right may yield insight into their behavior and design. We are also

motivated to explore these issues, primarily by regarding them from a geometric perspective. In

doing so, we seek to explore connections between coarse analysis and averaging theory.

4

This thesis documents contributions in the coarse analysis of diffuser flows and in averaging tech-

niques, particularly for charged particle motion. For diffuser flows, the stable, accurate compu-

tation of the dominant scales for diffuser flows is made using coarse time integration. To that

end, vector-valued proper orthogonal decomposition is successfully used as a scale classification

towards the coarse analysis of compressible flows. In addition, a description of a coarse projective

Adams-Bashforth time integrator is given along with its associated numerical stability analysis.

Finally, an analysis is made of the average motion of charged particles in a magnetic field using

both coarse analysis and averaging techniques. Lagrangian averaging theories, inspired by WKB

and LANS-α techniques, are used to derive the guiding center equations. A prototypical coarse

time integration of charged particle motion is made that generates trajectories resembling guiding

center trajectories, and coarse analysis design guidelines are suggested by appealing to averaging

theory.

This thesis is organized as follows. We give a summary of coarse analysis techniques for multiscale

systems in Chapter 2. In this chapter, we describe the framework for coarse analysis, and the

major tools and ingredients used for coarse analysis. We describe diffuser flows in historical and

phenomenological settings in Chapter 3. We also place diffuser flow analysis in the coarse anal-

ysis framework and apply coarse numerical integration techniques to extract the dominant-scale

dynamics of a diffuser flow. In Chapter 4 we explore the connections between averaging theory and

coarse analysis. We focus on the system of charged particle motion in a magnetic field and apply

different averaging procedures, including coarse analysis, to extract the dominant-scale behavior.

Two appendices are provided at the end of this thesis. We describe the derivative computation

5

in the diffuser simulation in Appendix A. We describe the parallel implementation of the diffuser

simulation in Appendix B.

6

Chapter 2

Coarse Analysis

2.1 Literature Review

Philosophy When considering a multiscale system, most analyses make two important classi-

fications and assumptions. The first is a classification of scale; that is, a distinction is made to

identify the dominant and subdominant scales. The second is a modeling assumption of the influ-

ence between the dominant and subdominant scales. Many approaches exist that aim to reduce

multiscale systems for the purposes of efficient computation and analysis. These include LES

modeling for fluid turbulence, Galerkin projection methods, and averaging/perturbation methods.

While these approaches are often successful, most of their shortcomings lie not in their choice of

scale classification, but in their choice of modeling assumptions.

A novel numerical approach, called coarse numerical analysis, has been proposed by I. G. Kevrekidis

that addresses the sensitivity of systems analyses to modeling assumptions (Kevrekidis et al., 2003).

His approach assumes that a proper scale classification has been made for a system. Rather than

7

make modeling assumptions, however, his approach uses bursts of full-scale simulation (which

in principle are generated without modeling assumptions) to extract the interdependence of the

dominant (referred to as coarse) and subdominant (referred to as fine) scales. With the scale

classification and the numerically computed scale influence, systems analysis can proceed for the

dominant scales. The accuracy and convergence of this approach to a representative dominant-scale

system is dependent on the multiscale nature of the original system. For instance, coarse numerical

analysis is often very successful for systems whose scale classification is very natural; that is, the

dominant and subdominant scales are well-separated.

The following subsections describe some of the key ingredients in a coarse numerical analysis and

some applications of coarse analyses.

History Shroff and Keller, while developing the recursive projection method (RPM) (Shroff and

Keller, 1993), considered the notion of extracting the dominant features of multiscale systems

using black-box simulations. This was formally introduced in the coarse analysis framework by

I. G. Kevrekidis and collaborators (Theodoropoulos, Qian, and Kevrekidis, 2000), who have con-

tinued to explore many elements and applications of coarse analysis. These include coarse time

integration (Gear et al., 2002; Siettos et al., 2003b; Gear and Kevrekidis, 2003a,b; Gear et al.,

2003; Gear and Kevrekidis, 2004; Rico-Martinez et al., 2004), coarse dynamical systems analysis

such as fixed point determination, stability and bifurcation analysis (Theodoropoulos et al., 2000;

Gear et al., 2002; Makeev et al., 2002a; Runborg et al., 2002; Makeev et al., 2002c; Siettos et al.,

2003b; Hummer and Kevrekidis, 2003; Theodoropoulos et al., 2004; Siettos et al., 2004), coarse

control (Siettos et al., 2003b,a, 2004), and other applications such as extracting coarse conservation

8

laws and constructing a coarse Hamiltonian (Li et al., 2003), and the acceleration of gPROMS

simulations (Siettos et al., 2003c).

The majority of these studies used kinetic Monte Carlo simulations as the detailed simulation for

chemical reaction-diffusion systems; however, at least one study has been performed to study bubble

flows using a Lattice Boltzmann simulation for the detailed simulation (Theodoropoulos et al.,

2004). The numerical analysis conducted in Kevrekidis’s collaboration with C. W. Gear (Gear and

Kevrekidis, 2003a,b, 2004) is focused on coarse analysis of systems described by ordinary differential

equations. I. G. Kevrekidis has written two detailed reviews of coarse analysis (Kevrekidis et al.,

2003, 2004).

2.2 The Coarse Analysis Framework

The primary analysis tool is a computational superstructure that has access to a fine-scale model or

simulation. The basic superstructure defined by Kevrekidis is the coarse integrator. The primary

task of the coarse numerical integrator is to compute a time history of the coarse information of

a multiscale system. A schematic is shown in Figure 2.1 and includes the essential components of

the integrator. The following is a list of these components.

Scale classification As follows from the coarse analysis philosophy, a notion of scale classification

is required. This classification provides a well-posed, well-defined heuristic from which the

dominant scales of interest may be identified.

Projection operator A projection operator extracts the dominant scales from a full-scale obser-

9

coarse integrator
(differential-algebraic,

explicit projective)

fine integrator
(Monte-Carlo/molecular,

differential-algebraic)

lift

project

fine i.c.
average

Figure 2.1: Computational superstructure for a coarse integrator. After Kevrekidis
Kevrekidis et al. (2003).

vation of the system. This often naturally arises from the scale classification.

Average map This averages the resulting fine conditions after the fine integrator is used. The

input is a set of fine conditions and the output is a single (averaged) fine condition. This is

used with the projection map.

Lifting operator The lifting operator maps observations of the dominant scales to consistent

observations on the full-scale system. This operator is used to initialize a detailed simulation.

Observe that this map may not be unique.

Fine integrator This is assumed to be available a priori; this is the workhorse of any coarse

analysis tool. This is the detailed simulation of the system that resolves the fine scales. Its

operation is subject to the access of the superstructure.

10

Detailed simulation tools These are algorithms for extracting information using the detailed

simulation. Typical quantities of interest are temporal or spatial gradients.

Dominant-scale (”coarse”) analysis For the dominant scales of interest, the dominant-scale

analysis component is used for computation, for example of time histories or dynamical sys-

tems quantities.

Coarse integrator This advances the state to the next coarse time step. If the integrator is

differential-algebraic, a coarse model or simulation must already be defined. If the integrator

is of an explicit projective nature, then current and past coarse states/iterates are combined

as an extrapolation into the future. Note that the input to the coarse integrator is a coarse

initial condition. The corresponding output is a coarse final condition defined at a later time.

In computing the coarse evolution of a multiscale system, the coarse integration begins with coarse

initial conditions (the initial conditions corresponding to the coarse information of the system). For

a differential-algebraic superstructure, only a single set of conditions are required to initiate the

coarse integrator. For an explicit projective superstructure, multiple sets of initial conditions are

required, as necessary to perform the extrapolation or projection. For example, a explicit projector

based on the Euler method would require two sets of initial conditions. In that case, conditions

corresponding to time t−1 and t−2 would be used to extrapolate to a time t0.

After the coarse integrator is initialized, coarse integration is performed for a coarse time interval.

At this point, the superstructure accesses the fine integrator. The lift map is applied to the current

coarse condition, which generates a corresponding set of fine initial conditions. These are input

into the fine integrator and a fine evolution is computed over a short (fine scale) time interval.

11

Then the results of the fine evolution are collected, averaged using the average map, and projected

forward to a corresponding coarse condition. Then the procedure repeats, beginning with another

coarse integration for a coarse time interval.

The coarse integrator is just one example of a computational superstructure. Kevrekidis has used

a coarse integrator in computing the evolution of system dynamics in a number of different ap-

plications (Gear and Kevrekidis, 2003a; Makeev et al., 2002b; Gear et al., 2002; Kevrekidis et al.,

2003). Coarse integrators have also been used as a component of coarse stability and bifurcation

analysis tools (Theodoropoulos et al., 2000; Makeev et al., 2002b; Gear et al., 2002; Runborg et al.,

2002; Kevrekidis et al., 2003). Additional applications as well as analyses of the superstructure

algorithms are listed in (Gear and Kevrekidis, 2003a; Kevrekidis et al., 2003; Li et al., 2003).

2.3 Coarse Timestepping

Example Consider a system where the scale classification has already been applied and where the

projection and lifting operators are natural. That is, consider a system of states z = (x, y), where z

represents the full state, x represents the dominant scales, and y represents the subdominant scales.

Here, the projection operator is represented by x = P(z) and the lifting operator is represented by

z̃ = (x, ỹ) = L(x) with ỹ chosen from some distribution. Averaging is represented by the operator

A(·). Now consider a detailed simulation φ for the full-scale system as represented by

φ4t : z(t) 7−→ z(t+4t) (2.1)

12

with 4t as the time interval. Using time indices, this may be rewritten as

φkh : zn 7−→ zn+kh, (2.2)

where n refers to the current time step, h is the simulation time step and k is an integer. Suppose

a timestepper Φ is desired for the dominant scales, i.e.,

Φ4t : x(t) 7−→ x(t+4t). (2.3)

Using time indices, this may be rewritten as

ΦMh : xn 7−→ xn+Mh, (2.4)

where M is an integer. Such a timestepper may be constructed using tools from standard numerical

analysis and from coarse numerical analysis. The detailed simulation can be used to generate vector

fields using finite difference formulas; for instance, consider a forward difference formula for the first

derivative:

żn+(k+1)h ≈
1
h

(
φ(k+1)h

(
zn
)
− φkh

(
zn
))
, (2.5)

where the detailed simulation time is k + 1 multiples of the detailed simulation time step h. Con-

sidering this vector field approximation as a detailed simulation tool, a corresponding coarse vector

field may be computed using the projection operator:

ẋn+(k+1)h ≈
1
h

(
P
(
φ(k+1)h

(
zn
))
− P

(
φkh

(
zn
)))

. (2.6)

13

Now, consider a forward Euler time integration for the dominant scales. If the dominant dynamics

are governed by a system ẋ = f(x, t), the timestepper would be

ΦMh : xn 7−→ xn + f(xn, tn)Mh. (2.7)

However, the equations of motion for the dominant scales are not explicitly given. Using the coarse

vector field approximation in Eq. (2.6), the Euler timestepper may be written instead as

Φ(M+k+1)h : xn 7−→ xn + ẋnMh (2.8)

or

Φ(M+k+1)h : xn 7−→ xn +MP

(
A
(
φ(k+1)h(L(xn))− φkh

(
L
(
xn

))))
, (2.9)

where the timestepper is constructed for time steps of M multiples of the detailed simulation

step size h. It is apparent from the coarse Euler timestepper that the detailed simulation is used

primarily for extracting vector field quantities. The vector field is computed using the detailed

simulation over a burst time of h; therefore, one measure of the efficiency of the coarse algorithm

is the ratio M/(k+ 1). For coarse timesteppers whose burst interval (k+ 1)h is much smaller than

the coarse time interval Mh, the efficiency is high.

2.4 Numerical Analysis

Properties of algorithms such as coarse time integrators may be identified and compared with

standard algorithms through standard numerical analysis. Such comparisons are made in Siettos

14

et al. (2003b) and Gear and Kevrekidis (2003b). One important property of time integration

algorithms is the notion of absolute stability. Absolute stability is defined to the region on the

complex hλ plane where the numerical solution yn decays to zero as n goes to infinity for the linear

or scalar test equation,

ẏ = λy (2.10)

where h is the step size of the applied time integration algorithm.1 For instance, the absolute

stability region for the explicit Euler method is the disk of radius 1 and center (−1, 0) on the

complex plane. The absolute stability regions for the explicit Euler, fourth-order Runge-Kutta, and

second- and third-order Adams-Bashforth schemes are shown in Figure 2.2. As shown in Figure

2.2, the fourth-order Runge-Kutta scheme is stable over a much larger region than the explicit

Euler scheme, including a wide range over the imaginary axis (indicating stability for oscillatory

systems). Note that one drawback of Runge-Kutta methods are their computational cost. The

Adams-Bashforth schemes may have a smaller region of stability than even the explicit Euler

scheme, but their advantages lie in their accuracy and stability for oscillatory systems (without

incurring a heavy cost penalty than the Runge-Kutta schemes). For additional insight into time

integration algorithms and numerical stability properties, the reader is referred to the texts by Gear

(1971) and Shampine and Gordon (1975).

The following is a summary of the discussion found in Siettos et al. (2003b) on absolute stability of

projective schemes. Coarse time integration schemes may also be evaluated by approximating their

regions of absolute stability when applied to the scalar test case. In this setting, the coarse and

fine representations are considered to be equivalent, and the lift and projection maps are defined

1Although the scalar test equation is a linear equation, this absolute stability concept is useful for determining
the error management of time integration algorithms for nonlinear systems.

15

RK4

Euler

AB3

Real(hλ)

Im
ag

(h
λ)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 2.2: Regions of absolute stability for the Euler scheme, fourth-order Runge-Kutta, and
second- and third-order Adams-Bashforth schemes.

16

as identity maps. Therefore, absolute stability analyses of coarse integration schemes isolate the

effects of the coarse algorithm only (without the effects of the lift and projection). For instance,

consider the coarse projective Euler scheme (Eq. 2.9) where the lift and projection maps are identity

maps. The coarse projective Euler step from state x at time index n to the state x at time index

n+ k + 1 +M is then

xn+k+1+M = xn+k+1 +Mh
xn+k+1 − xn+k

h
. (2.11)

Observe that this coarse integration scheme may be regarded as a multistep scheme, where the next

iterate xn+k+1+M is a function of previous states xn+k+1 and xn+k. Assuming a geometric error

amplification ρ(hλ); that is, for the error ε at time index n+ k,

εn+k = ρkεn, (2.12)

applying the scheme in Eq. 2.11 to the scalar test equation (Eq. 2.10) yields the following error

amplification:

εn+k+1+M = [(M + 1)ρ−M] ρkεn. (2.13)

Thus, the region of absolute stability is the region where ‖σ(hλ)‖ < 1; that is,

‖ [(M + 1)ρ−M] ρk‖ < 1. (2.14)

Regions of absolute stability are shown in Figure 2.3 for the projective Euler scheme where the

detailed simulation is either itself an explicit Euler scheme or a fourth-order Runge-Kutta scheme.

Note that for ratios of M/(k+1) sufficiently high, the region of absolute stability for both projective

17

RK4

Euler

PEuler/RK4
PEuler/Euler

Real(hλ)

Im
ag

(h
λ)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 2.3: Regions of absolute stability for the projective Euler scheme where the detailed sim-
ulation is an explicit Euler scheme or a fourth-order Runge-Kutta scheme. The region of absolute
stability for both the standard explicit Euler and the fourth-order Runge-Kutta schemes are in-
cluded for comparison.

18

schemes consist of two regions that are not connected. There is a smaller region near the origin

and a larger region farther away from the origin. These represent stability regions for slow and

fast scales, respectively. For systems that display multiscale (temporal) behavior with decay rates

falling within the regions of absolute stability, the projective schemes are stable. For instance,

according to Figure 2.3, the projective Euler scheme (with an inner Euler integrator) is stable

for (hλ)coarse falling within the smaller region near the origin and for (hλ)fine falling within the

larger region farther out along the negative real axis. Thus, this projective scheme may be stable

for a multiscale system at a coarse time step of Mh. Note that the detailed simulation may not

be stable for such large time steps. This indicates that efficient, stable coarse integration schemes

may be designed according to the dynamics of the system of interest. For additional insight into

these numerical stability issues, the reader is referred to Siettos et al. (2003b). Later in Section 3.8,

we return to the discussion of absolute stability with a particular emphasis on a coarse projective

Adams-Bashforth scheme.

2.5 Limitations and Challenges

Coarse analysis techniques, particularly time integration routines, take advantage of the multiscale

nature of a system. These techniques are well suited for systems displaying a wide separation of

scales. For systems that do not display such a scale separation, numerical errors may arise during

the coarse analysis. Similarly, for systems that do not admit readily to scale classification, they

may not easily be placed in the coarse analysis framework. In other words, one must be able to

define the right coarse variables for a given system, prior to applying coarse analysis.

19

Chapter 3

Coarse Analysis of Diffuser Flows

In this chapter we apply the coarse analysis methodology to extract the dominant features, and

associated dynamics, of the compressible flow in a planar diffuser. We begin with an existing simu-

lation (of the compressible Navier-Stokes equations over a diffuser geometry) and an identification

of the large-scale structures. We wish to demonstrate that coarse analysis is a promising tool for the

efficient extraction of the dominant features of a system, without making modeling assumptions or

performing explicit model reduction. An appropriate demonstration would be an accurate recon-

struction of the dominant-scale dynamics of a diffuser flow that is computationally less expensive

than extracting the dominant dynamics from a full, long-time simulation. Such a demonstration

would indicate that is possible to use existing detailed simulation efficiently for dominant-feature

extraction, and this would also suggest possibilities for exploring the dominant-scale dynamics for

diffuser flows under different environments.

This chapter is organized as follows. We give a description of the existing literature and known

phenomenology for diffuser flows in Sections 3.1 and 3.2. We list the appropriate equations of

20

motion for compressible flow and describe the numerical technique for solving those equations in

Sections 3.3 and 3.4. In propose a coarse analysis framework for fluid simulation, we consider two

choices for scale classification. We consider using grid refinement as scale classification in Section

3.5. In this section, we perform coarse time integration using grid interpolation techniques. We

then consider a coarse analysis framework for fluids in Section 3.6 using the proper orthogonal

decomposition for scale classification. This section includes a description of each of the primary

components of coarse analysis as applied to this fluid flow system. We present our coarse diffuser

flow analysis in Section 3.9, which includes a discussion of POD-based scale classification results for

the diffuser flow and results for coarse time integration of diffuser flow. Finally, we make concluding

remarks in Section 3.10.

3.1 Literature Review

Diffuser flows are found in many engineered devices, including heart-lung assistive devices, hydraulic

devices, and aerospace propulsion systems. Adverse pressure gradients are intrinsic to diffuser

flows, and may lead to flow unsteadiness and flow separation. Across all of these applications,

diffuser performance is often inversely related to the level of flow distortion or blockage naturally

generated from instabilities induced by the pressure gradients. For instance, the presence of flow

separation may induce dead zones and blockages in heart-assist devices, increasing the likelihood

of clot development and other hazardous complications (Tsukiya et al., 2003b,a). Flow distortion

in propulsion systems may lead either to fatigue and failure in device components or to dangerous

flow-induced instabilities such as compressor surge and stall (Hamstra et al., 2000; MacMartin et al.,

21

2001). Interest in understanding, reducing, and controlling such phenomena in these applications

has placed these flow systems under study for over fifty years. As the environment in a diffuser

allows for flows with broad ranges of spatial and temporal scales, this multiscale system continues to

interest engineers, scientists, and mathematicians. The majority of the research effort appears to lie

in experimental characterization and in control applications; other portions include reduced-order

modeling, turbulence modeling and simulation, and theory.

Flow control Diffuser flow researchers have been interested in flow control applications since

the 1950s. The earliest work included experimental investigations of distributed (steady) suction

as a means of boundary-layer and separation control in conical diffusers (Holzhauser and Hall,

1956; Moon, 1958). Since then, the control applications have grown to include a wide variety of

actuation mechanisms and control philosophies. Passive and structural actuation was implemented

in the form of vane splitters and moving walls in the 1970s (Rao, 1971; Tennant, 1973). In the

latter study, moving cylinders formed part of the boundary in the region local to the separation

point.

Steady blowing and suction have been thoroughly investigated. Steady inlet injection in conical

diffusers was implemented by Nicoll and Ramaprian (1970). In that study, optimum actuation

velocities were determined to be on the same order as the inlet flow velocity. Steady injection

applied from the diffuser centerline was implemented in conical diffusers by Nishi et al. (1976).

Wall injection upstream of the separation point in a rectangular diffuser was implemented by Back

and Cuffel (1982). Injection in serpentine inlets, of the type found in current designs of advanced

propulsion systems, was implemented by Hamstra et al. (2000). In this study, it was generally

22

found that steady injection tended to stabilize the flow and, in many cases, reattach the separated

(boundary-layer) flow.

Unsteady flow actuation has been applied in a number of settings and represents the bulk of

the diffuser flow control literature. Unsteady flow control represents a boon to design engineers;

unsteady actuation is ideally superior to steady actuation in terms of greater efficiency. Unsteady

wall-normal inlet blowing was applied in rectangular diffusers by Smith and Kline (1974). A

methodology for applying unsteady separation point and downstream injection was proposed by

MacMartin et al. (2001) to control flow instabilities in a system of a serpentine diffuser coupled

with a compressor. Separation point injection was applied in asymmetric rectangular diffuser flows

in Brunn and Nitsche (2003) and Feakins et al. (2003). A computational study of separation point

injection was made by Suzuki et al. (2004). For completeness, the work in oscillatory blowing for

flow reattachment over airfoils by Seifert et al. (1996); Seifert and Pack (1999) were very influential

to many of the flow control activities done after the 1990s.

Some of the unsteady flow actuation mentioned previously used audio speakers as actuators. The

use of speakers to introduce acoustic waves into the diffuser has also been implemented at the

diffuser exit by Salmon et al. (1983) for modulating shock-induced separation.

Rather than actuation through straightforward mass injection, more sophisticated means of actu-

ation have been developed. Synthetic jet actuation has been developed to deliver momentum (and

vorticity) with a zero-net mass flux. The work mentioned previously of MacMartin et al. (2001)

also involved synthetic jet actuators. Synthetic jet actuation was also implemented in serpentine

diffusers by Amitay et al. (2002) and in planar diffusers by Ben Chiekh et al. (2003). For com-

23

pleteness, the reader is also referred to a general review of the synthetic jet literature in (Glezer

and Amitay, 2002).

In addition, vortex generator jets (VGJs) are actuators designed to inject mass at an angle away

from wall-normal; the nature of the (horseshoe) vortex released from actuation is different than

that of wall-normal injection. Vortex generator jets were applied well upstream of flow separation

in a conical diffuser by Nishi et al. (1998). In that study, the ratio of jet speed to freestream velocity

was found to be more important than the ratio of jet flow rate to total flow rate. Computational

modeling of planar diffuser flows controlled using VGJs was performed by Coller et al. (2000);

Coller (2000). VGJs were also implemented in the serpentine inlet studies by Hamstra et al. (2000)

and Sullerey and Pradeep (2004). It is also important to note that the unsteady separation point

injection studied by Suzuki et al. (2004) models the flow generated by vortex generator jets.

Theory and Modeling Many efforts have been undertaken to understand diffuser flows, asso-

ciated flow regimes of low performance, and the application of control. Measurements of diffuser

performance date back at least to the works by Gibson (1911–1912), Peters (1934), and Holzhauser

and Hall (1956). Water experiments in planar diffusers performed by Fox and Kline (1962)1 and

in conical diffusers by McDonald and Fox (1966)2 represent some of the earliest studies into dif-

fuser flow characterization. In these two studies, specific flow regimes were listed and observed,

including steady laminar flow, transitory stall, fully developed stall, and fixed stall. Experiments

were performed in air through rectangular diffusers by Reneau et al. (1967); in these experiments,

they also observed four different flow regimes: steady flow, unsteady flow, unsteady flow with
1This research was performed as part of Fox’s doctoral studies.
2Fox and MacDonald have since written a commonly used fluid mechanics textbook with P. J. Pritchard. The

reader is referred to Fox et al. (2004).

24

steady separation, jet flow. In that study, Reneau and collaborators also measured and discussed

diffuser performance. Experiments were made in conical and rectangular diffusers to characterize

noise and duct acoustics (Kwong and Dowling, 1994). They defined lag laws for unsteady stall

motion and characterized the dependence of noise and acoustic behavior on the diffuser geometry

and boundary. Finally, Suzuki and collaborators developed simulations and theory for quantifying

diffuser performance in terms of the vortex structures found in unsteady diffuser flows (Suzuki and

Colonius, 2003; Suzuki et al., 2004). They also developed identification and control strategies to

address vortex structure location and modulation.

Simulation and Model Reduction Computer simulations developed since the 1990s have been

capable of capturing many of the features of complex internal flows such as diffuser flows. Further-

more, model reduction has been employed on several occasions to aid in simulation, prediction, and

control. Commercial computational fluid dynamics (CFD) codes have been used in incompressible

diffuser simulations (Iaccarino, 2001). T. Suzuki and collaborators have developed high-fidelity

simulations for compressible diffuser flows (Suzuki and Colonius, 2003; Suzuki et al., 2004). Large

eddy and turbulence simulations using conventional and advanced subgrid physics models have

been applied to computing incompressible flows in asymmetric planar diffusers (Kaltenbach et al.,

1999; Apsley and Leschziner, 1999; Iaccarino, 2001; Lim and Choi, 2004; Schlüter et al., 2005). In

most of these studies, the choice of subgrid stress models was found to affect the mean momentum

and turbulent kinetic energy balances. It is worth mentioning that the study by Lim and Choi

was motivated by optimal shape design of the diffuser geometry. In that study, fluid simulations

were used in the setting of a larger optimization program. B. Coller and collaborators have devel-

oped vortex simulations of diffuser flows as a form of model reduction (Coller et al., 2000; Coller,

25

2000). Finally, the proper orthogonal decomposition has been applied to construct empirical basis

functions from compressible diffuser flow simulation data (Narayanan et al., 1999; Khibnik et al.,

2000). The results from these two groups include a proposed bifurcation map for diffuser flows as

a function of flow Reynolds number.

3.2 Diffuser Flow Phenomena

Diffusers are designed to slow down a flow and increase its static pressure. This is done by converting

kinetic energy (dynamic pressure) to potential energy (static pressure) generally through passive

means, such as taking the (subsonic) flow through a channel with diverging boundaries.3 The

adverse pressure gradients induced on the flow by the diffuser geometry and flow conditions allow

for flow complications such as boundary layer separation, blockage, stall, flow reversal, and vortex

dynamics.

Flow regimes The studies by Fox and Kline (1962) and Reneau et al. (1967) include definitions

of flow regimes observable in planar diffusers. They defined four flow regimes of interest, which are

drawn in Figure 3.1 for clarity:

“Well-behaved” or “no appreciable stall” This regime is observable at low flow Reynolds

numbers and is described by laminar flow throughout the diffuser, except for boundary layers

that are possibly thick. Except for minor incidents, no areas of stall, flow reversal, or vortex

dynamics are present.
3The reverse is true for supersonic flow diffuser design.

26

Large transitory stall This regime is characterized by unsteady stall development and organized

vortex dynamics. The flow may generally be regarded as oscillatory (with respect to flow

quantities such as velocity, vorticity, and performance).

Two-dimensional stall This regime is characterized by well-defined stall or separation regions

near the diffuser walls. The core flow and the flow within the separated regions may be well

organized or laminar, with the mixing regions disorganized or turbulent. Separated regions

may be present on both walls or just one of the walls. In the latter case, it is possible to affect

the flow and cause the separation region to shrink and a new separation region to develop on

the other wall (Reneau et al., 1967).

Jet Flow In this regime, flow separation occurs on both walls without reattachment; the core

flow convects through the diffuser with straight mixing regions between the core flow and the

separated flow. The flow on either side of the mixing regions are relatively steady.

Bifurcation Scenario A scenario was proposed in Khibnik et al. (2000) for the bifurcation

behavior of planar diffusers with increasing diffuser angle. This bifurcation scenario is reproduced

in Figure 3.2. As diffuser angle is increased, the diffuser action and the pressure gradients become

increasingly severe, leading to flow regime changes roughly in the order of the list given above.

The noappreciable stall regime is found to the left in the diagram, and the jet flow regime is found

to the right in the diagram. The first bifurcation, approximately at 2θ = 2.5o in the figure, is a

symmetry-breaking bifurcation that would be expected of the transition from the symmetric no-

appreciable stall regime to an asymmetric unsteady stall (separation) regime. The reader is referred

to the discussion in Khibnik et al. (2000) for a complete discussion on this proposed bifurcation

27

(a) “Well behaved” or “no appreciable stall” regime. Flow is
essentially laminar.

(b) Large transitory stall regime. Unsteady stall and vortex
motion is observed.

(c) Two-dimensional stall. Large, steady separation regions
develop.

(d) Jet flow. Mixing regions become parallel to diffuser cen-
terline.

Figure 3.1: Representative flow regimes in planar diffusers.

28

Asymmetric
chaotic regime

Asymmetric
limit cycle/
chaotic regime

Symmetric
limit cycle

Multistability

Symmetry
breaking

Symmetric
equilibrium

Hopf

Secondary
Hopf

Unknown
Asymmetric
invariant torus

Asymmetric
limit cycle

Asymmetric
equilibrium

0° 10°2θ

Figure 3.2: Bifurcation scenario as proposed in Khibnik et al. (2000). The flow regimes
addressed are, roughly, the no appreciable stall regime to the left, and the jet flow
regime to the right.

scenario. It is important, however, to note the complicated nature of the proposed bifurcation

scenario. Not only is this indicative of a rich dynamical system, but this also suggests that any

modeling of diffuser flows must be sufficiently robust and complex to capture such a bifurcation

scenario.

Diffuser performance metrics Flow phenomena such as boundary layer separation, flow re-

versal, vortex dynamics, and turbulence may in turn affect the performance of the diffuser. The

performance of a diffuser is related to the effectiveness by which the diffuser is capable of converting

dynamic pressure into static pressure. To this end, performance measurements usually quantify

29

the losses associated with this conversion. There are many different metrics available for measuring

performance; these include pressure recovery, head loss, effectiveness, and stagnation pressure ratio.

The first three metrics have been used throughout the history of diffuser flow studies, including

the work by Fox and Kline (1962) and Reneau et al. (1967). The latter study details diffuser per-

formance measurements as a function of diffuser geometry. The fourth metric, while not explicitly

encountered in the literature, is related to the diffuser loss factor defined in Holzhauser and Hall

(1956) which involved the ratio of average total-pressure loss to the theoretical incompressible,

irrotational value.

Pressure recovery is usually defined as a normalized static pressure difference across the diffuser.

That is,

Cpr =
p̄2 − p̄1

q̄1
, (3.1)

where p is the pressure, q = 1
2ρU

2 the dynamic pressure, ρ the density, and U the velocity across

downstream and upstream stations 1 and 2, respectively. Overbars indicate cross-sectional averages.

For irrotational flows and assuming incompressibility, Bernoulli’s equation may be applied, leading

to an expression for the ideal pressure recovery for two-dimensional (planar) diffusers:

Cpri
= 1− 1

(AR)2
, (3.2)

where the aspect ratio AR for planar diffusers is reduced to the ratio of exit to inlet diffuser width.

Two additional measures of diffuser performance are derived from the pressure recovery; these are

the diffuser head loss and efficiency. Head loss is defined as the difference between the ideal and

30

actual pressure recovery,

HL = Cpri
− Cpr, (3.3)

and diffuser effectiveness is defined as the ratio of actual to ideal pressure recovery,

η =
Cpr

Cpri

. (3.4)

Observe that when losses are incurred in the flow, the stagnation pressure may drop in the diffuser.

When stagnation pressure drops, diffuser pressure recovery and efficiency decreases, and head losses

increase. Therefore, an additional diffuser performance metric is the stagnation pressure ratio across

the diffuser,

ηpt =
p̄t2

p̄t1

, (3.5)

where pt is the stagnation pressure. A similar performance metric, the diffuser loss factor K, is

defined in Holzhauser and Hall (1956) which is the ratio of average total pressure losses to the

theoretical incompressible value:

K =
(p̄t1 − p̄t2)/(q̄1)
(1−A1/A2)2

, (3.6)

where A is the cross-sectional area. Note that the efficiency η, stagnation pressure ratio ηpt , and

the quantity 1 − K, maxima occur at a value of one. For this reason, these two metrics are of

particular value in diffuser performance measurement.

The reader is referred to the works by Fox and Kline (1962) and Reneau et al. (1967) to gain

additional insight into diffuser flow characterization and performance.

31

Multiscale descriptions For the large transitory stall regime, in the case of planar diffusers,

flow unsteadiness may be localized to occurring over just one side of the diffuser. A description

of the range of flow timescales is given in Reneau et al. (1967). In terms of diffuser characteristic

times τ = L/U1, with L the diffuser length, flow unsteadiness is observed at times on the order of

10τ for the fastest variations and on the order of 100τ for the large-scale variations. Furthermore,

the spatial scales of the flow structures range between the smallest spatial scales, representing the

shear induced by the large vortex dynamics, and the largest scales, which is on the order of the

diffuser length scales, represent the large vortices themselves. In this sense, diffuser flows in the

large transitory stall regime may be described as multiscale flow systems.

3.3 Equations of Motion

The equations of motion are the fully incompressible Navier-Stokes equations in two dimensions.

These equations describe the conservation of mass, momentum, and energy of a compressible viscous

fluid flow on a plane. In conservative form,

∂ui

∂t
+

∂

∂xj
(ρuj) = 0 (3.7)

∂ρui

∂t
+

∂

∂xj
(ρuiuj + pδij) =

∂

∂xj
τij (3.8)

∂e

∂t
+

∂

∂xj
((e+ p)uj) =

∂

∂xj
uiτij +

1
Re Pr

∂2T

∂xj∂xj
, (3.9)

where u and v are streamwise and wall-normal velocity components, respectively, ρ the density,

p the pressure, e the total energy, τij the viscous stress tensor, and T the temperature, with the

32

identities

e = ρ(E + |u|2/2) (3.10)

τij =
1

Re

(
∂ui

∂xj
+
∂uj

∂xi
− 2

3
∂uk

∂xk
δij

)
, (3.11)

where E is the total energy density. In addition, Re is the Reynolds number and Pr is the Prandtl

number. The Reynolds number is defined here based on the inlet velocity Uin and inlet height d,

defined by

Red =
ρinUind

µ
(3.12)

with dynamic viscosity µ. The Prandtl number is ratio of kinematic viscosity to thermal diffusivity,

Pr =
ν

κ
. (3.13)

The fluid is also assumed to be a perfect fluid, with equation of state

p =
γ − 1
γ

ρT, (3.14)

where γ is the ratio of specific heats.

3.4 Numerical Simulation

The numerical method used for solving the governing equations was developed by Colonius and

Pirozzoli (2002) and implemented by Suzuki, Colonius, and Pirozzoli for investigating vortex shed-

33

ding and separation modeling and control in diffuser geometries (Suzuki et al., 2004). We have

further developed the numerical simulation for execution on parallel architectures. We document

the main features of the method below.

The governing equations are first recast in orthogonal curvilinear coordinates according to Vinokur

(1974). The original numerical scheme of the diffuser code solves these equations using a compact

sixth-order Padé finite difference scheme for spatial differencing and a fourth-order Runge-Kutta

scheme for time advancement (Lele, 1992). Fourth- and fifth-order differencing is used along the

inflow, exit, and wall boundaries.

The grid corresponding to the physical diffuser geometry is generated through a conformal mapping

from a Cartesian grid. The conformal mapping is defined as

z = ζ +
β

2
log coshαz, ζ = ξ + iη, z = x+ iy,

with α and β as constants, from a rectangular domain with coordinates ζ = (ξ, η) to the physical

domain with coordinates z = (x, y). While a uniform rectangular grid is used for the spatial

derivative computation, an intermediate nonuniform Cartesian grid so that the user can cluster

points (such as toward walls and separation regions). For details on the grid generation, the reader

is referred to Suzuki et al. (2004).

The implementation follows the approach of Poinsot and Lele (1992) and Visbal and Gaitonde

(1999) for inflow, outflow, and wall-boundary conditions. Wall-boundary conditions are no-slip

and isothermal, corresponding to the stagnation temperature of the inflow. Inflow and outflow

34

boundary conditions are nonreflecting, and buffer zones are implemented according to Freund

(1997). In the buffer zone approach, the flow q is relaxed to a predefined flow qtarget (here, the

initial condition) through a forcing term

σ(q− qtarget) (3.15)

where the buffer coefficient σ is chosen here to take on a hyperbolic tangent profile.

For the purposes of this work, the diffuser code was parallelized with a domain decomposition

method using MPI (see Appendix B). To this end, the implicit Padé spatial differencing schemes

were replaced by explicit differencing. Here, the wavenumber–optimal differencing schemes pro-

posed by Lele (1992) and Tam and Webb (1993) are implemented with interior spatial derivatives

computed to fourth-order and fourth/fifth-order differencing along the boundaries. The resulting

differencing schemes were validated against the original implementation (see Appendix A).

The initial condition is defined as the potential flow solution, with thermodynamic quantities defined

using homoentropic assumptions. Initial boundary-layer profiles are defined assuming an incom-

pressible Blasius profile. The reader is referred to Suzuki et al. (2004) for additional discussion on

the numerical procedure.

Unless otherwise stated, the detailed fluid system dynamics reported here represent computations

for flows at an inlet Reynolds number of 2,550 and a Mach number of 0.55 through a diffuser of an

exit-to-inlet ratio of 1.4. The orthonormal grid size is 321 x 81. For clarity, a reduced grid (taken

every five points in each direction on the original grid) is shown in Figure 3.3. Flows under these

35

conditions exhibit separation and vortex dynamics in the diffuser. The vorticity of a typical flow

is shown in Figure 3.3.

As shown in Figure 3.3, the multiscale nature of the fluid system arises from the vortex dynamics

of the flow. The largest spatial scales of the system are represented by the large vortical structures

(downstream in Figure 3.3) whose length scale is on the order of the inlet height (a length scale for

the diffuser). The smallest spatial scales of the system are represented by the shearing observed at

the shear layers near the separation point and around the large vortical structures.

The dominant dynamics for the system are related to the vortex dynamics of the large structures

found in the flow. As shown in Figure 3.4, the diffuser flow exhibits limit cycling behavior, as mea-

sured by stagnation pressure ratio. Computing the vortex trajectories, or other system quantities

related to the vortex motion, is equivalent to computing the dominant dynamics of the flow.

Using the DNS simulation for computation, although highly accurate for the resolved scales, is

inefficient for extracting the dominant system dynamics. In considering the dimensionality of the

system, the simulation computes the flow (two momentum quantities, density, and temperature)

over the entire computational grid (over 24,000 grid points). The system dimension is then on the

order of 105.

2-D diffuser flows It is important to note that two-dimensional diffuser flows may be different

than three-dimensional diffuser flows. Because of the two-dimensional constraint, vortex stretching

does not occur. Also, the boundary layer separation dynamics may be different for two-dimensional

flows. Furthermore, the transition to turbulence may be delayed for two-dimensional flows. De-

36

(a)

x

y

-2 0 2 4 6 8 10

-2

0

2

(b)

x

y

-2 0 2 4 6 8 10

-2

0

2

Figure 3.3: Diffuser flow (a) grid, plotted every five points in each direction for clarity; (b)
representative snapshot of vorticity contours.

37

800 1000 1200 1400
0.95

0.96

0.97

0.98

0.99

1

St
ag

na
ti

on
 P

re
ss

ur
e

R
at

io

time

Figure 3.4: Diffuser flow stagnation pressure ratio.

spite these differences, the coarse numerical techniques developed here treat the flow as a general

dynamical system. In other words, the success (or failure) of coarse analysis for fluids depends

on the ability of the scale classification to represent (in other words, make observations) of a fluid

flow and on the accuracy of the detailed simulation. As long as a detailed simulation is faithful

in resolving a two-dimensional fluid flow, a corresponding coarse analysis should be successful for

a given multiscale fluid flow that admits to a coarse representation. Alternatively, an accurate

three-dimensional simulation would be required for the coarse analysis of a fully three-dimensional

fluid flow.

38

3.5 Fluids: Coarse Analysis Using Grid Representation for Scale

Classification

In this section, the components of coarse analysis are designed using a scale classification based on

grid refinement. First, the grid refinement method, based on interpolation, is described. Then the

components of coarse analysis, including the lift and projection algorithms, are described in this

context for time integration. Finally, results from a coarse time integration using grid-refinement-

based scale classification are discussed.

Grid refinement has been used extensively in the numerical computation of fluid mechanics; in

particular, the adaptive mesh refinement (AMR) (Berger and Oliger, 1984) and multigrid (Brandt,

1977) techniques have been developed to reduce computational cost in fluid simulations. Adaptive

mesh refinement methods seek to make spatial and temporal grid refinements to more accurately

resolve small-scale or fast dynamics in the domain. Multigrid methods involve a combination of

interpolation-based lifting (prolongation) and projection (restriction) with iterative methods (used

to solve problems of the form Au = f for matrices A and vectors u and f) to accelerate a solution

for u. Although these methods are effectively used for the computation of fluids, they would either

1) require significant modifications to non-AMR and non-multigrid codes or 2) require explicit

access to their subroutines for the dynamics to compute quantities such as residuals. Therefore,

traditional AMR and multigridTherefore, although the traditional AMR and multigrid approaches

are not implemented here, the notion of grid refinement is now considered in the context of coarse

analysis.

39Grid comparisons and coarsening

321 x 81

41 x 11

flow

flow

V
o
rt

e
x
 s

tr
u
c
tu

re
s

Coarsening

Figure 3.5: Grid refinement for scale classification.

As used in the AMR and multigrid techniques, scale classification by grid refinement is simply by

grid representation; in other words, coarse and fine representations take the form of coarsely and

finely resolved grids. Using the conformal mapping algorithm for the grid generation in the diffuser

flow simulation, cubic spline interpolation (of each of the four flow variables) is used to coarsen a

flow.4 This is shown in Figure 3.5.

As grid refinement is performed using interpolation, lifting and projection maps follow from the

interpolation. Thus, coarse time integration is straightforward using this type of scale classification;

in fact, the original DNS simulation may be used on the coarse grid to produce a coarse time

integrator. In other words, coarse projective integration is not necessary. A cycle of coarse time

integration thus proceeds as follows: beginning with a coarse grid representation, interpolation is

used to lift to a fine grid representation. A short burst of DNS simulation is performed on the

fine grid using the lifted fine representation as an initial condition. This is followed by projection

onto the coarse grid (using interpolation). Then a DNS simulation is computed over a longer time

4Linear interpolation is commonly used in mesh refinement techniques, but cubic spline interpolation is used here
to ensure a smoother interpolation, which would reduce noise in the lifting algorithm.

40Lifting and a single DNS burst

Time

The lifting is another cubic spline

interpolation from coarse – to – fine. Note

that the lifting has ”sharpened” the

coarsened features.

No “noise” has been added yet. What

should the noise be?

Gradients in the lifted shear layers

led to shear layer instabilities (roll

up of vorticity). But note that the

dominant structures (downstream)

are accurately captured.

This is not a fair comparison – we’re comparing a single lifted DNS run with an

original fine-scale DNS run (no “averages” are being compared on the coarse

scale).

Fine-scale initial condition

Lifted initial condition

Figure 3.6: Results of coarse time integration using grid refinement.

interval on the coarse grid, using the coarsened representation as an initial condition.

A cycle of coarse time integration is shown in Figure 3.6. Beginning with a fine-scale initial

condition, interpolation is used to generate a corresponding coarse initial condition, from which the

cycle of coarse time integration begins. The interpolation is performed on the four flow variables:

streamwise and spanwise momentum, density, and energy; the noise induced by the interpolation

appears as artifacts in the vorticity of the fine-grid representation. This may be seen in the figure

as light bands near the shear layers downstream from the boundary layer separation. The figure

also contains a vorticity snapshot taken after a burst of fine-scale DNS simulation using the lifted

flow as an initial condition. As shown in the lower left in the figure, the shear layers undergo

Kelvin-Helmholtz shear instabilities due to the noise induced by the lifting algorithm. Although

new vortex structures arise as a result of the induced fluid instabilities, the vortex pair observed in

the original flow survives the lifting/fine-scale DNS burst.

A proper comparison would actually be between the cycle of coarse time integration and a projection

of the original flow, computed using DNS simulation on the fine grid, onto a coarse grid. This is

41

shown in Figure 3.7. As shown in this figure, the projection (interpolation) smears out the new

vortex structures induced by the fluid instabilities. Although the coarsened flow still contains

artifacts that are undesirable, the original vortex pair of interest is resolved accurately by the cycle

of coarse time integration.

A straightforward implementation of coarse time integration using grid refinement for scale clas-

sification yields coarsened flows that do not compare well with a projection of the original DNS

flow. While the results are unsatisfactory, it may be possible to increase the accuracy and reduce

the errors arising from the grid interpolation. Possible techniques for noise (variance) reduction

would involve lifting to multiple copies of fine-scale representations for multiple DNS bursts (and

subsequent ensemble averaging). Each lifted representation would be generated from a distribution

applied over the usual grid interpolation; then the induced flow instabilities might be reduced by

ensemble averaging. In addition, the interpolation technique might be revised to account for desired

smoothness of the derivatives of the flow variables (from which the fluid vorticity is derived). These

revisions might be made using techniques from AMR and multigrid methods, and are suggested

for future work. In the next section, we consider the coarse analysis of fluids with a scale analysis

using the proper orthogonal decomposition.

42

Lifting and a single DNS burst:

coarsening comparison

Projection of original DNS result

Projection of lifted DNS result

•Both the original DNS

simulation and the lifted

DNS burst yield similar

coarse structures near

the downstream end.

•The additional structures

in the lifted burst may be

“averaged out” after an

ensemble of lifted initial

conditions is propagated

in a burst.

S
im

ila
r

c
o
a
rs

e
n
e
d
 s

tr
u
c
tu

re
s

Might these be averaged out

in the ensemble average?

Coarsening == Projection

Figure 3.7: Comparison of vorticity computed by DNS and by grid-refinement-based coarse time
integration.

43

3.6 Fluids: Coarse Analysis Using the POD for Scale Classifica-

tion

In this section, the components of coarse analysis will be developed for fluid systems using a different

type of scale classification. Here, we propose the proper orthogonal decomposition as a well-defined

scale classification for compressible fluid flows. We then pose the necessary conditions for the

projection and lift operators and tools constructed from bursts of detailed simulation. Finally, we

describe the coarse timestepper.

Scale classification using the proper orthogonal decomposition Although the observation

of the large-scale vortex dynamics as the dominant dynamics is valid, a more rigorous scale classi-

fication is necessary for the coarse numerical analysis. For fluid systems, natural choices for scale

classification follow from a spectral decomposition of the flow. For instance, in turbulent flows a tra-

ditional scale classification is made from kinetic energy spectra. A natural scale classification that

allows for both flow description and for reduced order modeling is the proper orthogonal decompo-

sition (Holmes et al., 1996). The POD is shown to be a valid scale classification for coarse analysis

of chemical reaction-diffuser systems in Gear et al. (2002). The proper orthogonal decomposition

is the scale classification used for the analysis documented here.

The proper orthogonal decomposition seeks to construct an optimal basis {φj(x)}, j ∈ N for Q,

where Q is a linear, infinite-dimensional Hilbert space. For this discussion, Q is the space of fluids

with state q = (ρu, ρv, ρ, ρE) with the usual inner product. For finite representations of the fluid

44

in the form of

qN (x; t) =
N∑

j=1

aj(t)φj(x), (3.16)

the basis {φj(x)} is considered optimal in the sense that the averaged projection of a fluid state q

onto φ is maximal:

max
φ∈Q

〈|(q, φ)|2〉
‖φ‖2

(3.17)

subject to ‖φ‖2 = 1. Here, the operator 〈 · 〉 refers to ensemble average. This constrained variational

problem is equivalent to the following eigenfunction problem:

∫
V
〈q(x)q∗(x′)〉φ(x′)dx′ = λφ(x) (3.18)

with 〈q(x)q∗(x′)〉 = R(x, x′) the averaged autocorrelation function and (λ, φ) the corresponding

eigenvalue/eigenfunction pair. The eigenfunctions are referred to as empirical eigenfunctions or

POD modes and the eigenvalues are a measure of the energy content of the corresponding POD

mode.

An efficient method for computing the basis functions φj is the method of snapshots (Holmes et al.,

1996). Consider a system where one obtains an ensemble of M snapshots (instances) qk of the

system. If φ is an eigenvector for the problem in Eq. (3.18), then it can be written as

φ =
M∑

k=1

bkq
k (3.19)

45

with unknown coefficients bk. The eigenfunction problem may be written as

(
1
M

M∑
i=1

qi ⊗ qi,
M∑

k=1

bkq
k

)
= λ

M∑
i=1

bkq
k. (3.20)

This may be rewritten as
M∑

k=1

1
M

(qi, qk)bk = λbi, (3.21)

which is an M×M eigenfunction problem for the coefficients bi in the expansion for φ. The method

of snapshots may also be applied to affine systems.

The proper orthogonal decomposition and the method of snapshots have been applied to incom-

pressible fluids (Holmes et al., 1996) and compressible fluids (Rowley et al., 2004). Note that

the issue of compressibility is addressed in the details of the scale classification (and associated

projection and lifting operators) rather than in the fundamental nature of the classification. In

other words, the POD is a valid scale classification for both incompressible and compressible flows.

Specifically, the issue of compressibility influences the choice of the elements of the flow vector q

and on the choice of the inner product used for the POD. For the purposes of this study, the flow

vector q is chosen to correspond to that for the detailed simulation,

q = (ρu, ρv, ρ, ρE), (3.22)

and the usual inner product is chosen for the POD-related computations. As discussed in the

following, choosing usual inner product leads to well-posed lifting operators.

46

Projection operator Because the POD-scale classification leads to orthogonal descriptions of

the scales, projection follows naturally. A choice is made to identify the most energetic empirical

eigenfunctions as the dominant scales of the flow, and projection is equivalent to projection of the

flow onto the POD eigenfunctions. As a given flow state is identified with a linear combination of

the eigenfunctions (the POD coefficients), projection is a truncation to the corresponding dominant-

scale POD coefficient vector.

For an expansion of the flow onto M POD modes,

qM (x; t) =
M∑

j=1

aj(t)φj(x), (3.23)

a projection onto N < M modes yields a truncated expansion,

qN (x; t) =
N∑

j=1

aj(t)φj(x). (3.24)

In other words, the projection of the flow onto N POD modes is a mapping from q ∈ Q to a ∈ RN :

PN(q) = {aj}, j = 1, · · · , N. (3.25)

For N < M with a number of snapshots M much smaller than the dimension of Q, this is a

considerable reduction. For instance, given the earlier estimate of dim (Q) = 100, 000, choosing

M = 125 and N = 20 represents an overall reduction of four orders of magnitude.

47

Lifting operator The lifting operator is related to the reconstruction procedure in the POD

framework. That is, the POD coefficient vector yields a linear combination of the POD eigenfunc-

tions that approximates the corresponding flow state. For the analysis presented in this document,

the lifting operator is POD reconstruction with the higher-order (subdominant) scales set to zero.

In other words, the lifting operator is the corresponding linear combination of the POD modes

where only the coefficients corresponding to the dominant scales are nonzero.

For the analysis documented here, the lifting operator L : RN 7−→ Q is

L({a}) = q(x; t) =
N∑

j=1

aj(t)φj(x). (3.26)

Other lifting operators may be defined where the higher-order modes are initialized from a distri-

bution. In addition, observe that because of the dependence on POD reconstruction, the decom-

position, including the choice of q and the choice of inner product, must produce a well-posed lift.

To this end, the choice of q in the scale classification is consistent with the lifting required for the

DNS, and the choice of the usual inner product allows for a well-posed reconstruction of q.5

3.7 Coarse Time Stepping

Detailed simulation tools Vector fields for the fluid flow may be computed using bursts of

DNS. Consider the DNS simulation as a mapping φDNS,τ of a given initial condition qn(i, j) for

5One might choose a different inner product, for instance the kinetic energy, or enthalpy, or enstrophy. Choosing
these inner products for computing POD modes would yield modes whose dimension are not the same as that for the
original flow. In this case, reconstruction through the POD would be ill-posed.

48

the flow at time index n to the flow state qn+τ (i, j) at a later time index n+ τ :

φDNS,τ : qn(i, j) 7−→ qn+τ (i, j). (3.27)

Now, using the DNS simulation, an approximation to the vector field q at a time index n+(k+1)h

may be computed using forward finite differencing. Using the vector field q̇n as an initial condition

for a DNS simulation running for k + 1 time steps (at a DNS time step h), the vector fields

corresponding to the final two time steps kh and (k + 1)h may be used to construct a finite

difference approximation to q̇n+(k+1)h:

q̇n+(k+1)h(i, j) ≈ 1
h

(
φDNS,(k+1)h

(
qn(i, j)

)
− φDNS,kh

(
qn(i, j)

))
. (3.28)

Using the projection operator, the vector field corresponding to the dominant scales may be com-

puted as follows:

ȧn+(k+1)h ≈
1
h

(
P
(
φDNS,(k+1)h

(
qn(i, j)

))
− P

(
φDNS,kh

(
qn(i, j)

)))
. (3.29)

We apply the lift operator to generate a single approximation for q, yielding

ȧn+(k+1)h ≈
1
h

(
P
(
φDNS,(k+1)h

(
L({an})

))
− P

(
φDNS,kh

(
L({an})

)))
. (3.30)

Note that the averaging operator is not present, because only one lifted initial condition is generated.

In the work documented in this thesis, only one initial condition q is generated for each application

of the lift operator, and the averaging operator is not used.

49

In this way, a vector field to the coarse representation an+(k+1)h may be computed from an,

an+(k+1)h, and an+kh through the use of the projection and lift operators and detailed simula-

tion tool.

Coarse Time Integration Following from POD-based scale classification, the dominant scale

quantities of interest are the low-order energetic POD modes. A basic tool of coarse analysis is

the coarse timestepper; this tool is used for computing the time histories of the dominant scales.

Using the components listed above, conventional tools in numerical analysis may be adapted for

coarse analysis. For instance, consider the system q̇ = f(q); for fluids these are the Navier Stokes

equations. It is desired to compute time histories for the dominant scales φ; in other words, it is

desired to compute trajectories a(t). If a reduced system ȧ = g(a) were available, for instance, a

Euler time integrator may be constructed to simulate the system:

an+Mh = an + g(a)Mh. (3.31)

Replacing the vector field g(a) with the approximation provided in the previous subsection yields

the following time integrator:

an+(M+k+1)h = an +MP
(
φDNS,(k+1)h

(
L({an})

)
− φDNS,kh

(
L({an})

))
. (3.32)

Similarly, coarse timestepping algorithms may be constructed using more sophisticated techniques

(Gear and Kevrekidis, 2003a).

50

Derivation of a modified Adams-Bashforth Integration Routine We derive third-order

multistep Adams-Bashforth integration routines using Lagrange interpolating polynomials accord-

ing to Shampine and Gordon (1975). In other words, the approximation of state yn+1 at time index

n+ 1 given previous and existing states (yn, yn−1, yn−2) at time indices n, n− 1, and n− 2 is

yn+1 = yn +
∫ tn+1

tn

P3,n(t)dt, (3.33)

where P3,n(t) is composed of three Lagrange interpolating polynomials:

P3,n(t) =
3∑

i=1

li(t)fn+1−i (3.34)

li(t) =
3∏

j=1

t− tn+1−j

tn+1−i − tn+1−j
. (3.35)

Substituting these Lagrange polynomials into Equation 3.33 and carrying out the integration leads

to, after some algebra,

yn+1 = yn + fn
c

6ab
(6ab+ 3ac+ 3bc+ 2c2)− fn−1

1
b(a− b)

1
6
c2(3a+ 2c)− fn−2

1
a(b− a)

1
6
c2(3b+ 2c),

(3.36)

where f = ẏ are the vector fields for y and where the point spacing is given as follows:

tn−2 =tn − a (3.37)

tn−1 =tn − b (3.38)

tn+1 =tn + c. (3.39)

51

Therefore, the standard third-order Adams-Bashforth scheme is given by setting a = 2h,

b = h, c = h with step size h:

yn+1 = yn +
23
12
hfn −

4
3
hfn−1 +

5
12
hfn−2. (3.40)

Application of this classical algorithm directly to the coarse representation an yields the following

time integrator:

an+Mh = an +
27Mh

12
ȧn −

4Mh

3
ȧn−Mh +

5Mh

12
ȧn−2Mh. (3.41)

Coarsening this integration routine in the same manner as above (approximating time derivatives

with bursts of DNS simulation and first-order finite differences) yields

an+Mh = an +
27M
12

(
P
(
φDNS,h

(
L({an})

))
− P

(
L
(
{an}

)))
−4M

3

(
P
(
φDNS,h

(
L({an−Mh})

))
− P

(
L
(
{an−Mh}

)))
+

5M
12

(
P
(
φDNS,h

(
L({an−2Mh})

))
− P

(
L
(
{an−2Mh}

)))
.

(3.42)

This scheme applies bursts of simulation beginning at the coarse times t, t −Mh, t − 2Mh, and

approximates the derivatives of POD coefficients ȧ accordingly. Errors may naturally arise, however,

if the POD coefficients and approximate derivatives used are not aligned with those times. For

instance, it may be advantageous to compute DNS bursts for times longer than a single time

step h to allow for interaction among scales. If low-order finite differencing is imposed, either

the information at the end of the DNS bursts are not used, or the corresponding finite difference

approximations closer to ȧt+jMh+kh are used instead. The latter approximation may lead to errors.

52

Instead, to apply low-order finite differencing and allow for longer DNS bursts, the DNS burst size

kh should be accounted for in the coarse integration scheme. To this end, the Adams-Bashforth

routine is now rederived to account for a DNS burst over a time interval kh.

A new scheme may be derived by setting different values of a, b, and c for Eq. (3.36). For instance,

setting the following values

a =2Mh (3.43)

b =Mh (3.44)

c =(M − k)h (3.45)

with M and k integers and h the stepsize, yields the following scheme:

yn+1 = yn+
M − k
12M2

(2k2−13kM+23M2)hfn+
k − 4M

3M2
(M−k)2hfn−1+

(M − k)2

12M2
(−2k+5M)hfn−2.

(3.46)

Therefore, before coarsening, the modified third-order Adams-Bashforth scheme for the dominant

scales a is

an+(M−k)h = an +
(M − k)h

12M2
(2k2 − 13kM + 23M2)ȧn

+
(k − 4M)h

3M2
(M − k)2ȧn−Mh

+
(M − k)2h

12M2
(−2k + 5M)ȧn−2Mh.

(3.47)

Note that for k = 0, this scheme reduces to that of Eq. (3.41). Coarsening this scheme leads to the

53

following modified coarse third-order Adams-Bashforth scheme:

an+(M−k)h = an +
M − k
12kM2

(2k2 − 13kM + 23M2)(an − an−h)

+
k − 4M
3kM2

(M − k)2(an−Mh − an−(M−1)h)

+
(M − k)2

12kM2
(−2k + 5M)(an−2Mh − an−(2M−1)h).

(3.48)

At the completion of this step, a burst of DNS simulation is made at a burst time of kh. Projections

are made at the final two (detailed simulation) time steps of this burst. Note that at the coarse

Adams-Bashforth routine may now be repeated. Observe that this modified scheme does not suffer

from the penalty imposed by making low-order, DNS-based, finite-difference approximations that

are away from the intended time instance. In this scheme, the DNS burst is accounted for, and both

POD mode coefficients and their approximate time derivatives are represented correctly. Finally,

note that the modified coarse Adams-Bashforth scheme in Eq. (3.48) does not simplify to the

coarsened classical scheme in Eq. (3.42), because the nature of the coarsening is different for the

schemes.

3.8 Numerical Analysis of a Coarse Adams-Bashforth Routine

Similar to the treatment discussed in Section 2.4, the coarsened Adams-Bashforth routine, Eq. (3.48),

may be analyzed for its global stability properties as a multistep routine. The error growth may

54

be written directly as

εn+(M−k)h = εnρ
k+1 +

M − k
12kM2

(
εnρ− εn−h

)
ρk

+
k − 4M
3kM2

(
εn−Mh − εn−(M−1)h

)
ρk

+
(M − k)2

12kM2

(
εn−2Mh

)
− εn−(2M−1)h

)
ρk.

(3.49)

Note that the right-hand side is dependent on quantities on time intervals that are not connected

through ’detailed simulation’; that is, the right hand side is composed of three disparate portions

near time indices n, n−Mh, and n− 2Mh. In order to proceed, an assumption of consistency in

the error growth is assumed; that is,

εn−jMh − εn−(jM−1)h = (ρ− 1)εnρk (3.50)

for any integers j and M. Substituting this into our error expression in Eq. (3.49), we have

εn+(M−k)h = εnρ
k+1 +

M − k
12kM2

(ρ− 1)εnρk

+
k − 4M
3kM2

(ρ− 1)εnρk +
(M − k)2

12kM2
(ρ− 1)εnρk.

(3.51)

Now our error growth is

εn+(M−k)h = σ(hλ)εn, (3.52)

where

σ(hλ) = ρk+1 +
M − k
12kM2

(ρ− 1)ρk +
k − 4M
3kM2

(ρ− 1)ρk +
(M − k)2

12kM2
(ρ− 1)ρk. (3.53)

55

Now the absolute stability criterion is defined when ‖σ(hλ)‖ < 1. This region is plotted and

compared with other time integration schemes in Figure 3.8.

Note on error analysis. The coarse projective Adams-Bashforth scheme is stable for systems

whose eigenvalues exist within the stability region. Although not completed at this time, the

method is expected to be accurate to third order as long as the derivative approximations (using

finite differencing) are also accurate to third-order or higher. Also, the determination of consistency,

convergence, and error bounds has not completed at this time. It is important to note that such

analyses are being performed by Kevrekidis and collaborators and have been performed for similar

methods such as the heterogeneous multiscale methods by E and Engquist (2003).

3.9 Results: Coarse Diffuser Flows

Scale classification and diffuser flow POD For this coarse analysis, we used the POD for scale

classification. We then applied the method of snapshots to construct empirical basis functions for

the underlying space for the diffuser flow. We consider an ensemble of 126 snapshots for computing

the POD modes. These snapshots are taken from a single DNS simulation and are indicated in

Figure 3.9.

The eigenvalues associated with the basis functions are shown in Figure 3.10 for cases where the

ensemble average is removed from the snapshots used in the decomposition, and for cases where

the ensemble average is not removed. As shown in this figure, the eigenvalues decay rapidly for

both cases, and the eigenvalue associated with the ensemble average is much greater than the other

56

RK4

Euler

AB3

PAB3/RK4

Real(hλ)

Im
ag

(h
λ)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 3.8: Regions of absolute stability for the Euler scheme, fourth-order Runge-Kutta, and
coarse projective third-order Adams-Bashforth schemes.

1300 1350 1400 1450
0.95

0.96

0.97

0.98

0.99

1

St
ag

na
ti

on
 P

re
ss

ur
e

R
at

io

time

Figure 3.9: Stagnation pressure ratio. Snapshots are taken as indicated.

57

eigenvalues. Unless otherwise noted in this report, the ensemble average is removed from all of the

snapshots taken.

Because the eigenvalues, and thus the energy, of the POD modes decay rapidly, relatively few

modes are required to reconstruct a fluid flow (snapshot) to high accuracy. The scale classification

arises from the ordering of the modes: low-order modes represent the dominant scales, and the

high-order modes represent the subdominant scales. The rapid decay of the eigenvalues suggests

that a separation of scales may be made for the flow. This will influence the resulting performance

of the coarse analysis, as a lack of such a separation will lead to numerical instabilities.

The vorticity profiles for the ensemble average and for the first six POD modes are shown in

Figures 3.11–3.12. While these modes are not directly equivalent to the vortex structures found

in the diffuser flow, the lowest modes indicate structure of similar spatial scale. Furthermore, as

expected, the nontrivial aspects of each mode are found near the diffuser boundary; very little

variation is found towards the centerline of the diffuser. Note that the higher-order modes do

resemble spatially small vortex structures, which suggests that the POD formulation would be able

to model the distributed actuation of vorticity along the boundary. This may be important for flow

control applications.

In Figure 3.13 we show the projections of the DNS simulation onto the first twenty POD modes.

The flow is quasiperiodic, with greater difficulty in perceiving the periodicity of the trajectories of

the higher-order modes. The flow is roughly organized in a series of POD mode-pairs, which displays

the level of symmetry (along the diffuser centerline) of the flow. Each of the POD mode trajectories

contain temporal content of more than one frequency, indicating that each mode represents different

58

0 50 100 150
10

−5

10
0

10
5

10
10

(a)

0 5 10 15 20
10

1

10
2

10
3

10
4

10
5

(b)

Figure 3.10: POD mode energy (a) without subtracting the ensemble average and (b) for the first
twenty modes after subtracting the ensemble average. Note that the scales are different for each
figure.

59

x

y

-2 0 2 4 6 8 10

-2

0

2

Figure 3.11: Vorticity computed for the ensemble average of the diffuser flow snapshots.

Table 3.1: Energy capture with POD reconstruction.

Number of POD modes percent energy capture
2 62.8
4 82.7
10 99.0
20 99.8

levels of mode-coupling. Naturally, the higher-order POD modes contain higher-order frequency

content; for instance, the tenth mode contains a frequency component that is approximately five

times the dominant frequency in the first and second modes.

To illustrate the effectiveness of POD for scale classification, we used the POD to reconstruct the

flow using low numbers of POD modes, as shown in Figure 3.14. As shown in this figure, a low

number of POD modes are required for reconstruction of the flow at a high degree of accuracy. We

list the energy capture (measured according to the POD theory) in Table 3.1 for various numbers

of modes used in the reconstruction.

60

x

y

-2 0 2 4 6 8 10

-2

0

2

(a) Mode 1

x

y

-2 0 2 4 6 8 10

-2

0

2

(b) Mode 2

x

y

-2 0 2 4 6 8 10

-2

0

2

(c) Mode 3

x

y

-2 0 2 4 6 8 10

-2

0

2

(d) Mode 4

x

y

-2 0 2 4 6 8 10

-2

0

2

(e) Mode 5

x

y

-2 0 2 4 6 8 10

-2

0

2

(f) Mode 6

Figure 3.12: Vorticity computed for POD modes of diffuser flow.

61

1350 1400 1450 1500
−500

0

500

time

P
O

D
 m

od
e

1

(a) Mode 1

1350 1400 1450 1500
−500

0

500

time

P
O

D
 m

od
e

2
(b) Mode 2

1350 1400 1450 1500
−300

−200

−100

0

100

200

300

time

P
O

D
 m

od
e

3

(c) Mode 3

1350 1400 1450 1500
−300

−200

−100

0

100

200

300

time

P
O

D
 m

od
e

4

(d) Mode 4

1350 1400 1450 1500
−300

−200

−100

0

100

200

300

time

P
O

D
 m

od
e

5

(e) Mode 5

1350 1400 1450 1500
−300

−200

−100

0

100

200

300

time

P
O

D
 m

od
e

6
(f) Mode 6

1350 1400 1450 1500
−200

−100

0

100

200

time

P
O

D
 m

od
e

7

(g) Mode 7

1350 1400 1450 1500
−200

−100

0

100

200

time

P
O

D
 m

od
e

8

(h) Mode 8

1350 1400 1450 1500
−100

−50

0

50

100

time

P
O

D
 m

od
e

9

(i) Mode 9

1350 1400 1450 1500
−100

−50

0

50

100

time

P
O

D
 m

od
e

10

(j) Mode 10

Figure 3.13: Trajectories of the DNS simulation projected onto POD modes.

62

1350 1400 1450 1500
−100

−50

0

50

100

time

P
O

D
 m

od
e

11

(k) Mode 11

1350 1400 1450 1500
−100

−50

0

50

100

time

P
O

D
 m

od
e

12
(l) Mode 12

1350 1400 1450 1500
−50

0

50

time

P
O

D
 m

od
e

13

(m) Mode 13

1350 1400 1450 1500
−50

0

50

time

P
O

D
 m

od
e

14

(n) Mode 14

1350 1400 1450 1500
−30

−20

−10

0

10

20

30

time

P
O

D
 m

od
e

15

(o) Mode 15

1350 1400 1450 1500
−30

−20

−10

0

10

20

30

time

P
O

D
 m

od
e

16
(p) Mode 16

1350 1400 1450 1500
−30

−20

−10

0

10

20

30

time

P
O

D
 m

od
e

17

(q) Mode 17

1350 1400 1450 1500
−30

−20

−10

0

10

20

30

time

P
O

D
 m

od
e

18

(r) Mode 18

1350 1400 1450 1500
−30

−20

−10

0

10

20

30

time

P
O

D
 m

od
e

19

(s) Mode 19

1350 1400 1450 1500
−30

−20

−10

0

10

20

30

time

P
O

D
 m

od
e

20

(t) Mode 20

Figure 3.13: Trajectories of the DNS simulation projected onto POD modes.

63

x

y

-2 0 2 4 6 8 10

-2

0

2

(a) Two modes.

x

y

-2 0 2 4 6 8 10

-2

0

2

(b) Four modes.

x

y

-2 0 2 4 6 8 10

-2

0

2

(c) Ten modes.

x

y

-2 0 2 4 6 8 10

-2

0

2

(d) Twenty modes.

Figure 3.14: POD reconstruction using (a) two modes; (b) four modes; (c) ten modes; (d) twenty
modes.

64

Behavior in phase space Here we examine a DNS simulation for a candidate limit cycle. Is

there a coarse limit cycle? To this end, a DNS simulation was projected onto the first POD mode

and shown in Figure 3.15. In this figure, a time history of the first POD mode amplitude a1 is

shown, as well as a phase portrait6 of the time derivative of this mode amplitude, ȧ1, versus the

mode amplitude a1. Indicated in red on this phase portrait is a location where a Poincaré section

is taken: this section is shown in the right portion of Figure 3.15.

As shown in Figure 3.15, the projected DNS data occupies a broad region in phase space. The

trajectory of this POD mode amplitude appears to be at least quasiperiodic, and perhaps chaotic.

According to the Poincaré section, the trajectory does not appear to return to the same phase

space position over a long simulation time.

3.9.1 Coarse time integration with the projective (standard) third-order Adams-

Bashforth scheme

We compute a time integration of the compressible flow in a planar diffuser using coarse numerical

analysis whose framework was described in 2 with POD as the scale classification as described in

3.6. A coarse third-order Adams-Bashforth time integrator is constructed using DNS bursts to

compute the vector field as required, and a coarse third-order Runge-Kutta time integrator is used

to initialize the coarse Adams-Bashforth routine. This projective Adams-Bashforth integrator is

listed in Eq. (3.42). We chose this particular time integration scheme for its computational efficiency

and accuracy. Simple forward Euler or Crank-Nicolson schemes were attempted with varying levels

6A phase portrait is usually a plot of the time derivative of the amplitude versus the amplitude for a given signal
or variable. Periodic or quasi-periodic trajectories (orbits) are thus plotted as closed curves.

65

1300 1400 1500 1600 1700 1800
−400

−200

0

200

400

600

time

P
O

D
 m

od
e

1

−400 −200 0 200 400 600
−200

−100

0

100

200

300

POD mode 1

d(
P

O
D

 1
)/

dt

−1 −0.5 0 0.5 1

x 10
−6

−360

−355

−350

−345

−340

−335

−330

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

d(POD 1)/dt

P
O

D
 m

od
e

1

Figure 3.15: DNS data projected onto the first POD mode. A time history of the POD mode
amplitude is given, as well as a phase portrait of the first POD mode (time derivative versus
amplitude). Also shown is a Poincaré section near (a1, ȧ1) = (−325, 0), where intersections are
shown in red.

66

of performance and accuracy. For further details on the coarse Adams-Bashforth scheme, we refer

to the numerical analysis provided in Gear and Kevrekidis (2003a) and Rico-Martinez et al. (2004).

As mentioned in Section 3.6, the projection operator is taken from the standard POD projection.

The lifting operator is taken to be POD mode reconstruction with the higher-order modes initialized

to their mean values. This is appropriate, as the higher-order modes have statistics centered about

their mean value.

For many limit cycles, our coarse time integrator computes trajectories similar to those computed

by DNS. The coarse time integration was carried out at a computational cost that was ten times

smaller than that required by DNS. However, the current version of the coarse simulation code

made frequent I/O calls, which reduced the overall efficiency. We note that the I/O requirements

are dependent only on the code implementation, and not on the coarse analysis algorithm. A

comparison of vorticity snapshots is shown in Figure 3.16. Unless otherwise stated, the coarse

representation is taken to be the first twenty POD modes. As shown in this figure, the profile

of the dominant vortex structures is captured successfully by the coarse integrator. However, the

positions of the vortex structures are displaced slightly compared to the DNS simulation results.

As is shown below, errors arise in the coarse integration that lead to a phase-shift in the coarse

integration.

We give a comparison of the original diffuser flow (computed using DNS), projected onto the first

twenty POD modes, and the coarse numerical simulation in Figure 3.17. A comparison of the

original diffuser flow stagnation pressure ratio and the coarse numerically computed diffuser flow

stagnation pressure ratio is given in Figure 3.18. As shown in these figures, the coarse numerical

67

x

y

-2 0 2 4 6 8 10

-2

0

2

(a) Two modes.

x

y

-2 0 2 4 6 8 10

-2

0

2

(b) Four modes.

Figure 3.16: Comparison of fluid flow snapshots computed (a) from DNS and (b) from the coarse
timestepper after four limit cycles.

68

trajectories compare well with those of the DNS projected onto the POD modes.

Errors begin to arise in the higher-order modes in the coarse representation (observe the time his-

tory comparisons for the nineteenth and twentieth modes). After several periods corresponding

with the trajectory of these POD modes, errors begin to grow and dominate the coarse numerical

computation. The error propagation can be observed as other higher-order modes begin to deviate

away from the corresponding DNS trajectories. After several periods corresponding to the trajec-

tory of the lowest modes, the errors grow large enough to be perceived visually as in Figure 3.16.

However, the phase errors observed in that figure are not apparent in the trajectories of the low

order modes or in the stagnation pressure ratio time histories. This suggests that the dominant

dynamics (including frequency content) are somewhat invariant to small spatial changes in the dom-

inant scales. We are currently exploring the relationship between the diffuser flow performance,

as measured by the stagnation pressure ratio, and the diffuser flow dynamics, as measured by the

POD mode time histories.

3.9.2 Coarse time integration with the projective (modified) third-order Adams-

Bashforth scheme

In some applications, stable, accurate, long-time coarse integration may be desired. For instance,

extracting the coarse nature of the flow, such as limit cycling behavior, is done through observations

of the long-time dynamics. In this case, using a projective integration scheme modeled after the

standard Adams-Bashforth schemes is not appropriate.

To elucidate the coarse nature of the diffuser flow, a new coarse time integration is performed using

69

1350 1400 1450 1500
−500

0

500

time

P
O

D
 m

od
e

1

(a) Mode 1

1350 1400 1450 1500
−500

0

500

time

P
O

D
 m

od
e

2
(b) Mode 2

1350 1400 1450 1500
−300

−200

−100

0

100

200

300

time

P
O

D
 m

od
e

3

(c) Mode 3

1350 1400 1450 1500
−300

−200

−100

0

100

200

300

time

P
O

D
 m

od
e

4

(d) Mode 4

1350 1400 1450 1500
−300

−200

−100

0

100

200

300

time

P
O

D
 m

od
e

5

(e) Mode 5

1350 1400 1450 1500
−300

−200

−100

0

100

200

300

time

P
O

D
 m

od
e

6

(f) Mode 6

1350 1400 1450 1500
−200

−100

0

100

200

time

P
O

D
 m

od
e

7

(g) Mode 7

1350 1400 1450 1500
−200

−100

0

100

200

time

P
O

D
 m

od
e

8

(h) Mode 8

1350 1400 1450 1500
−100

−50

0

50

100

time

P
O

D
 m

od
e

9

(i) Mode 9

1350 1400 1450 1500
−100

−50

0

50

100

time

P
O

D
 m

od
e

10

(j) Mode 10

Figure 3.17: Trajectories of the coarse representation (dashed lines) compared with the DNS sim-
ulation projected onto the POD modes (solid).

70

1350 1400 1450 1500
−100

−50

0

50

100

time

P
O

D
 m

od
e

11

(k) Mode 11

1350 1400 1450 1500
−100

−50

0

50

100

time

P
O

D
 m

od
e

12
(l) Mode 12

1350 1400 1450 1500
−50

0

50

time

P
O

D
 m

od
e

13

(m) Mode 13

1350 1400 1450 1500
−50

0

50

time

P
O

D
 m

od
e

14

(n) Mode 14

1350 1400 1450 1500
−30

−20

−10

0

10

20

30

time

P
O

D
 m

od
e

15

(o) Mode 15

1350 1400 1450 1500
−30

−20

−10

0

10

20

30

time

P
O

D
 m

od
e

16

(p) Mode 16

1350 1400 1450 1500
−30

−20

−10

0

10

20

30

time

P
O

D
 m

od
e

17

(q) Mode 17

1350 1400 1450 1500
−30

−20

−10

0

10

20

30

time

P
O

D
 m

od
e

18

(r) Mode 18

1350 1400 1450 1500
−30

−20

−10

0

10

20

30

time

P
O

D
 m

od
e

19

(s) Mode 19

1350 1400 1450 1500
−30

−20

−10

0

10

20

30

time

P
O

D
 m

od
e

20

(t) Mode 20

Figure 3.17: Trajectories of the coarse representation (dashed lines) compared with the DNS sim-
ulation projected onto the POD modes (solid).

71

1350 1400 1450 1500
0.95

0.96

0.97

0.98

0.99

1

P
re

ss
ur

e
R

ec
ov

er
y

time

Figure 3.18: Stagnation pressure ratio.

a coarse representation consisting of twenty POD modes. The coarse integrator chosen in this case

is the modified Adams-Bashforth third-order integrator listed in Eq. (3.48). For a certain DNS

time step ∆t, the DNS bursts used by the coarse integrator are computed over a time interval

Tburst = 10∆t and the coarse (Adams-Bashforth) time steps are Tcoarse = 50∆t.

As an additional note, the coarse computations seem relatively insensitive to decreasing the effi-

ciency ratio. In other words, we may decrease the Tcoarse values to values comparable with DNS,

without affecting the resulting coarse flow. The coarse integrator goes unstable, however, with

increasing this ratio beyond 50/10, changing the number of coarse POD modes (the orbits are

still stable for coarse representations of nineteen and twenty-one modes, but the amplitudes are

larger), or changing the length of the DNS burst. In this work, stable orbits were achieved up to

Tburst = 15∆t).

72

1400 1500 1600 1700 1800
0.95

0.96

0.97

0.98

0.99

1

St
ag

na
ti

on
 P

re
ss

ur
e

R
at

io

time

Figure 3.19: Stagnation pressure ratio for DNS (black) and coarse (blue) computations.

time histories of the stagnation pressure ratio for both the original DNS simulation and the coarse

simulation are shown in Figure 3.19. Note that the coarse simulation takes several stagnation

pressure ratio cycles before convergence. The coarse stagnation pressure ratio amplitude converges

to a higher value than that of the DNS flow; however, the dominant frequency of the coarse

trajectory remains near that of the DNS flow.

Phase portraits of the POD mode amplitude time derivatives ȧi versus the POD mode amplitudes

ai would make a more clear comparison between the DNS and coarse diffuser flows. These were

computed and are shown in Figure 3.20. The phase portraits of the projected DNS flow show a high

quasiperiodicity that increases in complexity with increasing POD mode number. The trajectories

can be organized into pairs, both by their respective POD mode energy and their phase portraits.

The phase portraits of the coarse flow show a orbit defined over a very compact support-there

is no apparent broad occupation of phase space. For the higher-order POD modes in the coarse

representation, the trajectory was recorded at a low enough resolution that plotting may alter this

73

perception.

time histories of the POD mode amplitudes are shown in Figures 3.21-3.22. Although the ampli-

tudes and frequency content differ somewhat, the main structure of the time histories compare well.

In fact, the phase portraits shown in Figure 3.20 indicate that the essential character of the (coarse)

limit cycles are very similar between the projection of the DNS trajectories and the trajectories

computed using the coarse integrator.

3.10 Conclusions

We have applied coarse analysis tools to extract the dominant-scale dynamics of the compressible

flow in a planar diffuser when only a high-fidelity simulation is available. To this end, we used the

proper orthogonal decomposition as our scale classification for the coarse analysis of fluid systems.

This scale classification represents a reduction in the number of states by four orders of magnitude.

For coarse time integration, the computational cost was observed to be ten times smaller than

that for a comparable DNS simulation in some cases. This was achieved while computing flows

whose coarse quantities compared well with DNS for short and medium flow times. It is remarkable

that coarse analysis can provide efficient, accurate results without making modeling assumptions.

While the coarse time integration results compare well for short and medium times, errors grow to

dominate the coarse analysis. These errors arise from the POD truncation error and from numerical

errors in the coarse time integration algorithm.

To address this issue, the coarse time integration routine was rewritten to more accurately portray

74

−500 0 500
−1.5

−1

−0.5

0

0.5

1

1.5

POD 1

d/
dt

 P
O

D
 1

(a) Mode 1

−500 0 500
−1.5

−1

−0.5

0

0.5

1

1.5

POD 2

d/
dt

 P
O

D
 2

(b) Mode 2

−500 0 500
−1.5

−1

−0.5

0

0.5

1

1.5

POD 3

d/
dt

 P
O

D
 3

(c) Mode 3

−500 0 500
−1.5

−1

−0.5

0

0.5

1

1.5

POD 4

d/
dt

 P
O

D
 4

(d) Mode 4

−300 −200 −100 0 100 200 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

POD 5

d/
dt

 P
O

D
 5

(e) Mode 5

Figure 3.20: Phase portraits of the time derivative of POD mode amplitude, ȧi, versus POD mode
amplitude ai. Black = results from projected DNS computation, blue = coarse computation.

75

−300 −200 −100 0 100 200 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

POD 6

d/
dt

 P
O

D
 6

(f) Mode 6

−200 −150 −100 −50 0 50 100 150 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

POD 7

d/
dt

 P
O

D
 7

(g) Mode 7

−200 −150 −100 −50 0 50 100 150 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

POD 8

d/
dt

 P
O

D
 8

(h) Mode 8

−100 −50 0 50 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

POD 9

d/
dt

 P
O

D
 9

(i) Mode 9

−100 −50 0 50 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

POD 10

d/
dt

 P
O

D
 1

0

(j) Mode 10

Figure 3.20: Phase portraits of the time derivative of POD mode amplitude, ȧi, versus POD mode
amplitude ai. Black = results from projected DNS computation, blue = coarse computation.

76

−100 −50 0 50 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

POD 11

d/
dt

 P
O

D
 1

1

(k) Mode 11

−100 −50 0 50 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

POD 12

d/
dt

 P
O

D
 1

2

(l) Mode 12

−50 0 50
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

POD 13

d/
dt

 P
O

D
 1

3

(m) Mode 13

−50 0 50
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

POD 14

d/
dt

 P
O

D
 1

4

(n) Mode 14

−50 0 50
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

POD 15

d/
dt

 P
O

D
 1

5

(o) Mode 15

Figure 3.20: Phase portraits of the time derivative of POD mode amplitude, ȧi, versus POD mode
amplitude ai. Black = results from projected DNS computation, blue = coarse computation.

77

−50 0 50
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

POD 16

d/
dt

 P
O

D
 1

6

(p) Mode 16

−50 0 50
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

POD 17

d/
dt

 P
O

D
 1

7

(q) Mode 17

−50 0 50
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

POD 18

d/
dt

 P
O

D
 1

8

(r) Mode 18

−30 −20 −10 0 10 20 30
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

POD 19

d/
dt

 P
O

D
 1

9

(s) Mode 19

−30 −20 −10 0 10 20 30
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

POD 20

d/
dt

 P
O

D
 2

0

(t) Mode 20

Figure 3.20: Phase portraits of the time derivative of POD mode amplitude, ȧi, versus POD mode
amplitude ai. Black = results from projected DNS computation, blue = coarse computation.

78

1350 1400 1450 1500
−500

−400

−300

−200

−100

0

100

200

300

400

500

time

P
O

D
 m

od
e

1

(a) Mode 1

1350 1400 1450 1500
−500

−400

−300

−200

−100

0

100

200

300

400

500

time

P
O

D
 m

od
e

2

(b) Mode 2

1350 1400 1450 1500
−500

−400

−300

−200

−100

0

100

200

300

400

500

time

P
O

D
 m

od
e

3

(c) Mode 3

1350 1400 1450 1500
−500

−400

−300

−200

−100

0

100

200

300

400

500

time

P
O

D
 m

od
e

4

(d) Mode 4

1350 1400 1450 1500
−300

−200

−100

0

100

200

300

time

P
O

D
 m

od
e

5

(e) Mode 5

Figure 3.21: time histories of the POD mode amplitude ai towards the beginning of coarse compu-
tation. Black = results from projected DNS computation, blue = coarse computation.

79

1350 1400 1450 1500
−300

−200

−100

0

100

200

300

time

P
O

D
 m

od
e

6

(f) Mode 6

1350 1400 1450 1500
−200

−150

−100

−50

0

50

100

150

200

time

P
O

D
 m

od
e

7

(g) Mode 7

1350 1400 1450 1500
−200

−150

−100

−50

0

50

100

150

200

time

P
O

D
 m

od
e

8

(h) Mode 8

1350 1400 1450 1500
−100

−80

−60

−40

−20

0

20

40

60

80

100

time

P
O

D
 m

od
e

9

(i) Mode 9

1350 1400 1450 1500
−100

−80

−60

−40

−20

0

20

40

60

80

100

time

P
O

D
 m

od
e

10

(j) Mode 10

Figure 3.21: time histories of the POD mode amplitude ai towards the beginning of coarse compu-
tation. Black = results from projected DNS computation, blue = coarse computation.

80

1350 1400 1450 1500
−100

−80

−60

−40

−20

0

20

40

60

80

100

time

P
O

D
 m

od
e

11

(k) Mode 11

1350 1400 1450 1500
−100

−80

−60

−40

−20

0

20

40

60

80

100

time

P
O

D
 m

od
e

12

(l) Mode 12

1350 1400 1450 1500
−50

−40

−30

−20

−10

0

10

20

30

40

50

time

P
O

D
 m

od
e

13

(m) Mode 13

1350 1400 1450 1500
−50

−40

−30

−20

−10

0

10

20

30

40

50

time

P
O

D
 m

od
e

14

(n) Mode 14

1350 1400 1450 1500
−50

−40

−30

−20

−10

0

10

20

30

40

50

time

P
O

D
 m

od
e

15

(o) Mode 15

Figure 3.21: time histories of the POD mode amplitude ai towards the beginning of coarse compu-
tation. Black = results from projected DNS computation, blue = coarse computation.

81

1350 1400 1450 1500
−50

−40

−30

−20

−10

0

10

20

30

40

50

time

P
O

D
 m

od
e

16

(p) Mode 16

1350 1400 1450 1500
−50

−40

−30

−20

−10

0

10

20

30

40

50

time

P
O

D
 m

od
e

17

(q) Mode 17

1350 1400 1450 1500
−50

−40

−30

−20

−10

0

10

20

30

40

50

time

P
O

D
 m

od
e

18

(r) Mode 18

1350 1400 1450 1500
−30

−20

−10

0

10

20

30

time

P
O

D
 m

od
e

19

(s) Mode 19

1350 1400 1450 1500
−30

−20

−10

0

10

20

30

time

P
O

D
 m

od
e

20

(t) Mode 20

Figure 3.21: time histories of the POD mode amplitude ai towards the beginning of coarse compu-
tation. Black = results from projected DNS computation, blue = coarse computation.

82

1600 1650 1700 1750 1800
−500

−400

−300

−200

−100

0

100

200

300

400

500

time

P
O

D
 m

od
e

1

(a) Mode 1

1600 1650 1700 1750 1800
−500

−400

−300

−200

−100

0

100

200

300

400

500

time

P
O

D
 m

od
e

2

(b) Mode 2

1600 1650 1700 1750 1800
−500

−400

−300

−200

−100

0

100

200

300

400

500

time

P
O

D
 m

od
e

3

(c) Mode 3

1600 1650 1700 1750 1800
−500

−400

−300

−200

−100

0

100

200

300

400

500

time

P
O

D
 m

od
e

4

(d) Mode 4

1600 1650 1700 1750 1800
−300

−200

−100

0

100

200

300

time

P
O

D
 m

od
e

5

(e) Mode 5

Figure 3.22: time histories of the POD mode amplitude ai at the end of coarse computation. Black
= results from projected DNS computation, blue = coarse computation.

83

1600 1650 1700 1750 1800
−300

−200

−100

0

100

200

300

time

P
O

D
 m

od
e

6

(f) Mode 6

1600 1650 1700 1750 1800
−200

−150

−100

−50

0

50

100

150

200

time

P
O

D
 m

od
e

7

(g) Mode 7

1600 1650 1700 1750 1800
−200

−150

−100

−50

0

50

100

150

200

time

P
O

D
 m

od
e

8

(h) Mode 8

1600 1650 1700 1750 1800
−100

−80

−60

−40

−20

0

20

40

60

80

100

time

P
O

D
 m

od
e

9

(i) Mode 9

1600 1650 1700 1750 1800
−100

−80

−60

−40

−20

0

20

40

60

80

100

time

P
O

D
 m

od
e

10

(j) Mode 10

Figure 3.22: time histories of the POD mode amplitude ai at the end of coarse computation. Black
= results from projected DNS computation, blue = coarse computation.

84

1600 1650 1700 1750 1800
−100

−80

−60

−40

−20

0

20

40

60

80

100

time

P
O

D
 m

od
e

11

(k) Mode 11

1600 1650 1700 1750 1800
−100

−80

−60

−40

−20

0

20

40

60

80

100

time

P
O

D
 m

od
e

12

(l) Mode 12

1600 1650 1700 1750 1800
−50

−40

−30

−20

−10

0

10

20

30

40

50

time

P
O

D
 m

od
e

13

(m) Mode 13

1600 1650 1700 1750 1800
−50

−40

−30

−20

−10

0

10

20

30

40

50

time

P
O

D
 m

od
e

14

(n) Mode 14

1600 1650 1700 1750 1800
−50

−40

−30

−20

−10

0

10

20

30

40

50

time

P
O

D
 m

od
e

15

(o) Mode 15

Figure 3.22: time histories of the POD mode amplitude ai at the end of coarse computation. Black
= results from projected DNS computation, blue = coarse computation.

85

1600 1650 1700 1750 1800
−50

−40

−30

−20

−10

0

10

20

30

40

50

time

P
O

D
 m

od
e

16

(p) Mode 16

1600 1650 1700 1750 1800
−50

−40

−30

−20

−10

0

10

20

30

40

50

time

P
O

D
 m

od
e

17

(q) Mode 17

1600 1650 1700 1750 1800
−50

−40

−30

−20

−10

0

10

20

30

40

50

time

P
O

D
 m

od
e

18

(r) Mode 18

1600 1650 1700 1750 1800
−30

−20

−10

0

10

20

30

time

P
O

D
 m

od
e

19

(s) Mode 19

1600 1650 1700 1750 1800
−30

−20

−10

0

10

20

30

time

P
O

D
 m

od
e

20

(t) Mode 20

Figure 3.22: time histories of the POD mode amplitude ai at the end of coarse computation. Black
= results from projected DNS computation, blue = coarse computation.

86

a coarse third-order Adams-bashforth integrator. This led to accurate computation of the long-

time system dynamics. The coarse dynamics were computed to be a compact limit cycle in phase

space, which suggests that the underlying coarse dynamics are not chaotic. While the coarse

computation leads to a phase shift in the temporal dynamics away from the projection of the DNS

simulation, the essential features of the limit cycle are preserved. In summary, we have shown that

coarse analysis represents a promising alternative for the efficient, quantitative computation of the

dominant features of complex fluid flows.

It is important to note that the lifting procedure throughout the numerical simulations were used

to generate only a single initial DNS initial condition at each stage in the coarse analysis. Although

the lifting procedure makes an appropriate initialization of the small scales (using the mean value

computed from archived simulation data), the lifting may not fully represent the statistics of the

higher-order modes. In this case, lifting to several DNS initializations (and subsequent use of

multiple DNS bursts) may provide a more accurate representation of the higher-order statistics

and thus a more accurate coarsening.

It is also important to note that the coarse numerical analysis outlined here for fluids involves the

use of the proper orthogonal decomposition for scale classification. An important comparison to

make would be between coarse time integration, using POD for scale analysis, and a simulation

of the Navier-Stokes equations projected onto POD modes. While the POD/Galerkin simulation

represents reductions of much higher order than those offered by the coarse analysis documented

here, the truncations made in the POD/Galerkin framework may yield different results than ei-

ther DNS or coarse time integration. A comparison between coarse analysis and POD/Galerkin

truncation might shed light on the shortcomings of the POD for scale classification and advan-

87

tages/disadvantages of the two techniques. This comparison is proposed for future work, and a

similar comparison is being made for the simulation of turbulence (Smith, 2005).

While this POD-based scale classification is well suited for the coarse analysis of fluids, the depen-

dence of the POD computation on archival data raises questions on the applicability on POD–based

coarse analysis to fluid flows out of the range of representation by the archival data. While this

shortcoming does not affect the utility of the coarse analysis for real-time estimation and predic-

tion of flows represented well by the archival data, improvements to the POD methodology or

alternatives to the POD for scale classification would have to be made for other types of analyses.

88

Chapter 4

Charged Particle Motion in a
Magnetic Field: Connections Among
Coarse Analysis and Averaging
Theories

4.1 Introduction

As we have shown in Chapter 3, coarse analysis represents a promising means of model reduc-

tion towards the extraction of system-level quantities for diffuser flows and other incompressible

or compressible fluid systems. We have also shown in Chapters 2–3 that standard numerical anal-

ysis techniques may be employed to evaluate the numerical stability of coarse algorithms and to

facilitate the design of coarse algorithms. However, standard numerical analysis addresses only the

stability properties of coarse numerical methods. While coarse analysis techniques affect a type of

averaging onto a multiscale system, it is unknown precisely how the averaging or homogenization

occurs. In other words, coarse analysis tools are multiscale systems in their own right, and standard

89

numerical analysis does not take this point of view. Therefore, new tools are required to determine

the interaction between the coarse computational superstructure and the detailed simulation. Av-

eraging techniques traditionally applied to physical and mechanical systems may serve to address

these needs. To this end, a simpler system will be studied both from analytical and numerical

points of view. The system chosen is the system of charged particles in a magnetic field. For this

particular system, averaging techniques will be applied and compared with comparable techniques

from coarse analysis.

This work represents a collaboration with Harish Bhat at Caltech. The numerical results presented

in this thesis were performed by the author. The theoretical results presented in this thesis were

derived jointly with H. Bhat, currently at Caltech. Although these results are being prepared for

journal publication, their summary given in this thesis represents a revision of a preliminary draft

written by the author. The original draft has subsequently undergone heavy revision by H. Bhat

and the author and will be submitted soon with J. Marsden. Some of the revisions and results

made after the first draft have also been incorporated here.

The organization of this chapter goes as follows. First, the detailed system, described by the Lorentz

force law equations, is given in Section 4.2. Then the system is described in terms of geometric

mechanics in Section 4.3. Existing averaging techniques, representing perturbation techniques

applied to both the equations of motion or the underlying variational principle, are given in Section

4.4. The averaged equations are then rederived in two variational settings: one according to

a WKB-style averaging procedure described in Section 4.5 and one according to a LANS-style

averaging procedure described in Section 4.6. Numerical coarse integration is applied to the system

and described in Section 4.7, and connections are made to perturbation theory in Section 4.8.

90

A connection is made to coarse analysis from a Hamiltonian setting, described in Section 4.9.

Conclusions are made in Section 4.10.

4.2 Lorentz Equations

Charged particles experience forces while moving through electric and magnetic fields. In particular,

for particles with charge e moving in the presence of an electric field E and a magnetic field B, the

particles experience a force F (here in MKS):

F = e(E + v ×B) (4.1)

= e

(
∇φ− dA

dt
+∇(A · v)

)
, (4.2)

where φ is the electric potential, A the magnetic vector potential, and v the particle velocity. In

the CGS system,

F = e(E +
v
c
×B). (4.3)

Supposing that the magnetic field is constant in time and considering a system without an electric

field, the equation of motion for the particle is (in CGS),

q̈ =
e

c
v ×B, (4.4)

with q the particle position, and q̇ = v. Here, (q,v) exist in R3 × R3.

The action of the Lorentz force on a particle may be described as helical particle motion about the

91

magnetic field lines. As such, the system is naturally described using two spatio-temporal scales.

The small (fine) scale is represented by the local motion of the particle about a magnetic field line

(e.g., the Larmor radius), and the large (coarse) scale is represented by the general magnetic field

topology.

Toroidal magnetic field As an example, consider the motion of charged particles about a

circular (toroidal) magnetic field. The magnetic field may be described in Cartesian coordinates

with vector potential A and current I by

A = −ẑ I
c

ln(x2 + y2) (4.5)

B = ∇×A =
2I

c(x2 + y2)
(−yx̂+ xŷ) . (4.6)

Because the magnetic force on a particle is a nonlinear function of particle location, the particle

motion is nonlinear. In other words, the Euler-Lagrange equations for this particular magnetic field

contain v ×B terms that are nonlinear in phase space (q, q̇).

Particle trajectories are wrapped around the magnetic field lines, and a typical trajectory is shown

in Figure 4.1. In this figure, the particle is traveling around the magnetic field line with a drift in

the −ẑ direction.

92

Figure 4.1: Trajectory of a single particle in a toroidal magnetic field.

Particles in constant magnetic fields move in helices Consider a system of charged particles

moving under a constant magnetic field along the x-axis,

B =


Bx

0

0

 .

The Lorentz force law equations are then written as

mẍ = 0 (4.7)

mÿ =
e

c
Bxż (4.8)

mz̈ = −e
c
Bxẏ. (4.9)

93

Solving for y(t) and z(t),

y(t) = c1 cos
e

cm
Bxt+ c2 sin

e

cm
Bxt+ c3 (4.10)

y(t) = −c1 sin
e

cm
Bxt+ c2 cos

e

cm
Bxt+ c4. (4.11)

Trajectories are circles in the y − z plane of radius
√
c21 + c22 with center at (x, c3, c4). The motion

is unconstrained in the x-direction, meaning that trajectories are free to move in the x-direction.

So trajectories wind around the x-axis, i.e., the motion is helical about the magnetic field lines.

Thus, locally the charged particle motion is helical about the field lines.

This simple system admits to a separation of scales; upon observation of the particle trajectory in

Figure 4.1, two spatial scales are apparent. As mentioned in the previous subsection, the encir-

clement of the particle trajectory around the magnetic field line represents the small scale particle

motion. The general outline of the magnetic field line (with the drift) represents the coarse scale

motion of the particle.

An objective of this research is to describe the coarse (average) particle motion without resorting

to an exact computation of the full system or derivation of individual particle trajectories. In the

following sections, coarse descriptions of the dynamics will be given in both computational and

theoretical settings.

94

4.3 Geometric Mechanics

The geometric structure of the system of charged particles is well-known in the literature. We

list many of the central results here for completion. For further insight into this system and into

geometric mechanics, the reader is referred to Marsden and Ratiu (1994).

Hamiltonian setting Consider q = (x, y, z) and the magnetic field B as a closed two-form,

consider canonical variables (q,p), with the momentum p defined as

p = mq̇ +
e

c
A,

and consider the positions q and momenta p defined as q = (x, y, z) and p = (p, q, r). Now,

consider the Hamiltonian

H =
1

2m

∥∥∥p− e

c
A
∥∥∥2

with the canonical bracket. The canonical bracket is associated with the canonical symplectic form

Ω = (dx ∧ dp+ dy ∧ dq + dz ∧ dr).

Taking the relation

dH = iXH
Ω,

95

where XH(p, q, r) = (ẋ, ẏ, ż, ṗ, q̇, ṙ), we naturally arrive at the Lorentz force law equations.1

Lagrangian Mechanics: The Variational Principle For the Hamiltonian with canonical

variables, the Legendre transform may be applied to construct the Lagrangian for the system of

charged particles. The relationship between the system Hamiltonian and Lagrangian is

L(q, q̇) = p · q̇−H(q,p).

Recalling the relationship between the particle velocity and moments,

p = mq̇ +
e

c
A,

we have

L(q, q̇) = (mq̇ +
e

c
A) · q̇− 1

2m
(mq̇)2,

1In carrying out this derivation, it is important to remember that

ṗ = mv̇ +
e

c
Ȧ

= mv̇ +
e

c

dA

dt
+ (V · ∇)A).

Using this, assuming that ∂A/∂t = 0, and applying vector identities will lead to the Lorentz force law equation.
Alternatively, consider noncanonical variables (q, q̇), with q̇ = (u, v, w). Considering the Hamiltonian as the kinetic
energy,

H =
m

2
(ẋ + ẏ + ż) ,

with the alternative bracket
ΩB = m (dx ∧ dẋ + dy ∧ dẏ + dz ∧ dż)− e

c
B,

applying the condition
dH = iXHΩB,

where XH(u, v, w) = (u, v, w, u̇, v̇, ẇ), also leads to the Lorentz force law equations. Note that this alternate derivation
avoids the notekeeping associated with the time derivative of the magnetic vector potential.

96

and finally,

L(q, q̇) =
1
2
mq̇ · q̇ +

e

c
A · q̇.

With this Lagrangian and the action defined as

S =
∫ t2

t1

L(q, q̇, t)dt, (4.12)

Hamilton’s principle of least action is described by

δS = δ

∫ t2

t1

L(q, q̇, t)dt = 0. (4.13)

In other words, this principle states that particle trajectories should be minimizers of this ac-

tion. Equivalently, these trajectories satisfy the Euler-Lagrange equations (here written in indicial

notation),

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0. (4.14)

With this action principle in mind, the equations of motion for a charged particle in a magnetic

field may be derived using an appropriate action. The Lagrangian for this system of particles, in

indicial notation, is

L(q, q̇) =
1
2
mq̇iq̇i + eAi(q)q̇i (4.15)

with the particle mass m, charge e, and magnetic vector potential A(q, t). Applying the action

principle to our system Lagrangian yields

∂

∂t

(
mq̇i +

e

c
Ai
)
− e∂A

j

∂qi
q̇j = 0 (4.16)

97

so that the resulting Euler-Lagrange equations are

mq̈i +
e

c

∂Ai

∂qj
q̇j − e

∂Aj

∂qi
q̇j = 0. (4.17)

These equations are equivalent to the Lorentz equations for a charged particle in a magnetic field

B = ∇×A,

mq̈ = eq̇×B (4.18)

after the application of the appropriate vector identities.2

4.4 Guiding Center Equations

Recall that particles in constant magnetic fields move in helices. It is appropriate to describe the

charged particle motion as a multiscale system; in particular, with two distinct spatial or temporal

scales. The dominant scales represent the motion along the magnetic field lines; the subdominant

motion represents the helical motion about the dominant motion. It is also reasonable to seek an

average or dominant-scale representation of the system itself; in fact, these representations have

been developed as guiding center theories in plasma physics. Guiding center theory has been derived

2Derivation of the Lorentz force term in indicial notation:

∂Ai

∂ql
q̇l −

∂Am

∂qi
q̇m =

“
δi

mδj
l − δi

lδ
j
m

” ∂Am

∂ql
q̇j

= −εij
k εk

lm
∂Am

∂ql
q̇j

= −εij
k q̇j

„
εk
lm

∂Am

∂ql

«
= −εij

k q̇jB
k

= −(q̇×B)i.

98

through the Lorentz force equations and through the variational principle.

Traditional setting Guiding center theory was primarily derived through perturbation theory;

areview of traditional guiding center theory may be found in Northrop (1963). In the traditional

theory, Taylor expansions of the Lorentz force equations and their subsequent averaging and trun-

cation yield a set of equations that governs the average motion of the system. These equations,

known as the guiding center equations, describe the motion of the guiding center, or the average

particle position. In this theory, the particle position r is decomposed into the guiding center

position R and fluctuation ρ:

r = R + ρ (4.19)

The fluctuation ρ represents circular motion on the plane orthogonal to the local direction of the

magnetic field; this circular motion is parameterized by a fluctuation radius ρ and phase angle θ

corresponding to a phase velocity θ =
∫
ωdt. To first order in the mass-charge ratio m/e, the

guiding center equation is

mR̈ =
e

c
Ṙ×B(R)− µ∇B(R) (4.20)

in the absence of gravitational and electric fields. In this equation, µ is defined as the magnetic

moment, with

µ =
ρ

2B
, (4.21)

with v⊥ as the velocity perpendicular to the guiding center motion.

99

Variational setting Employing a form of Lagrangian averaging theory, Littlejohn (1983, 1984)

derived such a set of coarse evolution equations for charged particle motion in magnetic fields. The

small scales of the motion represent the fluctuations of the particle motion about a magnetic field

line; averaging over these fluctuations isolates the guiding center motion. With a perturbation

scale ε representing the separation of scales in the motion, the particle position x and velocity v

may be decomposed into guiding center position and velocity (X,U) and fluctuating (or oscillating)

position and velocity (xosc,vosc) as

x = X + εxosc (4.22)

v = U + εvosc. (4.23)

Substitution of these perturbation expansions into the system Lagrangian, applying selected gauge

transformations, and subsequent truncation to order ε terms yields the following (noncanonical)

coarse Lagrangian:

L =
1
ε
A∗ · Ẋ + εµΘ̇−H. (4.24)

The gyrophase Θ represents the fluctuating motion (phase) of the particle in a plane normal to the

magnetic field line; the magnetic moment is then εµ = ∂L/∂θ̇. The modified vector potential is

defined as A∗ = A + εUb̂, with the coarse(guiding center) velocity magnitude U and magnetic field

direction b̂. Finally, the coarse Hamiltonian H is

H = µB +
1
2
mU2 (4.25)

100

with the magnetic field strength B. These equations are noncanonical in the sense that the position

and velocity are represented in the Lagrangian in a noncanonical manner.

Deriving the coarse equations of motion now corresponds to application of Hamilton’s action prin-

ciple to the coarse Lagrangian. The resulting guiding center equations are

mẊ =
1
B∗1

(
mUB∗ + εb̂× (µ∇B)

)
(4.26)

U̇ = − 1
B∗1

B∗ · (µ∇B) (4.27)

with the modified magnetic field and strength defined as

B∗ = B + εU∇× b̂ (4.28)

B∗1 = B + εU(b̂ · ∇ × b̂). (4.29)

For parameters ε and µ, these guiding center equations govern the coarse motion for a charged

particle in a magnetic field. The variationally derived guiding center equation (4.27) is consistent

with the traditional guiding center equations (4.20) derived in Northrop (1963) by taking the

traditional equations and projecting them in the local magnetic field direction. A form of this

projected equation is listed as Eq. 1.20 in Northrop (1963).

For the same magnetic field whose individual particle trajectory is shown in Figure 4.1, a coarse

trajectory is shown in Figure 4.2.

As expected, the coarse trajectory in Figure 4.2 follows the magnetic field without the small-scale

101

Figure 4.2: Coarse trajectory in a toroidal magnetic field, computed with the guiding center ap-
proximation.

fluctuations contained in the individual particle trajectory shown in Figure 4.1.

As documented in Littlejohn (1983, 1984), the derivation is noncanonical and relies heavily on gauge

transformations. Littlejohn, in his second reference, offers a preliminary geometric interpretation of

the motion and averaging process. While this treatment and derivation leads to accurate descrip-

tions of the coarse motion, a derivation is desired that would elucidate the averaging process and

the relationships among the scales in the system. In addition, making clear connections between

averaging theory and coarse analysis might be complicated under a noncanonical setting. A more

complete geometrical and analytical description of the averaged action principle is also desired.

102

4.5 Variational Averaging Inspired by WKB and Whitham Aver-

aging

While the guiding center theory listed in the previous subsection provides an accurate representation

of the averaged dynamics, little attention is paid to the exact averaging procedure and how the

averaging leads to such an accurate model. This subsection seeks to rederive the averaged action

principle and examine these issues.

In considering the multiscale nature of the charged particle system and the nature of the small-

scale fluctuations, observe that the small-scale dynamics are essentially oscillatory motion centered

around the average trajectory. Because of this, we consider two widely used averaging techniques,

the WKB method and Whitham averaging, for deriving a model for the average dynamics.

WKB theory. WKB theory, named after Wentzel (1926), Kramers (1926), and Brillouin (1926),

is a perturbation theory that has been successfully applied to the derivation of approximate wave

solutions for differential equations such as the Schrödinger equation. In the theory, to approximate

a wave function ψ(x), a solution is assumed to be of the form ψ(x) = A(x) exp[iS(x)], where the

amplitude A(x) is slowly varying and the phase S(x) is rapidly varying. This substitution is made

into the differential equation to derive expressions for the amplitude and phase.

Whitham averaging. Whitham averaging techniques also seek to derive approximate solutions

for problems involving wave propagation by deriving modulation equations either from the original

equations of motion or from a variational principle. Whitham averaging is similar to WKB theory;

103

these connections are discussed in Whitham (1974).

As discussed by Whitham (1974), there are advantages of pursuing an averaging theory for the

variational principle. Whitham notes in his discussion that the averaging and averaged variational

principle should be unaffected in the complicating situation where the wave propagation is occurring

in nonuniform media. On the other hand, these complications would have a nontrivial effect

on the expansions required in applying perturbation techniques directly to the the equations of

motion. Other advantages of variational averaging mentioned by Whitham include a more natural

formulation of the closures required to derive averaged equations, and a natural derivation of

adiabatic invariants and other quantities arising from symmetries in the system.

These techniques, although designed for approximation of solutions for wave propagation, appeal to

perturbation theory and the variational principle in a very general manner. The system of charged

particle motion is not a system involving wave propagation, but it is a multiscale system that

appears to admit to approximation through phase averaging techniques. To this end, we generalize

the two approximation theories and apply them to this system of charged particle motion.

Derivation of the guiding center equations. Consider again the original Lagrangian

L(q, q̇) =
1
2
m‖q̇‖2 +

e

c
A(q) · q̇, (4.30)

or in indicial notation,

L(q, q̇) =
1
2
mq̇iq̇i +

e

c
Ai(q)q̇i (4.31)

104

where q is the position and q̇ is the velocity, and A is the magnetic vector potential. This potential

may be thought of as a map from the underlying space to itself:

A : R3 −→ R3.

This time, consider the position q as having a WKB-type decomposition into a local averaged

position qa(t) and a fast-varying fluctuation qf(t):

q(t) = qa(t) + Re[qf(t)e
iωt], (4.32)

where qf(t) is allowed to be complex-valued. Using this decomposition, the vector potential may

be written using a Taylor series expansion about the averaged position. In indicial notation, we

have

Ai(q) = Ai(qa) +Ai
,j(qa)Re[qj

f (t)eiωt] +
1
2
Ai

,jk(qa)Re[qj

f (t)eiωt]Re[qk
f (t)eiωt] +O(Re[qf(t)e

iωt])3.

(4.33)

The charged particle velocity, kinetic energy, and Lorentz term may also be written using the

decomposition from (4.32):

q̇ = q̇a(t) + Re[q̇f(t)e
iωt + iωqf(t)e

iωt], (4.34)

q̇ · q̇ = q̇a · q̇a +
1
2
|q̇f|

2 + ωIm[q∗f · q̇f] +
1
2
ω2qf · q

∗
f + a.z, (4.35)

A · q̇ = A · q̇a +
1
4
q̇a ·

(
∇∇A : Re

[
qf ⊗ q∗f

])
+

1
2

Re
[
(q̇f + iωqf) · ∇A(qa) · q∗f

]
+ a.z. (4.36)

105

where the term ’a.z.’ refers to terms whose average over eiωt is zero. Substituting the quantities

(4.32-4.34) into the Lagrangian in (4.30), averaging over eiωt, and simplifying, we arrive at the

expanded Lagrangian l(qa, q̇a,qf, q̇f):

l(qa, q̇a,qf, q̇f) =
e

c

{
q̇a ·A(qa) +

1
4
q̇a ·

(
∇∇A : Re

[
qf ⊗ q∗f

])
+

1
2

Re
[
(q̇f + iωqf) · ∇A(qa) · q∗f

]}
+

1
2
mq̇2

a +
1
4
mq̇f · q̇

∗
f +

1
2
mωIm[q∗f · q̇

∗
f] +

1
4
mω2qf · q

∗
f . (4.37)

We now consider two scaling assumptions:

|qf| � |qa|, and (4.38)

|q̇f| � ω|qf|, (4.39)

which indicate that the average position is spatially larger than the fluctuations, and that the time

variation of the fluctuations is represented in eiωt rather than in the fluctuation amplitude. Using

these assumptions, we simplify the expanded Lagrangian (shown here using indicial notation):

l(qa, q̇a,qf, q̇f) =
e

c
q̇a ·A(qa) +

1
2
e

c
Re
[
iωqf · ∇A(qa) · q∗f

]
+

1
2
mq̇2

a +
1
2
mωIm[q∗f · q̇

∗
f] +

1
4
mω2qf · q

∗
f . (4.40)

With this Lagrangian, we may proceed with computing the equations of motion according to the

action principle.

106

Considering variations in the average position qa, the corresponding Euler-Lagrange equation is

mq̈a =
e

c
q̇a × (∇×A) +

1
2
ω
e

c
Re[iqf · ∇∇A · q∗f].

Recognizing the magnetic field term, and applying vector algebra,3 this equation becomes

mq̈a =
e

c
q̇a ×B− 1

4
ω
e

c
∇B · Im[q∗f × qf]. (4.41)

The differential equation in (4.41) represents the equation of motion for the average particle position.

However, the equation is not closed in the sense that a dependence on the fluctuations remains.

To examine this dependence, we derive the corresponding Euler-Lagrange equations by considering

variations in the fluctuations qf:

0 =
1
2
mωqf · q

∗
f −

1
2
e

c
B · Im[q∗f × qf]. (4.42)

The magnetic moment of the charged particle may be recognized as

µ =
1
4
mω2‖B‖−1qf · q

∗
f . (4.43)

3For example, using indicial notation, and assuming that the complex-valued fluctuation has a representation
qf = xf + iyf, we may rewrite such quantities Re[iqf · ∇∇A · q∗

f] as

Re[iqf · ∇∇A · q∗
f] = −Im[qf · ∇∇A · q∗

f]

= −Im[ql

fA
l
,jkq∗k

f]

= −Al
,jk(εkjnεnrsxr

fy
s

f)

= −∇B · 1

2
Im[qf × qf + q∗

f × qf].

107

With b = B/‖B‖ the unit vector in the direction of the magnetic field, we may rewrite Eq. (4.42)

as

µ =
ωe

4c
b · Im

[
q∗f × qf

]
. (4.44)

One can show geometrically that µ is constant in time along any trajectory, and is therefore an

integral of motion. Using Eq. (4.44), Eq. (4.41) may be closed, yielding a single equation for the

average position:4

mq̈a =
e

c
q̇a ×B− µ∇‖B‖. (4.47)

This is equivalent to the traditional guiding center equation (4.20). In fact, this represents a

new, canonical formulation that leads from the Lagrangian for a charged particle in a magnetic

field to the guiding center equation, following a WKB/Whitham-style average at the level of the

4To see this, substitute B = ‖B‖b in the last term of (4.41) and carry out the derivative:

Im
ˆ
q∗
f × qf

˜
· ∇B = ∇‖B‖

“
b · Im

ˆ
q∗
f × qf

˜”
+ ‖B‖Im

ˆ
q∗
f × qf

˜
· ∇b (4.45)

We now show that
Im

ˆ
q∗
f × qf

˜
· ∇b = 0. (4.46)

Writing qf = xf + iyf, we find that
1

2
Im

ˆ
q∗
f × qf

˜
= xf × yf.

From Re
ˆ
qf(t)e

iωt
˜

= xf cos ωt− yf sin ωt, it is clear that xf and yf are, respectively, the cos and sin components of
the fluctuation. Going back to the decomposition (4.32), we know a priori that the total fluctuation q−qa is in the
plane orthogonal to b. This must hold for the components xf and yf as well, implying xf × yf ‖ b. Finally, ‖b‖ = 1
implies

b · ∇b =
1

2
∇‖b‖2 = 0,

and (4.46) follows immediately. Using this, (4.45) becomes

Im
ˆ
q∗
f × qf

˜
· ∇B = ∇‖B‖

“
b · Im

ˆ
q∗
f × qf

˜”
.

Substituting (4.44), we are left with
ωe

2c
Im

ˆ
q∗
f × qf

˜
· ∇B = µ∇‖B‖,

proving that (4.41) implies (4.47).

108

Lagrangian. Note that the averaged Lagrangian is dependent on both large and small scales qa

and qf, respectively. In any multiscale theory, there needs to be some closure that relates these

scales to each other. In this procedure, as in Whitham averaging, the closure rule is provided by the

Euler-Lagrange equation for the fluctuations. This feature may hold for other multiscale systems.

Note. In order to compare this method with that of Littlejohn, suppose we examine Eq. (4.40) in

light of the Euler-Lagrange equation Eq. (4.42). We find that all terms involving the fluctuations

disappear, because

ωe

2c
Re
[
iqf · ∇A(qa) · q∗f

]
= −ωe

4c
B · Im

[
q∗f × qf

]
= −1

4
mω2qf · q

∗
f .

Then, it would appear that the Lagrangian (4.40) boils down to the original Lagrangian

l(qa, q̇a) =
1
2
mq̇a · q̇a +

e

c
q̇a ·A(qa). (4.48)

This is different from Littlejohn’s guiding center Lagrangian. However, the substitution of either

conserved quantities or equations of motion into the Lagrangian is inappropriate.

Additional note. Applying our scaling assumptions to Eq. (4.37), we removed the term that

involves Im
[
q∗f · q̇

∗
f
]
. Had we retained this term, it would not have affected the Euler-Lagrange

equation anyway, since

1
2
mωIm

[
q∗f · q̇

∗
f

]
=

1
4
mω

d

dt
Im
[
q∗f · q

∗
f

]
. (4.49)

109

Hence, when considering the action

S =
∫
Ldt,

this term will not contribute.

4.6 Variational Averaging Inspired by LANS Averaging

Another method for averaging the action principle is found in the LAE/LANS-α theory for fluid

mechanics. The theory, also in the spirit of other Lagrangian-averaging procedures such as the

guiding center theory, is very systematic in its treatment of the averaging procedure and in its

geometric interpretation. The reader is encouraged to refer to Holm et al. (1998) and Marsden and

Shkoller (2001) for a particular flavor of the theory and to Bhat et al. (2003) for its systematic

treatment and for extensions to compressible fluids.

Consider the unaveraged Lagrangian,

L(q, q̇) =
1
2
m‖q̇‖2 +

e

c
A(q) · q̇ (4.50)

or in indicial notation,

L(q, q̇) =
1
2
mq̇iq̇i +

e

c
Ai(q)q̇i, (4.51)

where q is the position and q̇ is the velocity, and A is the magnetic vector potential.

Now consider the position and velocity as fluctuations from an original position and velocity; the

original position and velocity are assumed to satisfy the system Euler-Lagrange equations. In that

110

case, consider the unaveraged Lagrangian

L(qε, q̇ε) =
1
2
m‖q̇ε‖2 +

e

c
A(qε) · q̇ε (4.52)

or in indicial notation,

L(qε, q̇ε) =
1
2

(q̇ε)i(q̇ε)i +Ai(qε)(q̇ε)i, (4.53)

where the new position qε is composed of the original position q and a fluctuation map ξε,

qε = ξε(q). (4.54)

Now consider a perturbation expansion of both the new position and velocity; that is,

qε = q + εq′ + ε2q′′ + . . . (4.55)

where the perturbation quantities are defined as

q′ =
∂

∂ε

∣∣∣∣
ε=0

qε (4.56)

and so on. The corresponding expansion for the time derivative is

q̇ε =
∂

∂t
qε, (4.57)

111

which leads to the following perturbation series for q̇ε,

q̇ε = q̇ + εq̇′ + ε2q̈′′ + . . . (4.58)

where the perturbation quantities are defined as

q̇′ =
∂

∂t

∣∣∣∣
ε=0

∂

∂ε
q̇ε (4.59)

and so on.

We now seek to recast the unaveraged Lagrangian in terms of these perturbation quantities. This

is done through Taylor expansion of the two terms in the unaveraged Lagrangian. First of all, we

have for the kinetic energy

1
2

(q̇ε)i(q̇ε)i =
1
2

(
q̇i + εq̇′i +

1
2
ε2q̇′′i + . . .

)(
q̇i + εq̇′i +

1
2
ε2q̇′′i + . . .

)
=

1
2
q̇iq̇i + εq̇iq̇′i + ε2

(
q̇′iq̇′i + q̇′′iq̇i

)
+ . . . (4.60)

and before we examine the second term, we first recast the magnetic vector potential A(qε):

Ai(qε) = Ai(q) + ε
∂

∂ε

∣∣∣∣
ε=0

Ai(qε) +
1
2
ε2
∂2

∂ε2

∣∣∣∣
ε=0

Ai(qε) + . . .

= Ai(q) + ε
∂Ai

∂qj

∂

∂ε

∣∣∣∣
ε=0

(qε)j

+
1
2
ε2
(

∂2Ai

∂(qε)j∂(qε)k
(qε)

∂(qε)j

∂ε

∂(qε)k

∂ε
+

∂Ai

∂(qε)j
(qε)

∂2(qε)j

∂ε2

) ∣∣∣∣
ε=0

+ . . .

= Ai(q) + ε
∂Ai

∂qj
q′j +

1
2
ε2
(

∂2Ai

∂qj∂qk
(q)q′jq′k +

∂Ai

∂qj
(q)q′′j

)
+ (4.61)

112

Then, the second term in the unaveraged Lagrangian becomes

Ai(qε)(q̇ε)i = Ai(q)q̇i + ε

(
Ai(q)q̇′i +

∂Ai

∂qj
(q)q′j q̇i

)
+ ε2

(
∂Ai

∂qj
(q)q′j q̇′i +

1
2
Aiq̇′′i

+
1
2
∂2Ai

∂qj∂qk
(q)q′jq′kq̇i +

1
2
∂Ai

∂qj
(q)q′′j q̇i

)
+ . . . (4.62)

and so the unaveraged Lagrangian becomes

L(qε, q̇ε) =
1
2
mq̇iq̇i + εmq̇iq̇′i + ε2m

(
q̇′iq̇′i + q̇′′iq̇i

)
+ . . .

+
e

c
Ai(q)q̇i + ε

e

c

(
Ai(q)q̇′i +

∂Ai

∂qj
(q)q′j q̇i

)
+ ε2

e

c

(
∂Ai

∂qj
(q)q′j q̇′i

+
1
2
Aiq̇′′i +

1
2
∂2Ai

∂qj∂qk
(q)q′jq′kq̇i +

1
2
∂Ai

∂qj
(q)q′′j q̇i

)
+ (4.63)

The next step in the derivation is to compute the averaged Lagrangian. The averaged Lagrangian

is precisely the ε-average,

l(q, q̇;α) = 〈L(qε, q̇ε)〉, (4.64)

where the new parameter α arises from the averaging operator; see Bhat et al. (2003) for a de-

scription of such an averaging. It is in the averaging that assumptions are made concerning the

relationship between the coarse and fine scales of the system. For example, valid assumptions for

113

the fluctuation (fine-scale) statistics are zero-mean assumptions:

〈q′〉 =0 (4.65)

〈q′′〉 =0 (4.66)

〈q̇′〉 =0 (4.67)

〈q̇′′〉 =0. (4.68)

With the unaveraged Lagrangian in (4.63), terms such as 〈q̇′iq̇′i〉 and 〈 ∂2Ai

∂qj∂qk (q)q′jq′kq̇i〉 will require

treatment. Symmetry and physical (phenomenological) arguments should play a role in modeling

assumptions. Note that many of these questions have their analogues in the coarse integration

context, and some of the answers may be provided by a concurrent investigation of these issues.

With the assumptions for the fluctuation statistics mentioned above in Eqs. (4.65-4.68), several

of the cross-correlation quantities are also zero. Furthermore, an assumption is made that the

following quadratic averages are constant over the configuration space:

〈q̇′iq̇′i〉 =G (4.69)

〈 ∂
2Ai

∂qj∂qk
(q)q′jq′kq̇i〉 =

∂2Ai

∂qj∂qk
(q)F jkq̇i (4.70)

〈∂A
i

∂qj
(q)q′j q̇′i〉 =

∂Ai

∂qj
(q)Hj

i . (4.71)

The resulting averaged Lagrangian to second order in ε is

l(q, q̇; ε) =
1
2
mq̇iq̇i +

e

c
Ai(q)q̇i + ε2

e

c

(
G+

1
2
∂2Ai

∂qj∂qk
(q)F jkq̇i +

∂Ai

∂qj
(q)Hj

i

)
. (4.72)

114

The coarse action is now defined as

Ŝ =
∫ t2

t1

l(q, q̇; ε)dt. (4.73)

Computing Hamilton’s principle should yield the average equations for the particle motion.

In computing this action principle, we observe that the constant G will not influence the varia-

tions (and therefore will not manifest itself in the equations of motion). Rewriting the averaged

Lagrangian as

l(q, q̇; ε) =
1
2
mq̇iq̇i +

e

c

(
Ai(q) +

1
2
ε2

∂2Ai

∂qj∂qk
(q)F jk

)
q̇i + ε2

e

c

∂Ai

∂qj
(q)Hj

i , (4.74)

it becomes apparent that this averaged Lagrangian differs from the original unaveraged Lagrangian

by two terms (to second order in ε). These terms correspond to terms that appear in the WKB/Whitham-

style averaged Lagrangian listed in Eq. (4.37).

The tensor F corresponds to the tensor Re
[
qf ⊗ q∗f

]
in Eq. (4.37). Both yield corrections to the

magnetic potential A. Note that in the WKB/Whitham-style derivation, this term is ignored once

the scaling assumptions in Eqs. (4.38-4.39) are applied.

The tensor H corresponds to the tensor that is implicitly multiplying ∇A(qa) in Eq. (4.40). In

the WKB/Whitham-style derivation, this term survives the scaling assumptions.

115

Defining the modified magnetic potential Ã by

Ãi = Ai +
1
2
ε2

∂2Ai

∂qj∂qk
F jk (4.75)

and comparing the LANS-style Lagrangian in Eq. (4.74) with that of Littlejohn, it is clear that if

ε2
e

c

∂Ai

∂qj
Hj

i = −µ‖B‖, (4.76)

where the magnetic moment is defined by

µ =
1
2
mα−2‖B‖−1‖q′‖2, (4.77)

then the averaged Lagrangian listed in Eq. (4.74) will become

l(q, q̇;α) =
1
2
mq̇ · q̇ +

e

c
A(q) · q̇− µ‖B‖.

Determination of H. A final task is to define a tensor H that satisfies Eq. (4.76). To this end,

we examine the fluctuation equations from the WKB/Whitham-style derivation, keeping in mind

that in the LANS-style derivation, the fluctuations q′ are real-valued. Examining the tensor that

implicitly multiplies ∇A(qa) in Eq. (4.40), observe that in the WKB/Whitham context,

Re
[
iqf · ∇A · q∗f

]
= −Al

,kε
klnεnrsxr

fy
s
f , (4.78)

116

where qf = xf + iyf. Comparing this with Eq. (4.76), we write

Hk
l = βεklnεnrs(q′)r(q̇′)s, (4.79)

where β is a quantity that will be determined shortly. The idea behind this choice is that in the

WKB/Whitham context, xf and yf are, respectively, the cos and sin components of the fluctuation.

The analogous terms in the LANS contexts are, respectively, q′ and q̇′. Note that this is compatible

with the definition of H in Eq. (4.76). Substituting Eq. (4.79) into Eq. (4.76), we derive a condition

on µ:

ε2
e

c
βb ·

(
q′ × q̇′

)
= −µ.

For the particle in a magnetic field, we know that q′ × q̇′ is parallel to b. We further assume that

‖q̇′‖ ≈ ε−1‖q′‖. Finally, it can be shown that

β =
mc

2eε
‖B‖−1. (4.80)

Using this formula for β, we may simplify Eq.(4.79) and rewrite it as

H = 2β Skew
(
q′ ⊗ q̇′

)
. (4.81)

With these definitions of H and β, Eq. (4.74) becomes another canonical version of the guiding

center Lagrangian.

117

The guiding center equation. Computing the Euler-Lagrange equation for this Lagrangian

(4.74) with H and β yields the following guiding center equation for the modified magnetic field:

mq̈ = eq̇× B̃− µ∇‖B‖, (4.82)

where B̃ = ∇× Ã. In case we choose to ignore the order α2 correction to the magnetic field and

use B instead of B̃, then Eq. (4.82) is equivalent to the traditional guiding center equation (4.20).

It is important to note that this LANS-inspired derivation, although canonical and appropriate

for averaging of multiscale mechanical systems, is very general in implementation. To close the

resulting equations, modeling assumptions must be made that represent the phenomenology of the

system (in this case, using the notion of the magnetic moment).

4.7 Coarse Timestepping

A prototypical coarse integration was performed for our system of charged particles in a magnetic

field. These results are shown in Figure 4.3. For this coarse integration, the computational super-

structure is the trivial one: no extrapolative/projective method was used to advance the integration

for coarse times. Instead, the algorithm repeated the process of lifting, flow evolution, and averag-

ing. Projection is not required in this case because the system dimension for both the coarse and

detailed variables are the same (R3). The lifting in this case is to multiple particles over a Gaussian

distribution of positions and velocities about the average; averaging is ensemble averaging.

As expected, the coarse integrator was able to generate a coarse trajectory without demanding

118

Figure 4.3: Coarse trajectory in a toroidal magnetic field, generated using coarse integration tech-
niques. Shown in red squares and green lines are the particle initial conditions and trajectories,
respectively. Shown in blue squares are averaged coarse positions.

119

explicit knowledge of the underlying dynamics from the user. Because this is a small system

of ordinary differential equations, and because no projective time integration scheme was used,

there are no computational savings in using the coarse integrator. However, this computational

superstructure is scalable for integrating large systems at a lower computational cost. The coarse

integration research in this area is continuing to be pursued at Caltech.

Observe that this coarse integrator was able to compute the coarse dynamics for a Hamiltonian

system. This is an interesting result that shows that the computational superstructure may apply

to systems other than those whose scale separation is caused by dissipation of some kind.

The framework listed in this section raises many questions concerning convergence and accuracy,

algorithm philosophy, and component design. Convergence to coarse trajectories or dynamics

is an underlying question not only for these algorithms but also for the averaging philosophy.

In the computational setting, convergence parameters are the various algorithm parameters (the

lift/project/averaging parameters, as well as the coarse and fine integrator parameters).

The algorithm presumes upon the averaging of trajectories in constructing some sort of a coarse

trajectory. This may or may not be valid depending on the types of trajectories and averaging and

on the underlying structure of the dynamical system. A differential-geometric perspective, with

symmetry considerations, may provide the necessary interpretation for a proper construction of a

coarsening algorithm and its corresponding components.

120

4.8 Lifting and Averaging

Averaging theory may be employed at the level of the equations of motion to derive the averaged

equations. Furthermore, as shown below, connections may be made between the choice of averaging

methods and coarse analysis techniques.

Preliminaries We make the following definitions, valid for phase spaces that are subsets of Rn.

A lift map to N particles is a map L : Rn → Rn × · · · × Rn (N times).

An averaging map for N particles is a map A : Rn × · · · × Rn → Rn (N times).

Suppose we have a vector field X(x, t) with flow map φ, i.e.,

X(φ(t, x0), t) =
d

dt
φ(t, x0).

We can extend φ to a flow φ̃ defined on an enlarged space of N particles. The idea is that we apply

φ to each particle separately:

φ̃(t,q1, . . . ,qN) = (φ(t,q1), . . . , φ(t,qN)),

where each qi ∈ Rn. Then we see that φ̃ describes integral curves of an extended vector field X̃ in

the natural way.

121

Then we define the coarse flow map ψ (associated with X) by

ψ(t, x0) = A ◦ φ̃(t, L(x0)),

or for short, ψt = A ◦ φ̃t ◦ L.

We begin with the equations of motion for a charged particle in a magnetic field, written as a

system of first-order equations:

q̇ = v (4.83a)

v̇ =
1
m

(e
c
v ×B

)
. (4.83b)

We seek to compute the coarse flow map ψ associated with X, where X is the autonomous vector

field defined by the right-hand side of Eq. (4.83). We would like to compare ψ to the flow map ψGC

for the guiding center vector field. If so, this would explain why coarse analysis techniques yield

the correct averaged dynamics.

First observe that the coarse flow ψ may only approximate the guiding center flow asymptotically:

ψ(t, x0) = ψGC(t, x0) +O(t1/2).

In carrying out the comparison between ψ and ψGC, we will derive conditions on lifting and averag-

ing maps so that the coarse integration approximates guiding center dynamics. Before continuing,

122

recall that the guiding center vector field XGC is defined by the right-hand side of the equations

q̇ = v (4.84a)

v̇ =
1
m

(e
c
v ×B− µ∇‖B‖

)
. (4.84b)

Consider the phase space of positions and velocities R6. Also consider a general lift map of the

form

L

q

v

 =


q + εf1

v + εg1

 , . . . ,

q + εfN

v + εgN


 ,

where q, v, f i, and gi are all in R3. Assume that f i and gi are constant in time, and that

‖f i‖ = ‖gi‖ = 1 for all i. Now consider an averaging map that is the trivial ensemble average over

N particles:

A(r1, . . . , rN) =
1
N

N∑
i=1

ri,

with ri(t) in R6. Now we postulate the existence of f i and gi such that

d

dt
ψt

q

v

 =
d

dt
ψGC

t

q

v

 . (4.85)

We drop the point of evaluation (q,v) and treat it as implied. Then, using the definition of ψ, we

123

obtain

d

dt
ψt =

d

dt

(
A ◦ φ̃t ◦ L

)
= DA

(
φ̃t ◦ L

)
· d
dt
φ̃t ◦ L

= A ◦ d
dt
φ̃t ◦ L,

where we have used the relationship between vector fields and their flows, along with the linearity

of the averaging map A. At this stage, to compute φ̃ exactly, we would require knowledge of B.

Hence we introduce the following approximation, which is actually the first-order Euler method for

solving an ODE:

φt

q + εf i

v + εgi

 =

q + εf i

v + εgi

+ tX

q + εf i

v + εgi

+O(t2).

Differentiating in time, we obtain

d

dt
φt

q + εf i

v + εgi

 = X

q + εf i

v + εgi

+O(t).

By definition,

X

q + εf i

v + εgi

 =

 v + εgi

e
mc

(
v + εgi

)
×B

(
q + εf i

)
 .

We will approximate

B(q + εf i) = B(q) + ε∇B(q) · f i +
ε2

2
∇∇B : (f i ⊗ f i) +O

(
ε3
)
.

124

Hence the lifted, averaged vector field is

A ◦ d
dt
φ̃t ◦ L =

1
N

N∑
i=1

X

q + εf i

v + εgi

+O(t)

=

(
v + ε〈g〉

e
mcv × B̃ + e

mcε〈g〉 ×B + e
mcε

2 1
N

∑N
i=1

[
gi ×

(
∇B · f i

)]
)

+O(t) +O(ε3),

where

B̃ = B + ε∇B · 〈f〉+
ε2

2
∇∇B : 〈f ⊗ f〉.

We have used the conventions

〈f〉 =
1
N

N∑
i=1

f i,

〈g〉 =
1
N

N∑
i=1

gi,

〈f ⊗ f〉 =
1
N

N∑
i=1

f i ⊗ f i.

and assume that the lifting is not skewed in any particular direction:

〈f〉 = 〈g〉 = 0.

Then we obtain, for the lifted, averaged vector field,

A ◦ d
dt
φ̃t ◦ L =

(
v

e
mcv × B̃ + e

mcε
2 1

N

∑N
i=1

[
gi ×

(
∇B · f i

)]
)

+O(t) +O(ε3), (4.86)

125

where

B̃ = B +
ε2

2
∇∇B : 〈f ⊗ f〉.

Using the same first-order accurate scheme we applied to φ, we may write the time derivative of

the guiding center flow as

d

dt
ψGC

t

q

v

 = XGC

q

v

+O(t) =
(

v 1
m

(
e
cv ×B− µ∇‖B‖

))+O(t). (4.87)

Comparing Eq. (4.87) with Eq. (4.86) and ignoring the difference between B̃ and B, we derive the

condition on f and g:

e

mc
ε2

1
N

N∑
i=1

[
gi ×

(
∇B · f i

)]
= − µ

m
∇‖B‖. (4.88)

In coordinates, the left-hand side may be written as

e

c
ε2

1
N

N∑
i=1

εnklgi
kB

l
,jf

i
j =

e

c
ε2εnklBl

,j〈f ⊗ g〉jk, (4.89)

where, in the same spirit as our previous conventions,

〈f ⊗ g〉 =
1
N

N∑
i=1

f i ⊗ gi.

Using Eq. (4.89), we rewrite Eq. (4.88) as

e

c
ε2εnklBl

,j〈f ⊗ g〉jk = −µ‖B‖,n. (4.90)

It is a nontrivial task to solve for 〈f ⊗ g〉 given a general magnetic field B, much less observe the

126

relationship between µ and this tensor. Hence we focus our efforts on the helical magnetic field,

given by the vector potential

A = −1
2

(0, 0, ln r2),

where r2 = x2 + y2, and the following expression for B:

B = r−2(−y, x, 0).

In this case, simple algebraic manipulations show that the solution of (4.90) is given by

e

c
ε2〈f ⊗ g〉jk =



µx/r (j, k) = (1, 3)

µy/r (j, k) = (2, 3)

0 otherwise.

(4.91)

Now we recognize the decoupling 〈f ⊗ g〉 = f̂ ⊗ ĝ, where

f̂ =
c

e
ε−2(µx/r, µy/r, 0) (4.92a)

ĝ = (0, 0, 1). (4.92b)

Here we have specifically chosen ĝ to have unit norm. Observe that these vectors satisfy the

127

following relationships with the magnetic field:

f̂ ⊥ B,

ĝ ⊥ B,

f̂ ⊥ ĝ.

In other words, f̂ , ĝ,B forms a basis for R3 at each point in space. We also see that f̂ rotates

with the magnetic field. Hence, lifting to respect f̂ , ĝ according to Eq. (4.92), and using ensemble

averaging would yield an approximation to guiding center flow.

To place this in the context of coarse analysis, note that we may now approximate the guiding

center vector field by choosing an appropriate lift and average maps and applying them to the

original vector field for the Lorentz force system. Should a coarse (time integration) algorithm

respect the choice of lift and average maps, then computing the flow on the lifted, averaged Lorentz

field yields an approximation to the averaged flow itself. We now hypothesize that the numerical

results discussed in Section 4.7 were successful approximations to the averaged flow because the

lift map (generation of particles in a distribution normal to the local magnetic field line) is similar

to the one suggested here.

While averaging theory on the level of the equations of motion are useful for guiding the development

of coarse analysis techniques, averaging theory from other points of view might also prove useful.

For instance, guiding center theory may also be derived from the variational principle. Because

this represents another connection between averaging and the equations of motion, we now consider

derivations of the guiding center equation using techniques that might allow for approximations

128

through coarsening.

4.9 Hamiltonian Averaging

Here, the construction of a coarse integration algorithm is taken from the point of view of Hamilto-

nian manifolds and flows. For idealized coarse integrators that that utilize idealized fine integrators

(where the underlying dynamics are Hamiltonian), the computed flow is shown to correspond to a

coarse Hamiltonian flow.

Preliminaries Consider a configuration space M and its product space MN = M ×M ×· · ·×M

(N times). In this setting, individual trajectories exist on M and an ensemble of trajectories exist

on MN . With these manifolds, define corresponding vector fields

X : M → TM (4.93)

XN : MN → T (MN) = (TM)N . (4.94)

Using the terminology from coarse analysis, define a lift map L and an average map A as

L : T ∗M → (T ∗M)N (4.95)

A : (T ∗M)N → T ∗M. (4.96)

Observe that lift and average maps are defined here as operating on the cotangent manifold and

129

on the cotangent-product manifold.

Hamiltonian systems For a Hamiltonian system, a vector field at q ∈ M is related to the

Hamiltonian by

XH(q) = R · dH(q) (4.97)

where the matrix of R is the symplectic matrix,

[R] =

 0 1

−1 0

 := J. (4.98)

In other words,

X = J∇H. (4.99)

Here, the Hamiltonian H is a C1 map,

H : T ∗M → R. (4.100)

Now consider a collection of points qi in an ε-ball Bε(q) around q ∈ T ∗M . For this collection, define

their effective Hamiltonian HN : T ∗M → R as

HN
q =

(
AH ◦HN ◦ L

)
(q) (4.101)

or, for the naive average map,

HN
q :

1
N

N∑
i=1

Hqi . (4.102)

130

The average map AH may be a simple ensemble averaging, as HN (L(q)) ∈ RN . Observe that, for

this to hold, we assume that

AH ◦HN = H ◦A, (4.103)

that is, the action of taking averages and computing the Hamiltonian commute with each other.

This should hold on the ball Bεq. Now, using our definitions of the lift and average maps, observe

that

J∇HN
q = J∇

(
1
N

N∑
i=1

Hqi

)
= J∇

[(
AH ◦HN ◦ L

)
(q)
]

= J
[
TAH ◦ (∇H)N ◦ TL

]
(q)

=
[
TAH ◦ (J∇H)N ◦ TL

]
(q)

=
(
TA ◦XN ◦ TL

)
(q). (4.104)

Here, we have assumed that taking averages and computing the Hamiltonian commute, and there

are additional assumptions associated with the action of the ∇ operator and the chain rule. With

this progression, we can define the average vector field X̄ : M → TM as

X̄ = J∇HN
q

= TA ◦XN ◦ TL. (4.105)

Observe that this average vector field is Hamiltonian with the average Hamiltonian defined above.

Does this average vector field correspond to a flow of anything? This bears direct relevance to the

131

coarse integration algorithm. The coarse integration algorithm constructs an average flow from the

actual flows, using appropriate lifts and averages.

First, define a map G : R×M →M as

Gτ = A ◦ FN
τ ◦ L (4.106)

with the original flow Fτ ,

d

dt
Ft(q) = X(t, Ft(q)) (4.107)

F0(q) = q. (4.108)

We seek to show that an average flow map Kt can be constructed, such that

d

dt
Kt(q) = X̄(t,Kt(q)) (4.109)

K0(q) = q. (4.110)

First, define a candidate map Kt,

Kt = lim
τ→0

Gt/τ
τ . (4.111)

132

Observe that a flow property is satisfied:

Kt1+t2 = lim
τ→0

G
t1+t2

τ
τ

= lim
τ→0

(
Gt2/τ

τ ◦Gt1/τ
τ

)
=

(
lim
τ→0

Gt2/τ
τ

)
◦
(

lim
τ→0

Gt1/τ
τ

)
= Kt2 ◦Kt1 . (4.112)

Now construct the following limit:

lim
t→0

Kt − I
t

. (4.113)

We seek to demonstrate that this expression is equivalent to the expression for the average vector

field. Now,

lim
t→0

Kt − I
t

= lim
t→0

limτ→0G
t/τ
τ − I

t

= lim
t→0

limτ→0G
t/εt
εt − I
t

= lim
t→0

limτ→0G
1/ε
εt − I

t
(4.114)

and we evaluate the outer limit using L’Hôpital’s rule.

The quantity G1/ε
εt is an application of the map Gεt, 1/ε times; that is,

G
1/ε
εt =

(
A ◦ FN

εt ◦ L
)1/ε

(4.115)

133

so that the time derivative of its ε - limit is

∂

∂t
lim
ε→0

G
1/ε
εt = lim

ε→0

1/ε∑
m=1

(
G

1/ε
εt

)m−1
◦ ∂
∂t
Gεt ◦

(
G

1/ε
εt

)1/ε−m

= lim
ε→0

1/ε∑
m=1

(
G

1/ε
εt

)m−1
◦ ∂
∂t
Gεt ◦

(
G

1/ε
εt

)1/ε−m

= lim
ε→0

1/ε∑
m=1

(
G

1/ε
εt

)m−1
◦
(
TA ◦ εXN ◦ L

)
◦
(
G

1/ε
εt

)1/ε−m

= TA ◦XN ◦ L

= X̄. (4.116)

So, application of L’Hopital’s rule leads to

lim
t→0

Kt − I
t

= X̄. (4.117)

This means that this average vector field X̄, which is Hamiltonian, corresponds to an averaged

flow map of the system. In this sense, numerical simulations that preserve the Hamiltonian nature

of the original charged particle system may be used in the sense of coarse analysis to construct

numerical simulations of a coarsened system that is also Hamiltonian. This would be expected of

a coarsened charged particle simulation, because the guiding center system is also a conservative

system.

134

4.10 Conclusions

We have undertaken a study of a system of charged particles in a magnetic field for the purposes

of advancing averaging theory and for making connections to coarse analysis. A summary of the

theoretical and numerical averaging techniques applied to the system of charged particles is given

in Table 4.1. For this system of charged particle motion, we have successfully derived the guiding

center equations, computed guiding center flow, and derived design guidelines for coarse numerics

using a variety of averaging techniques.

A summary of averaging techniques are given for the system of charged particles. Guiding center

theory has existed for approximately forty years, involving averaging from both the point of view

of the equations of motion and from the point of view of the variational principle. To elucidate

the relationship between the dominant and subdominant scales of the system, two novel averaging

techniques are applied at the level of the variational principle. First, a new WKB/Whitham-style

variational averaging procedure is applied, yielding the well-known guiding center equations. The

closure model is made clear through the Euler-Lagrange equation for the fluctuations, and an

expression for the magnetic moment is produced from the analysis. The WKB/Whitham-style

averaging framework appears to be applicable to other types of systems that respect a variational

principle.

Secondly, LANS-style Lagrangian averaging is applied, yielding averaged equations and suggested

closure models for the scale interactions. Connections are made between the WKB/Whitham

and LANS-style averaging procedures that provide additional insight into the closure models and

resulting Euler-Lagrange equations.

135

On the side of the Hamiltonian, it is shown that, in general, averaging of Hamiltonian systems and

associated vector fields yields a coarsened Hamiltonian and an associated coarsened vector field.

Because elements from coarse analysis are applied in the averaging, this result suggests that coarse

analysis of Hamiltonian systems may yield coarsened systems that are also Hamiltonian. This is

very important, as this suggests that coarse analysis techniques may be constructed that preserve

mechanical structure.

Because of the success of averaging theory in deriving guiding center approximations to the original

Lorentz force system, the application of coarse analysis to this conservative system is considered.

A prototypical coarse numerical time integration yielded averaged trajectories that suggest that

coarse analysis also applies to systems without dissipation. To elucidate this and suggest rigorous

guidelines for coarse analysis algorithm design, perturbation and averaging theory is employed to

derive appropriate lift maps.

To this end, averaging techniques influenced by coarse analysis are applied to the equations of

motion for the charged particle system. The averaging yields guiding center flow, with a constraint

on the types of lifting and averaging operators employed. This suggests both a confirmation of the

coarse numerical analysis results for the charged particle system as well as the necessary structure

of the specific numerical implementation.

Finally, it is important to note that while connections may be made between geometric mechanics,

averaging theory and coarse analysis, we have made these connections in the simple setting of a

conservative mechanical system. A similar development in coarse fluids analysis is highly nontriv-

ial compared to our treatment of the Lorentz force system. However, in light of the successful

136

Table 4.1: Comparison of averaging techniques for the charged particle system.

© J. Fung SIAM Dynamical Systems 5.23.2005

Produces guidelines for

coarse analysis! (same)e.o.m.
CA-inspired

perturbation

Lifting orthogonal to

magnetic field! (similar)ComputationalCoarse Analysis

Canonical;

Insight gained from

WKB-derivation
! (same)VariationalLANS-inspired

! (same)

! (same)

Comparison with

classical g.c.e?

CanonicalVariationalWKB-inspired

Non-canonical,

requires gauge

transformations

VariationalLittlejohn

e.o.m.Classical

NotesSettingApproach

Charged particle motion background variational WKB
guiding center theory numerical coarsening

connections described in this chapter, we propose that averaging and perturbation theory, which

have been successfully applied in fluid mechanics, might prove useful in designing coarse analysis

methodologies for fluids.

137

Chapter 5

Concluding Remarks and Future
Directions

Conclusions We have found the application of coarse analysis methods to compressible diffuser

flows to be very encouraging and promising. First, the nontraditional use of the proper orthogonal

decomposition is very well-posed and well-defined in the context of coarse analysis of compressible

flows. Traditionally, the POD has been used for making observations and capturing the dominant

scales of interest for a fluid flow. We make use of this, and extend the traditional POD application

to that of reconstruction.

The use of the POD as a scale classification allows us to implement coarse analysis techniques. We

derived a coarse projective third-order Adams-Bashforth routine suitable for the time integration

of POD mode coefficients for our compressible diffuser flow, using short bursts of DNS simulation

to compute the interaction between scales. Although considerations have to be made to ensure

the numerical stability of these methods, we have achieved stable, accurate time integration of the

dominant dynamics at a computation reduction of a factor of ten (for short-time reconstruction)

138

and about five (for long-time convergence and accuracy). Although the analysis produces long-

time trajectories that are out of phase and of slightly different amplitude than those extracted from

the original DNS computation, their physical behavior is similar, as shown in the phase portraits.

Furthermore, the coarse computation extracts a converged limit cycle, which is only suggested by

the projected DNS data. This suggests the use of coarse analysis methods to extract stable or

unstable limit cycles where the underlying detailed flow is chaotic or turbulent.

It is important to note that the POD-based scale classification restricts the coarse analysis to the

computation of fluid flows well represented by the archival data used to compute the POD modes.

While this yields coarse analysis techniques which are well suited to real-time estimation and

prediction of “known” fluid flows, they are not well suited for the exploration of “unknown” flows.

This would suggest seeking improvements or alternatives to the POD-based scale classification.

To this end, a comparison with POD/Galerkin-based simulations of diffuser flow is proposed to

elucidate the differences between analytical model reduction (POD/Galerkin) and numerical model

reduction (coarse analysis). A similar development is in progress for computations of turbulent flow

in a minimal flow unit (Smith, 2005). Shown in Figure 5.1 are phase portraits of three POD mode

coefficients projected from DNS simulation and computed from POD/Galerkin simulation (Smith

et al., 2005). Their POD/Galerkin simulation includes additional terms which model the interaction

between small and large scales of the flow, and T. Smith is currently exploring a connection between

these interaction terms and coarse analysis.

We then turned to averaging and geometric mechanics to gain insight and better discern the aver-

aging and mechanical properties of coarse analysis methods. In doing so, we shifted our focus from

diffuser flows to the simple system of charged particle motion in a magnetic field, and we explored

139

the applications of both averaging theory and coarse analysis. We first derived a canonical formu-

lation of the guiding center equations for averaged charged particle motion, which would allow for

more future comparisons with coarse analysis than existing noncanonical methods. In doing so,

we averaged the variational principle following inspiration from WKB methods. We also made a

similar derivation using Lagrangian averaging theory of the type applied to fluid turbulence, and

we were able to make connections to the other averaging methods. We were also able to make

connections between Hamiltonian averaging theory and coarse analysis. Finally, we returned to a

setting of applying perturbation analysis to the equations of motion for the charged particle sys-

tem, and we were able to make strong connections to coarse analysis. In applying a prototypical

coarse time integration of the charged particle system, we found its success compatible with design

guidelines suggested by the averaging theory.

Future Directions The work documented in this thesis is very promising, as the avenues of

future research follow according to directions into the coarse computation of fluid flows, averaging

theory, and additional applications.

While the application of averaging techniques to fluids for the purposes of advancing coarse analysis

theory is still open, these results suggest that the application to fluids might be very promising. New

types of error analysis for the coarse analysis of fluids may be defined using averaging techniques. A

fundamental understanding of coarse fluids analysis tools as multiscale fluid systems might provide

connections to existing model reduction procedures, such as turbulence modeling and Galerkin

projection. Finally, averaging techniques may be employed to facilitate the design of subroutines

for coarse fluids analysis techniques. The coarse analysis of diffuser flows may continue in many

140

directions. Continuing development of the POD as scale classification would yield insight not only

into coarse fluids analysis but also into the nature of the POD as a numerical tool. Improvements

to the POD methodology, such as ways to generate the modes without archival data but with data

generated during the course of the simulation, would avoid a dependence on archival data. Coarse

continuation and bifurcation analyses of diffuser flows would follow directly from this work; coarse

diffuser flow control would represent an additional level of abstraction, as a coarse time integration

routine (for estimation, for instance) would be considered a subsystem in a larger control system

design. Furthermore, as the phenomena of diffuser flows and flow separation is still under active

exploration in the community, we suggest using coarse analysis to facilitate these investigations. For

instance, shown in Figure 5.3 is a vorticity snapshot of a diffuser flow controlled using vorticity flux

control, described in Figure 5.2; computing this controlled flow in real-time, along with controller

design assisted by simulation, would be a desirable goal of coarse analysis.

Finally, recent explorations by our collaborators into climate dynamics and turbulence suggest a

wide realm of exploration of coarse analysis techniques into fluid dynamics and related applications

areas. For instance, shown in Figure 5.4 is a root locus chart, which is a type of sensitivity analysis,

computed by MacMynowski (2005) for a particular model of the El Niño phenomenon. The figure

shows the dominant mode of the dynamics plotted as a function of the atmosphere-ocean coupling

parameter. As shown in the figure, the mode goes unstable as the parameter is varied. This chart

was computed, however, without the traditional linearization of the equations of motion; it was

computed using bursts of simulation using techniques inspired by coarse analysis.

141Minimal flow unit: coupled models

! DNS vs. model at Re = 400, α = 0.8

1000 1500 2000 2500
0.5

1

1.5

2

2.5
(1,0)
(1,0)

!1 !0.5 0 0.5 1

!1

!0.5

0

0.5

1

1.5 (1,0) (1,0)
(1,0) (1,0)
(1,0) (1,0)

◦ instead of travelling waves now have standing waves

◦ amplitude of a
(1)
0,0 far too low, others aren’t too bad

28

Figure 5.1: POD coefficients for turbulent plane Couette flow in a minimal flow unit, taken from
Smith et al. (2005).

Vorticity-flux control simulation 4

due to the source or sink flow of the vortex gen-
erators. The next series of figures describes the
Lighthill model applied to the action of a vortex
generator jet, as in [4].

!!!!!

time
t = 0−

jet
"

"
""#

Figure 8: Initial jet [4].

!!!!!
!!! " " "

t = 0
spurious slip (inviscid)

$
$
$$%

Figure 9: Violation: spurious slip at the
wall [4].

!!!!!
#

#
##

t = 0
wall vorticity flux

$
$
$$%

Figure 10: Slip cancellation: vorticity flux
[4].

!!!!!

time
t = 0+

vorticity generation
$
$
$%

+ + + + + + + + +
+ + + + + + + + +

+ + + + + + + + +

- - - - - - - - -
- - - - - - - - -

- - - - - - - - -

Figure 11: Slip cancellation: vorticity gen-
eration [4].

As shown in Figures 8 and 9, an inviscid model
of the jet reveals a violation of the no-slip con-
dition, and a spurious slip velocity is modeled to
appear at the wall. The circulation from such a
slip velocity is determined from Kelvin’s circula-
tion theorem,

Γ =
∮

C
u · dl, (10)

so that the circulation generated from a slip ve-
locity over a wall distance ds is

δΓslip = Uslipδs. (11)

In deriving a contribution from the wall to re-
move the violation of the no-slip condition, a sim-
ilar circulation computation is made. Kelvin’s
theorem may be modified using the conservation
of momentum to derive the following expression
for the time-rate of change of circulation in a fluid
element,

dΓ
dt

= ν

∮

C
(∇× ω) · dl, (12)

dΓ
dt

= −ν ∂ω
∂η
δs. (13)

To generate a circulation that cancels the effect
of the slip velocity, then, a vorticity flux is gen-
erated at the wall, as shown in Figure 10. This
vorticity flux is equivalent to

(

ν
∂ω

∂η

)

w,cancel
=

δΓslip
δsδt

, (14)
(

ν
∂ω

∂η

)

w,cancel
=

1
δt

Uslip. (15)

The final stage of this sequence is described in
Figure 11 and shows a layer of vorticity diffusing
and convecting away from the wall.

Modeling the vortex generator jets as
source/sink flows yields the following rela-
tionship between wall vorticity flux and N
actuators of strength qj placed along the surface
s ∈ [−dj/2, dj/2],

νδt
∂ω

∂η
(xi) =

N
∑

j=1

qj

2π

∫ dj/2

−dj/2

ds

xi − xj − s
. (16)

The actuator gains may be determined from
these relationships in solving the following linear
system:

Buk + Sk−1 = Dk (17)

where S is a vector of the sensor data, D is a vec-
tor of desired values, u is the vector of actuator
gains, and B is a matrix composed of solutions
to Eqn. 16,

Bij = log
|xj − xi − dj/2|
|xj − xi + dj/2| (18)

Additional constraints to this system may be
added, especially in the case where the net mass
flux of the actuation is zero. The reader is re-
ferred to the discussion given by Koumoutsakos
in [4] for additional information.

Figure 5.2: Vorticity flux control: a latter stage taken from Koumoutsakos (1997).

142

x

y

-2 0 2 4 6 8 10

-2

0

2

Figure 5.3: Diffuser flow under vorticity flux control.

Figure 5.4: Root locus for an El Niño model, with atmosphere-ocean coupling as the parameter
of interest. The stability boundary is shown in red.

143

Appendix A

Derivative Computation in the diffuser
Code

A.1 Objective

The original diffuser code computes derivatives with implicit Padé schemes. These implicit schemes

are nonlocal, and this nonlocality hinders efforts to parallelize the code. Explicit schemes, which are

inherently local, allow for domain-splitting and similar straightforward parallel implementations of a

numerical algorithm. Classical explicit finite-difference schemes are described, and a wavenumber–

optimal explicit scheme is described. The existing and proposed differencing framework is given

for computing derivatives away and near boundary points. Results of an error analysis is given to

demonstrate the accuracy of the explicit schemes. Finally, computational diffuser results are given

to show that a streamwise explicit/transverse Padé formulation compares well with a full Padé

implementation.

144

A.2 Implicit Finite-Difference Schemes

First Derivative Here, the first and second spatial derivatives are computed using a Padé

scheme. The schemes used are tridiagonal and hence implicit. The first derivative is computed

as

βf ′i−2 + αf ′i−1 + f ′i + αf ′i+1 + βf ′i+2 = c
fi+3 − fi−3

6h
+ b

fi+2 − fi−2

4h
+ a

fi+1 − fi−1

2h
. (A.1)

Fourth-Order Observe that for a tridiagonal scheme, β is set equal to zero. For c = 0, we have

the following family of tridiagonal fourth-order schemes:

β = 0, a = 2
3(α+ 2), b = 1

3(4α− 1), c = 0 . (A.2)

For the diffuser code, α is set to 1/4, we arrive at the classical fourth-order Padé scheme.

The corresponding values are

α = 1
4 , β = 0, a = 3

2 , b = 0, c = 0 . (A.3)

Sixth-Order Although the previous family corresponds to fourth-order schemes, setting α = 1/3

actually yields a sixth-order accurate scheme:

α = 1
3 , β = 0, a = 14

9 , b = 1
9 , c = 0 . (A.4)

145

Second Derivative The second derivative is computed as

βf ′′i−2 +αf ′′i−1 + f ′′i +αf ′′i+1 +βf ′′i+2 = c
fi+3 − 2fi + fi−3

9h2
+ b

fi+2 − 2fi + fi−2

4h2
+a

fi+1 − 2fi + fi−1

h2
.

(A.5)

Fourth-order Again, we seek tridiagonal schemes, so we set β equal to zero. For c = 0, we arrive

at a family of fourth-order schemes

β = 0, a = 4
3(1− α), b = 1

3(−1 + 10α), c = 0 . (A.6)

For the diffuser code, α is set to 1/10, we arrive at the classical fourth-order Padé scheme.

The corresponding values are

α = 1
10 , β = 0, a = 6

5 , b = 0, c = 0 . (A.7)

Sixth-Order Although the previous family corresponds to fourth-order schemes, setting α = 2/11

actually yields a sixth-order accurate scheme:

α = 2
11 , β = 0, a = 12

11 , b = 3
11 , c = 0 . (A.8)

These are set in the diffuser code in the derivatives.f90 file. There are certain differences

between the actual and computational algorithms. Rather than using the parameters a, b, and c,

the coefficients of the respective terms are used (for instance ±a/2). Observe that Eqs. (A.1) and

(A.5) show what those coefficients are.

146

A.3 Explicit Finite-Difference Schemes

Parallelization of the existing diffuser code is nontrivial due to the implicit nature of the Padé

schemes. The implementation effort would reside primarily in developing communications routines

between parallel processors to compute the implicit derivatives. Explicit schemes are local by defi-

nition, and this locality can be exploited in a straightforward manner when dividing the processing

load among processors. High-order explicit finite-difference schemes are described here and should

be implemented prior to parallelization.

To begin, we wish to compute an approximation to the rth derivative of f , or the quantity ∂rf/∂xr.

The approximation will be computed over q nodes, providing an estimate of order q−r in accuracy

for odd derivatives and an estimate of order q − r + 1 in accuracy for even derivatives. This

approximation may be restated as

∂rf

∂xr
≈ c1f1 + c2f2 + · · ·+ cqfq. (A.9)

Consider the approximation to be for a particular node x̃. Now we expand each fi about the node

x̃:

fi = f̃ + (xi − x̃)
∂f̃

∂x
+

1
2

(xi − x̃)2
∂2f̃

∂x2
+

1
6

(xi − x̃)3
∂3f̃

∂x3
+ · · · . (A.10)

Substituting and collecting coefficients of the ∂if̃
∂xi , we arrive at

∂rf

∂xr
≈

q∑
i=1

cif̃ +
q∑

i=1

ci(xi − x̃)
∂f̃

∂x
+

q∑
i=1

ci(xi − x̃)2
∂2f̃

∂x2
+ · · · . (A.11)

147

To solve for the coefficients ci, we solve the set of equations



1 1 1 · · · 1

(x1 − x̃) (x2 − x̃) (x3 − x̃) · · · (xq − x̃)

(x1 − x̃)2 (x2 − x̃)2 (x3 − x̃)2 · · · (xq − x̃)2

...
...

...
. . .

...

(x1 − x̃)q (x2 − x̃)q (x3 − x̃)q · · · (xq − x̃)q





c1

c2

c3

...

cq


= R, (A.12)

where R =

[
0 · · · 0 r! 0 · · · 0

]T

. In other words, R is an array containing zeros

except for an entry of value r! at the rth position in the array. Upon solving for the coefficents ci,

substitution into Eq. (A.9) provides the algorithm for computing the rth derivative.

First Derivative Here, we wish to compute derivatives of order one, so we set r equal to one.

Fourth-Order Centered Difference Now, for a fourth-order approximation we must use five

nodes, and we set q = 5 so that we have a fourth-order approximation. We now solve the

following for the coefficients of the particular nodes:



1 1 1 1 1

(−2h) (−h) 0 (h) (2h)

(−2h)2 (−h)2 0 (h)2 (2h)2

(−2h)3 (−h)3 0 (h)3 (2h)3

(−2h)4 (−h)4 0 (h)4 (2h)4





ci−2

ci−1

ci

ci+1

ci+2


=



0

1

0

0

0


. (A.13)

148

The fourth-order scheme for the first derivative is now

∂f

∂x
=

1
12h

fi−2 −
2

3h
fi−1 +

2
3h
fi+1 −

1
12h

fi+2. (A.14)

Sixth-Order Centered Difference Now, for a sixth-order approximation we must use seven

nodes, and we set q = 7 so that we have a sixth-order approximation. We now solve the

following for the coefficients of the particular nodes:



1 1 1 1 1 1 1

(−3h) (−2h) (−h) 0 (h) (2h) (3h)

(−3h)2 (−2h)2 (−h)2 0 (h)2 (2h)2 (3h)2

(−3h)3 (−2h)3 (−h)3 0 (h)3 (2h)3 (3h)3

(−3h)4 (−2h)4 (−h)4 0 (h)4 (2h)4 (3h)4

(−3h)5 (−2h)5 (−h)5 0 (h)5 (2h)5 (3h)5

(−3h)6 (−2h)6 (−h)6 0 (h)6 (2h)6 (3h)6





ci−3

ci−2

ci−1

ci

ci+1

ci+2

ci+3



=



0

1

0

0

0

0

0



. (A.15)

The sixth-order scheme for the first derivative is now

∂f

∂x
= − 1

60h
fi−3 +

3
20h

fi−2 −
3

4h
fi−1 +

3
4h
fi+1 −

3
20h

fi+2 +
1

60h
fi+3. (A.16)

Third-Order Upwinding (Forward) Difference Now for a third-order approximation we must

use four nodes, and we set q = 4 so that we have a third-order approximation. We now solve

149

the following for the coefficients of the particular nodes:



1 1 1 1

0 h 2h 3h

0 h2 (2h)2 (3h)2

0 h3 (2h)3 (3h)3

0 h4 (2h)4 (3h)4





ci

ci+1

ci+2

ci+3


=



0

1

0

0


. (A.17)

The third-order scheme for the first derivative is now

∂f

∂x
= −11

6h
fi +

3
h
fi+1 −

3
2h
fi+2 +

1
3h
fi+3. (A.18)

Fourth-Order Upwinding (Forward) Difference Now, for a fourth-order approximation we

must use five nodes, and we set q = 5 so that we have a fourth-order approximation. Note

that, in this case, the derivative is defined for a node i with neighbors i− 1, i+ 1 . . . i+ 3. We

now solve the following for the coefficients of the particular nodes:



1 1 1 1 1

−h 0 h 2h 3h

(−h)2 0 h2 (2h)2 (3h)2

(−h)3 0 h3 (2h)3 (3h)3

(−h)4 0 h4 (2h)4 (3h)4





ci

ci+1

ci+2

ci+3

ci+4


=



0

1

0

0

0


. (A.19)

150

The fourth-order scheme for the first derivative is now

∂f

∂x
= − 1

4h
fi −

5
6h
fi+1 +

3
2h
fi+2 −

1
2h
fi+3 +

1
12h

fi+4. (A.20)

Fifth-Order Upwinding (Forward) Difference Now, for a fifth-order approximation we must

use six nodes, and we set q = 5 so that we have a fifth-order approximation. We now solve

the following for the coefficients of the particular nodes:



1 1 1 1 1 1

0 h 2h 3h 4h

0 h2 (2h)2 (3h)2 (4h)2

0 h3 (2h)3 (3h)3 (4h)3

0 h4 (2h)4 (3h)4 (4h)4

0 h5 (2h)5 (3h)5 (4h)5





ci

ci+1

ci+2

ci+3

ci+4

ci+5



=



0

1

0

0

0

0



. (A.21)

The fourth-order scheme for the first derivative is now

∂f

∂x
= −137

60h
fi +

5
h
fi+1 −

5
h
fi+2 +

10
3h
fi+3 −

5
4h
fi+4 +

1
5h
fi+5. (A.22)

Second Derivative Here, we wish to compute derivatives of order two, so we set r equal to two.

Fourth-Order Centered Difference We repeat the procedure for the first derivative case, ex-

cept now R =

[
0 0 2! 0 0

]T

. The fourth-order scheme for the second derivative is

151

now

∂f

∂x
= − 1

12h2
fi−2 +

4
3h2

fi−1 −
5

2h2
fi +

4
3h2

fi+1 −
1

12h2
fi+2. (A.23)

Sixth-Order Centered Difference We repeat the procedure for the first derivative case, except

now R =

[
0 0 2! 0 0 0 0

]T

. The sixth-order scheme for the second derivative is

now

∂2f

∂x2
=

1
90h2

fi−3 −
3

20h2
fi−2 +

3
2h2

fi−1 −
49

18h2
fi +

3
2h2

fi+1 −
3

20h2
fi+2 +

1
90h2

fi+3. (A.24)

Third-Order Upwinding (Forward) Difference We repeat the procedure for the first deriva-

tive case, except now R =

[
0 0 2! 0

]T

. The third-order scheme for the second deriva-

tive is now

∂2f

∂x2
=

2
h2
fi −

5
h2
fi+1 +

4
h2
fi+2 −

1
h2
fi+3. (A.25)

Fourth-Order Upwinding (Forward) Difference We repeat the procedure for the first deriva-

tive case, except now R =

[
0 0 2! 0 0

]T

. The fourth-order scheme for the second

derivative is now

∂2f

∂x2
=

11
12h2

fi −
5

3h2
fi+1 +

1
2h2

fi+2 +
1

3h2
fi+3 −

1
12h2

fi+4. (A.26)

Fifth-Order Upwinding (Forward) Difference We repeat the procedure for the first deriva-

tive case, except now R =

[
0 0 2! 0 0 0

]T

. The fifth-order scheme for the second

152

derivative is now

∂2f

∂x2
=

15
4h2

fi −
77
6h2

fi+1 +
107
6h2

fi+2 −
13
h2
fi+3 +

61
12h2

fi+4 −
5

6h2
fi+5. (A.27)

A.4 Optimized Spatial Discretization

High-order finite difference schemes do not necessarily lead to accurate solutions. In particular, the

problems of interest involve nondispersive waves that may not be captured well by conventional

(dispersive) finite difference schemes. As a remedy, one can optimize the differencing scheme in

wavenumber space, as proposed by Lele (1992) and Tam and Webb (1993). These new schemes

should produce wave solutions that are more similar to those of the actual governing partial-

differential equations.

First Derivative Consider the following discretization of the first derivative:

∂f

∂x
(x) ≈ 1

h

M∑
j=−M

ajf(x+ jh). (A.28)

Observe that we only consider stencils over odd numbers of grid points. The Fourier transform and

its inverse are defined as

F (k) =
1

2π

∫ ∞

−∞
f(x)e−ikxdx (A.29)

f(x) =
∫ ∞

−∞
F (k)eikxdk (A.30)

153

and computing the Fourier transform of Eq. (A.28), we arrive at

ikF (k) ≈

1
h

M∑
j=−M

aje
ijkh

F (k). (A.31)

This defines the effective wavenumber K of the finite difference scheme, where K is defined as

Kh = −i
M∑

j=−M

aje
ijkh. (A.32)

The finite differencing scheme can then be optimized in the sense that the error between E between

the wavenumber and the effective wave number is a minimum. The quantity E is defined as

E =
∫ pi/2

−pi/2
|kh−Kh|2d(kh) (A.33)

=
∫ pi/2

−pi/2

∣∣∣∣∣∣kh+ i
M∑

j=−M

aje
ijkh

∣∣∣∣∣∣
2

d(kh) (A.34)

(A.35)

and the scheme is optimal in the sense that

∂E

∂aj
= 0 j = -M to M. (A.36)

Instead of using all of the coefficients in the previous expression to minimize the error, a combination

of error minimization and traditional Taylor series truncation is used to identify the coefficients.

Here, we implement the following to produce a fourth-order accurate scheme:

M = 3 a0 = 0 lim
k→0

∂(Kh)
∂(kh)

= 1 lim
k→0

∂3(Kh)
∂(kh)3

= 1 lim
k→0

∂E

∂a3
= 0 (A.37)

154

and compute the following spatially optimized scheme:

∂f

∂x
≈ 496− 15π
−5376 + 1890π

(fi+1 − fi−1) +
5632− 1725π
10752− 3780π

(fi+2 − fi−2) +
272− 85π
−1792 + 630π

(fi+3 − fi−3).

(A.38)

A comparison between the optimized scheme and the standard fourth- and sixth-order finite dif-

ference schemes is shown in Figure A.1. As seen in this comparison, the optimized scheme is more

accurate than two classic schemes at higher wavenumbers.

0 !/2 !
0

!/2

!

k h

ap
pr

ox
im

at
io

n

0 !/3 2!/3
"0.2

 0

 0.2

k h

ap
pr

ox
im

at
io

n
!

k
h

Figure A.1: Comparison in wavenumber approximation to the first derivative. (- - -) Optimized
fourth-order finite difference scheme. (- · -) Sixth-order finite-difference scheme. (· · ·) Fourth-order
finite-difference scheme.

Second Derivative Consider the following discretization of the second derivative:

∂2f

∂x2
(x) ≈ 1

h2

M∑
j=−M

bjf(x+ jh). (A.39)

155

Observe that we only consider stencils over odd numbers of grid points. Computing the Fourier

transform of Eq. (A.39), we arrive at

−k2F (k) ≈

 1
h2

M∑
j=−M

bje
ijkh

F (k). (A.40)

This defines the effective wavenumber squared K2 of the finite difference scheme, where K is defined

as

K2h2 = −
M∑

j=−M

bje
ijkh. (A.41)

The finite differencing scheme can then be optimized in the sense that the error E between the

wavenumber squared and the effective wave number squared is a minimum. The quantity E is

defined as

E =
∫ pi/2

−pi/2
|k2h2 −K2h2|2d(kh) (A.42)

=
∫ pi/2

−pi/2

∣∣∣∣∣∣k2h2 −
M∑

j=−M

bje
ijkh

∣∣∣∣∣∣
2

d(kh) (A.43)

(A.44)

and the scheme is optimal in the sense that

∂E

∂bj
= 0 j = -M to M. (A.45)

Instead of using all of the coefficients in the previous expression to minimize the error, a combination

of error minimization and traditional Taylor series truncation is used to identify the coefficients.

156

Here, we implement the following:

M = 3 (A.46)

lim
k→0

Kh = 0 (A.47)

lim
k→0

∂2(Kh)
∂(kh)2

= 2 (A.48)

lim
k→0

∂4(Kh)
∂(kh)4

= 0 (A.49)

lim
k→0

∂6(Kh)
∂(kh)6

= 0 (A.50)

lim
k→0

∂E

∂b3
= 0 (A.51)

and compute the following spatially optimized scheme:

∂2f

∂x2
≈ −50720− 24975π + 19800π2 − 2250π3

−194688 + 62370π
fi

+
31888− 3345π − 3300π2 + 375π3

−43264 + 13860π
(fi+1 − fi−1)

+
32224− 7575π − 1320π2 + 150π3

43264− 13860π
(fi+2 − fi−2)

+
53744− 13095π − 1980π2 + 225π3

−389376 + 124740π
(fi+3 − fi−3). (A.52)

A comparison between the optimized scheme and the standard fourth- and sixth-order finite dif-

ference schemes is shown in Figure A.2. As for the first-derivative approximation, the optimized

scheme for the second derivative is more accurate than two classic schemes at higher wavenumbers.

157

0 !/2 !
0

!""2/2

!""2

k h

ap
pr

ox
im

at
io

n

0 !/3 2!/3
#0.1

 0

 0.1

k h

ap
pr

ox
im

at
io

n!
(k

 h
)2

Figure A.2: Comparison in wavenumber approximation to the second derivative.// (- - -) Optimized
fourth-order finite difference scheme. (- · -) Sixth-order finite-difference scheme. (· · ·) Fourth-order
finite-difference scheme.

A.5 Implementation

Boundary stencils Derivative computation requires the use of different stencils, as the nature of

the available data changes near the boundaries. In particular, the differencing scheme must switch

from the primary scheme in the middle of the domain to an upwinding scheme at the domain

boundary. In the diffuser code, the implicit formulation uses three different stencils for derivatives

computed at nodes i = {1, n}, {2, n−1}, {3, . . . , n−2}. The explicit formulation uses four different

stencils for derivatives computed at nodes i = {1, n}, {2, n − 1}, {3, n − 2}, {4, . . . , n − 3}. The

implicit formulation is illustrated in Figure A.3 and the explicit formulation is illustrated in Figure

A.4.

As shown in Figure A.3, the implicit scheme switches from Padé sixth-order to Padé fourth-order

and finally to upwinding, explicit third-order at the end node. As shown in Figure A.4, the explicit

scheme switches from optimized fourth-order to centered fourth-order, upwinding fourth-order, and

158

Node Scheme

1 upwind fifth

2 upwind fourth

3 centered fourth

4 optimized fourth

… … …

n-3 optimized fourth

n-2 centered fourth

n-1 upwind fourth

n upwind fifth

Node Scheme

1 upwind third

2 Padé fourth

3 Padé sixth

… … …

n-2 Padé sixth

n-1 Padé fourth

n upwind third

Figure A.3: Padé differencing formulation. The primary scheme is Padé sixth-order and the end-
node scheme is upwinding (explicit) third-order.

finally to upwinding fifth-order at the end node. The longer stencils for the end nodes are used for

higher accuracy; shorter stencils used at the end nodes, for this study, resulted in instability and

the appearance of spurious modes.

Node Scheme

1 upwind fifth

2 upwind fourth

3 centered fourth

4 optimized fourth

… … …

n-3 optimized fourth

n-2 centered fourth

n-1 upwind fourth

n upwind fifth

Node Scheme

1 upwind third

2 Padé fourth

3 Padé sixth

… … …

n-2 Padé sixth

n-1 Padé fourth

n upwind third

Figure A.4: Explicit differencing formulation. The primary scheme is optimized fourth-order.

Resulting Code The coefficient sets have been input into the code as follows:

TYPE (centered_scheme) :: &

cent_pade6_1 = centered_scheme(1.D0/3.D0 , 7.D0/9.D0 , 1.D0/36.D0, 0.D0 , 0.D0), &

cent_pade4_1 = centered_scheme(1.D0/4.D0 , 3.D0/4.D0 , 0.D0 , 0.D0 , 0.D0), &

cent_exp6_1 = centered_scheme(0.D0 , 3.D0/4.D0 , -3.D0/20.D0, 1.D0/60.D0 , 0.D0), &

cent_exp4_1 = centered_scheme(0.D0 , 2.D0/3.D0 , -1.D0/12.D0, 0.D0 , 0.D0), &

cent_pade6_2 = centered_scheme(2.D0/11.D0, -2.D0*(12.D0/11.D0+3.D0/44.D0),12.D0/11.D0,3.D0/44.D0, 0.D0),&

cent_pade4_2 = centered_scheme(1.D0/10.D0, -2.D0*6.D0/5.D0, 6.D0/5.D0, 0.D0 , 0.D0), &

159

cent_exp6_2 = centered_scheme(0.D0 , -49.D0/18.D0, 3.D0/2.D0, -3.D0/20.D0, 1.D0/90.D0), &

cent_exp4_2 = centered_scheme(0.D0 , -5.D0/2.D0 , 4.D0/3.D0, -1.D0/12.D0, 0.D0), &

cent_f2 = centered_scheme(0.25D0, 0.75D0, 0.375D0, 0.D0, 0.D0), &

cent_uf4 = centered_scheme(1.D0, 1.D0, 0.D0, 0.D0, 0.D0)

TYPE (upwind_scheme) :: &

upwind_exp3_1 = upwind_scheme((/-11.D0/6.D0 , 3.D0, -3.D0/2.D0, 1.D0/3.D0 , 0.D0 , 0.D0 /)),&

upwind_exp4_1 = upwind_scheme((/-25.D0/12.D0, 4.D0, -3.D0 , 4.D0/3.D0 , -1.D0/4.D0, 0.D0 /)),&

upwind_exp3_2 = upwind_scheme((/ 2.D0 , -5.D0, 4.D0 , -1.D0 , 0.D0 , 0.D0 /)),&

upwind_exp4_2 = upwind_scheme((/ 35.D0/12.D0,-26.D0/3.D0,19.D0/2.D0, -14.D0/3.D0, -11.D0/12.D0, 0.D0 /))

!Define the optimized fourth-order explicit schemes:

REAL(kind=2), parameter :: opi = 3.1415926535897931D0

REAL(kind=2), parameter :: opta1 = (496.0D0-15.0D0*opi) / (-5376.0D0+1890.0D0*opi)

REAL(kind=2), parameter :: opta2 = (5632.0D0-1725.0D0*opi) / (10752.0D0-3780.0D0*opi)

REAL(kind=2), parameter :: opta3 = (272.0D0-85.0D0*opi) / (-1792.0D0+630.0D0*opi)

REAL(kind=2), parameter :: optb0 =(-50720.0D0-24975.0D0*opi+19800.0D0*opi*opi-2250.0D0*opi*opi*opi)&

/ (-194688.0D0+62370.0D0*pi)

REAL(kind=2), parameter :: optb1 = (31888.0D0-3345.0D0*opi-3300.0D0*opi*opi+375.0D0*opi*opi*opi) &

/ (-43264.0D0+13860.0D0*opi)

REAL(kind=2), parameter :: optb2 = (32224.0D0-7575.0D0*opi-1320.0D0*opi*opi+150.0D0*opi*opi*opi) &

/ (43264.0D0-13860.0D0*pi)

REAL(kind=2), parameter :: optb3 = (53744.0D0-13095.0D0*opi-1980.0D0*opi*opi+225.0D0*opi*opi*opi) &

/ (-389376.0D0+124740.0D0*opi)

TYPE (centered_scheme) :: &

cent_expopt4_1 = centered_scheme(0.D0, opta1 , opta2, opta3 , 0.D0), &

cent_expopt4_2 = centered_scheme(0.D0, optb0 , optb1, optb2 , optb3)

160

A.6 Error Analysis

The convergence properties for the Padé sixth-order, explicit sixth-order, and explicit-optimized

fourth-order schemes are computed and compared. The model problem for this comparison is the

computation of the function f(x) = cos(4x)−1 and its first- and second-derivatives over the domain

xε[0, 4]. The primary and boundary stencils used are as described previously. The number of grid

points used for the computation ranges from 21 points to 2001 points. For this comparison, the

error is defined as the absolute-value of the difference between the computational and actual value

at x = 2.0. In other words, the first-derivative error is computed as

(
∂f

∂x

)
error

=

∣∣∣∣∣
(
∂f

∂x

)
computed

−
(
∂f

∂x

)
actual

∣∣∣∣∣
x=2.0

. (A.53)

and the second-derivative error is computed as

(
∂2f

∂x2

)
error

=

∣∣∣∣∣
(
∂2f

∂x2

)
computed

−
(
∂2f

∂x2

)
actual

∣∣∣∣∣
x=2.0

. (A.54)

The results of these computations are shown in Figure A.5.

As shown in Figure A.5, the order of the schemes is apparent from the slopes of the error functions.

The increase in error at high resolution is attributed to roundoff error.

Comparison of diffuser results Finally, a comparison is made with computations from the

diffuser code. The computations are of a two-dimensional flow through a straight duct. The

161

10!3 10!2 10!1 100

10!10

10!5

100

! x

er
ro

r a
t x

=2
.0

(a)

10!3 10!2 10!1 100

10!10

10!5

100

! x

er
ro

r a
t x

=2
.0

(b)

Figure A.5: Error analysis: (a) first derivative; (b) second derivative. (- - -) Optimized fourth-order
finite difference scheme. (- · -) Explicit sixth-order finite-difference scheme. (-) Padé sixth-order
finite-difference scheme.

domain is rectangular, with a streamwise length-to-transverse width ratio of 2:1 and a grid size of

41 x 21 points. The flow conditions are as follows: M = 0.4, Rewidth = 1000, Pr = 0.7, and γ = 1.4.

The boundary conditions are as follows: left inflow, right outflow, symmetry along the bottom, and

wall conditions along the top. A Blasius boundary layer is included with an inlet displacement

thickness of δ = 0.25. Details of the simulation are found in the documentation for the code

(Suzuki et al., 2004). It is noted that the extra features of the code, including acoustic forcing,

suction, and upstream boundary-layer noise, are turned off for this comparison. The metric used for

the comparison is a residual computed during the time-stepping routine. Computational results are

included for cases with and without buffer zones and for cases with various differencing schemes.

The cases studied are, for primary streamwise/transverse differencing, as follows: Padé/Padé;

Padé/explicit; explicit/explicit; explicit/Padé/explicit. The Padé scheme corresponds to the sixth-

order implicit scheme and the explicit scheme referes to the optimized fourth-order scheme. These

results are shown in Figure A.6.

162

0 20 40 60 80 100 120

10!5

100

Re
sid

ua
l

time

P/P, buf. off
P/P, buf. on
e/P, buf. off
e/P, buf. on
P/e, buf. off
P/e, buf. on
e/e, buf. off
e/e, buf. on

Figure A.6: Residual time-histories for the diffuser results. The streamwise / transverse differencing
schemes are referenced as: P/P = Padé / Padé; e/P = explicit / Padé; P/e = Padé / explicit; e/e
= explicit / explicit.

From Figure A.6, it is apparent that the full Padé and streamwise explicit/transverse Padé schemes

compute the lowest residuals compared to the other cases. The use of the buffer is also correlated

with lower computed residuals. The computation using the full explicit formulation diverged at an

early time. Also note the high correlation between the full Padé and streamwise explicit/transverse

Padé computations. From this comparison, the latter formulation is acceptable for computing flows

with similar convergence to those computed from a fully implicit Padé scheme. This streamwise

explicit/transverse Padé formulation will be used for future parallel implementation of the diffuser

code, as the explicit formulation admits to a parallel, domain-splitting framework.

A.7 Concluding Remarks

Prior to parallelization of the diffuser code, new differencing schemes must be implemented that

allow for domain-splitting. Classical and optimal explicit finite-differencing schemes were described,

and a formulation using the optimal scheme is implemented into the code. Results from diffuser

163

computations show that the new formulation compares well with the original implicit formulation.

With this local (and accurate) formulation, the diffuser code is now ready for parallelization.

164

Appendix B

Parallel Implementation of the diffuser
Code

Parallelization was performed according to the Message Passing Interface (MPI) standard because

of the popularity and ease-of-use of MPI in applications requiring distributed processing or memory.

This programming environment is well documented by Pacheco and Ming (1997) and at Argonne

National Laboratories (2001). As the original diffuser code is written in Fortran 90, the Fortran

90 flavor of MPI is used.

B.1 Domain-Splitting Framework

The original spatial integration algorithms for the diffuser code were implicit in both the stream-

wise and transverse directions. To facilitate parallelization, explicit algorithms were chosen to

replace the original algorithms in one direction (Fung, 2001). The direction chosen is the stream-

wise direction. Parallelization is now straightforward; individual processors are made responsible

for a streamwise portion of the entire computational domain. Because the streamwise integration

165

scheme is explicit, each processor can almost compute its portion of the flow independently. Each

processor must communicate information across the boundaries of their local domains to maintain

continuity in computing the flow physics. A schematic of this framework is shown in Figure B.1.

Figure B.1: Domain-splitting framework. The total computational task is distributed to the parallel
processors in a streamwise fashion.

As shown in this figure, the local domain for each processor is extended so that processors re-

sponsible for neighboring regions can communicate their boundary information. At each step in

the spatial integration routine, these neighbor-communication regions are synchronized. There are

communications and computational costs associated with computing the flow in these communica-

tion regions. Currently, the benefits of having a simple parallel algorithm, whose implementation

is straightforward, outweigh these costs.

166

B.2 Setup: the mpi basic Module

This module contains the relevant code for initializing and terminating the processing environment.

initialize mpi routine Three system calls are made here:

call MPI_INIT(mpi_ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD, mpi_rank, mpi_ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD, mpi_size, mpi_ierr)

This subroutine is called at the beginning of the program execution. The first call initializes the en-

vironment. The second call identifies the particular processor by its rank (the first processor is rank

0, the second processor is rank 1, and so on). The third call identifies the total number of processors

available for the computation. The arguments in the calls are as follows: MPI COMM WORLD,

the address for the entire processing environment, mpi rank, the local rank (integer), mpi size, the

system size (integer), and mpi ierr, an error return variable (integer array).

finalize mpi routine Only one system call is made here:

CALL MPI_Finalize(mpi_ierr)

This call simply terminates the entire environment, and the call is made at the end of the program

execution.

167

mpi indices(n) routine Each processor calls this routine to identify its local processing domain.

The argument n refers to the global domain size. First, the domain is divided up according to the

number of available processors. Currently, the division is based on the first dimension (streamwise)

of the domain. The algorithm is very simple and may display pathological behavior depending on

the domain size; please examine this subroutine if the computed local domain sizes are nonsensical.

The variables mpi imin nopad and mpi imax nopad contain the limits of the local domain:

test=DBLE(n(1))/(DBLE(mpi_size))

divlow = floor(test)

divhigh = ceiling(test)

mpi_imin_nopad = mpi_rank*divhigh+1

mpi_imax_nopad = (mpi_rank+1)*divhigh

Now, the (communication) padding is added to the local domain size. Note that padding is only

added to the local domain boundaries that are not coincident with the global domain boundaries.

This should make sense, because communication is not required across the global domain boundary;

communication is only required between processors that require neighboring (in the parallel and

local domain sense) information. The following code documents this algorithm and the definition

of the variables mpi imin and mpi imax for the domain local to the processor.

IF (mpi_rank == 0) THEN

padminus = 0

padplus = padding

168

END IF

IF (mpi_rank == mpi_size-1) THEN

mpi_imax_nopad = n(1) ! avoids some pathological behavior

! from domain division

padminus = padding

padplus = 0

END IF

IF (mpi_rank .gt. 0 .and. mpi_rank .lt. mpi_size-1) THEN

padminus = padding

padplus = padding

END IF

mpi_imin = mpi_imin_nopad - padminus !subtract stencil length (communication)

mpi_imax = mpi_imax_nopad + padplus !add the stencil length (communication)

Finally, the domain-size variable n is redefined to reference the local domain size:

n(1) = mpi_imax - mpi_imin + 1

Note that each processor is only aware of its local domain size. This information is not communi-

cated to the other processors.

169

B.3 Communication: the mpi advanced Module

This module contains the relevant subroutines for transferring information from one processor to

another. The communication style implemented for this code is very simple and straightforward.

The processor of rank i communicates only with processors i − 1 and i + 1. The communication

tasks are separated accordingly.

Communication using MPI is performed with synchronous sending. This type of sending is a

communication where a processor starts to send a message regardless of the status of the recepient.

However, the message sending will not complete unless a receive is reported by the recipient. Note

that this method of communication is nonlocal; communication is dependent on the status of more

than the local processor. The communication is buffered, but the synchronous mode is beneficial

in that the buffer is guaranteed to be cleared before new messages are sent.

the mpi transfer(q, nvars) routine This routine performs the necessary communication be-

tween processors. The argument q is the state variable to be communicated, and the argument

nvars is the dimension of q. Note, dimension does not refer to the domain size, but to the type of

information (density, momentum, for instance). Observe that processors of rank 0 and mpi size−1

each perform communication with one other processor (rank 1 and mpi size−2, respectively). The

other processors i communicate with processors i− 1 and i+ 1, as shown in the following code:

if(mpi_rank .ne. mpi_size-1) THEN

CALL mpi_transfer_NandNplus1(q, nvars)

170

end if

if(mpi_rank .ne. 0) THEN

CALL mpi_transfer_NandNminus1(q, nvars)

end if

The first call is to a subroutine that handles communication between processors of rank i and i+1,

and the second call is to a subroutine that handles communication between processors or rank i

and i− 1.

the mpi transfer NandNplus1(q, nvars) subroutine This handles communication from pro-

cessors i to processors i+1. The arguments are the same as those in the mpi transfer(q, nvars)

routine. First, the data (for the variables q, over the local subdomain reserved for neighboring

communication) is reorganized into a one-dimensional array:

DO i1 = 1,nvars

DO i2 = 1,padding

qtemp(padding*(i1-1)*n(2)+(i2-1)*n(2)+1: padding*(i1-1)*n(2)+i2*n(2)) &

= q(i1)%f(n(1)-2*padding + i2,1:n(2))

END DO

END DO

171

In this routine, processor i first posts a send message to the processor i + 1, and then processor i

posts a receive message to the processor i+ 1. Therefore, this routine governs half of two distinct

communications. The system calls are as follows:

tag1 = mpi_rank !identifier for outgoing message

tag2 = 2*mpi_size+mpi_rank !identifier for incoming message

!SEND AT N TO N+1

CALL MPI_SSEND(qtemp(1),nvars*padding*n(2), MPI_DOUBLE_PRECISION, &

mpi_rank + 1, tag1, MPI_COMM_WORLD, mpi_ierr)

!RECEIVE AT N FROM N+1

CALL MPI_RECV(qtemp(1), nvars*padding*n(2), MPI_DOUBLE_PRECISION, &

mpi_rank + 1, tag2+1, MPI_COMM_WORLD, status, mpi_ierr)

The arguments are as follows: qtemp(1) refers to the address of the first value in the qtemp array;

nvars ∗ padding ∗ n(2) is the size of the message (integer); MPI DOUBLE PRECISION is

the data type for the message; mpi rank + 1 is the rank of processor i + 1 (integer), tag1 and

tag2 + 1 are tag identifiers for the messages (to keep track of multiple messages in the system)

(integer); MPI COMM WORLD is the global system address; status and mpi ierr are integer

arrays corresponding to error and status checking.

Finally, the incoming data is redistributed to the corresponding state variables q (over the local

communication subdomain):

172

DO i1 = 1,nvars

DO i2 = 1,padding

q(i1)%f(n(1)-padding+i2,1:n(2)) &

= qtemp(padding*(i1-1)*n(2)+(i2-1)*n(2)+1: padding*(i1-1)*n(2)+i2*n(2))

END DO

END DO

the mpi transfer NandNminus1(q, nvars) subroutine This handles communication from pro-

cessors i to processors i− 1. Communication is very similar to the mpi transfer NandNminus1(q,

nvars) routine. Observe that, complementary to the mpi transfer NandNminus1(q, nvars) rou-

tine, processor i first posts a receive to processor i−1, and then processor i posts a send to processor

i − 1. Reorganization and redistribution of the qtemp and q variables are performed accordingly.

The main portion of the routine is listed as follows:

tag1 = mpi_rank

tag2 = 2*mpi_size+mpi_rank

!RECEIVE AT N FROM N-1

CALL MPI_RECV(qtemp(1), nvars*padding*n(2), MPI_DOUBLE_PRECISION, &

mpi_rank - 1, tag1-1, MPI_COMM_WORLD, status, mpi_ierr)

DO i1 = 1,nvars

DO i2 = 1,padding

173

q(i1)%f(i2,1:n(2)) &

= qtemp(padding*(i1-1)*n(2)+(i2-1)*n(2)+1: padding*(i1-1)*n(2)+i2*n(2))

END DO

END DO

! SEND AT N TO N-1

DO i1 = 1,nvars

DO i2 = 1,padding

qtemp(padding*(i1-1)*n(2)+(i2-1)*n(2)+1: padding*(i1-1)*n(2)+i2*n(2)) &

= q(i1)%f(i2+padding, 1:n(2))

END DO

END DO

CALL MPI_SSEND(qtemp(1),nvars*padding*n(2), MPI_DOUBLE_PRECISION, &

mpi_rank - 1, tag2, MPI_COMM_WORLD, mpi_ierr)}

B.4 Specifics

This section documents revisions of the original diffuser code to accomodate the parallel framework.

bc module Considering the boundary on a two-dimensional domain, not every processor is re-

quired to compute boundary information. In particular, only processors 0 and mpi size - 1 must

174

compute certain quantities such as the bc1 and bc2 variables. Flow control statements are included

in the poinsotlele subroutine and are not listed here.

independents module These revisions document a global domain definition for each processor.

In addition to defining local grid parameters, as read from a preprocessing output file, global domain

parameters are defined. In this sense, a processor i knows about the entire grid and grid metrics.

The code for storing global grid information is almost identical to the code for storing the local grid

information (which is in turn identical to the serial code) and is not included here. It is important to

note that each processor requires knowledge of global geometric parameters like stagnation pressure

measurement location. It is for this reason that any global information is stored.

ddt module The revisions to this subroutine are straightforward. First, the redefine met sub-

routine contains global-local grid specification statements of the type found in the independents

module. Algorithms for computing the stagnation pressure ratio and skin friction are included in

a later subsection. The remaining comments in this subsection refer to the ddt subroutine.

Neighbor communication Calls to mpi transfer are made at the beginning of the routine, after

fluxes are computed, after the divflux subroutine call, and after the Laplacian viscous terms

are computed.

Acoustic forcing An acoustic forcing amplitude parameter, based on the density at a downstream

location, is communicated from processor mpi size - 1 to all other processors using a broadcast

system call:

175

CALL MPI_BCAST(afconst, 1, MPI_DOUBLE_PRECISION, &

mpi_size-1, MPI_COMM_WORLD, mpi_ierr)

Here, the arguments are similar in type and syntax to the synchronous send system call.

Reorganization The code for computing skin friction and stagnation pressure ratio have been

removed from this subroutine and reorganized as distinct subroutines.

dependents module The revisions to this module contain revisions corresponding to local-

domain grid specifications. These revisions are found in the setup ic routine.

For the Blasius boundary-layer or Couette-flow solution, the pressure computation requires infor-

mation about the local grid size. The code is included as follows:

DO i = 1,n(1)

q(4,1)%f(i,1:n(2)) = 1.D0/gamma + 5.D-1 * &

(mach**2-((upot(1)%f(i+mpi_imin-1,1:n_total(2)))**2 &

+(upot(2)%f(i+mpi_imin-1,1:n_total(2)))**2))

END DO

Also, as the pressure change is computed and added, similar statements arise:

DO i = 1, n(1)

DO j = 1, n(2)

176

q(4,1)%f(i,j)=q(4,1)%f(i,j)+dp(i+mpi_imin-1)

END DO

END DO

Furthermore, the initial field for the acoustic pulse test case is computed from the global grid

information:

DO i = 1, n(1)

DO j = 1, n(2)

q(1,2)%f(i,j) = 1.0D-4 * &

DEXP(-50.D0*((gorig%x(1)%f(i+mpi_imin-1,j)-xcen)**2 + &

(gorig%x(2)%f(i+mpi_imin-1,j)-ycen)**2))

END DO

END DO

Computing the temperature and density near the end of the routine follows similarly, as it is

computed using the potential flow solution, which is stored on a global domain-sized array:

! evaluation of temperature (which I temporarily store in q(3)) from T0=const.

DO i=1,n(1)

q(3,1)%f(i,1:n(2)) = tw-5.D-1 *((upot(1)%f(i+mpi_imin-1,1:n_total(2)))**2 +&

(upot(2)%f(i+mpi_imin-1,1:n_total(2)))**2)

END DO

! density

177

q(3,1)%f = gamma/gm1*q(4,1)%f/q(3,1)%f

DO i=1,n(1)

q(4,1)%f(i,1:n(2)) =q(4,1)%f(i,1:n(2))/gm1 + 5.D-1*q(3,1)%f(i,1:n(2))*&

((upot(1)%f(i+mpi_imin-1,1:n_total(2)))**2 +&

(upot(2)%f(i+mpi_imin-1,1:n_total(2)))**2)

q(1,1)%f(i,1:n(2)) =upot(1)%f(i+mpi_imin-1,1:n_total(2))*q(3,1)%f(i,1:n(2))

q(2,1)%f(i,1:n(2)) =upot(2)%f(i+mpi_imin-1,1:n_total(2))*q(3,1)%f(i,1:n(2))

END DO

Stagnation pressure ratio and skin friction

Revisions in the ddt module Stagnation pressure ratio and skin friction routines have been

converted into distinct subroutines (the prcv compute and cf compute subroutines, respec-

tively) within the ddt module. The routines are virtually identical to those found in the serial

version of the code. Neighbor-communication system calls using the mpi transfer subrou-

tine are made at the beginning of these subroutines. This completes the revision for the code

to compute skin friction.

Only the processors that are responsible for computing the stagnation pressure ratio are active

in this subroutine. These processors are those of rank prcv upstream proc and prcv downstream proc.

Determination of these processors is documented in the next paragraph. Computation on

these processors goes as that of the serial code. At the end of the subroutine, the two

processors broadcast the quantities pt1, pt2, h1, and h2 to the other processors using the

mpi broadcast system call. Then every processor computes the stagnation pressure ratio

178

from these four quantities. This code was written for simplicity and readability and so it is

recognized that there is redundancy in this algorithm.

Revisions in the post processing module The algorithm for determining the processors re-

sponsible for computing stagnation pressure ratio is found in the initialize prcv subrou-

tine in this module. Each processor stores a logical array up and down (of dimension equal to

the number of processors) and an IF statement is used to determine the respective processors:

IF (g%x(1)%f(padminus+1,1) .le. xtp1 .and. &

xtp1 .le. g%x(1)%f(n(1)-padplus,1)) THEN

up(mpi_rank+1) = .TRUE.

ELSE

END IF

IF(g%x(1)%f(padminus+1,1).le.xtp2.and.xtp2.le.g%x(1)%f(n(1)-padplus,1))THEN

down(mpi_rank+1) = .TRUE.

ELSE

END IF

Here, the quantities xtp1 and xtp2 are the streamwise location of the upstream and down-

stream pressure probe locations that are defined in an input file. Each processor then reports

their findings to the other processors:

DO i = 1,mpi_size

CALL MPI_BCAST(i-1, 1, MPI_INTEGER, i-1, MPI_COMM_WORLD, mpi_ierr)

179

CALL MPI_BCAST(up(i), 1, MPI_LOGICAL, i-1, MPI_COMM_WORLD, mpi_ierr)

END DO

DO i = 1, mpi_size

CALL MPI_BCAST(i-1, 1, MPI_INTEGER, i-1, MPI_COMM_WORLD, mpi_ierr)

CALL MPI_BCAST(down(i), 1, MPI_LOGICAL, i-1, MPI_COMM_WORLD, mpi_ierr)

END DO

Following this communication, every processor is aware of which processors have their up and

down settings as .true.; in other words, each processor is aware of which processors are now

responsible for computing the stagnation pressure ratio:

DO i = 1, mpi_size+1

IF(up(i) == .TRUE.) THEN

prcv_upstream_proc = i-1

END IF

IF(down(i) == .TRUE.) THEN

prcv_downstream_proc = i-1

END IF

END DO

Probe output Each processor is responsible for the output of data for probes whose locations

are found in its local domain. The selection process for this responsibility is similar to that for the

stagnation pressure ratio upstream and downstream locations. The code for this selection process

180

is found in the initialize probes subroutine. A logical array stores values corresponding to

whether a processor is responsible for a probe’s data:

IF (i .ge. mpi_imin+padminus+1 .and. i .le. mpi_imax-padplus) THEN

prbflag(probei) = .TRUE.

END IF

A flow control statement using the prbflag variables is found in the write probes subroutine for

handling the actual data output. The actual write command is

WRITE(probe(i)%funit,fmt=’(6E16.6)’) time, &

(q(j,1)%f(prb(i)%ip(1)-mpi_imin+1, prb(i)%ip(2)), j=1,5)

Currently, the output filename for a probe file is prbNNN MM.dat, where NNN is the probe number

and MM is the processor rank.

Post-processing file IO The revisions to the post-processing routines are very straightforward.

Each processor writes to its own restart, tecplot-compatible, and skin-friction files. Processors

responsible for probe and stagnation pressure ratio data output to their own files. The data for

tecplot and skin-friction files represents only the domain without the neighbor-buffer subdomains.

A single example is given here, for the tecplot-file data output:

WRITE(plot3df%funit) n(1)-padminus-padplus,n(2),5

WRITE(plot3df%funit) (((SNGL(q(ivar,1)%f(i,j)),i=padminus+1, &

181

n(1)-padplus),j=1,n(2)), ivar=1,5)

B.5 General Revisions to the diffuser Code

This section summarizes major revisions in the code that are not directly relevant to the paral-

lelization effort. These include changes in the algorithms for input file processing and parameter

definition, the ddt subroutine, and the introduction of a testing module.

B.6 parameters Module

The initialize parameters routine has been rewritten to split file processing and parameter def-

inition tasks as follows: general, runtime, buffer, suction, upstream noise, acoustic forcing, filtering,

and compressor parameters. The parameter namelist has been divided into corresponding individ-

ual namelists. The parameter.inp file is also divided into the files general.inp, runtime.inp,

buffer.inp, suction.inp, upsnoise.inp, acforcing.inp, filter.inp, and compressor.inp.

Logical flags are now defined for each group. Routines in the other modules use these flags to

determine whether algorithms for those groups should be computed.

A new subroutine called additional parameters contains the algorithms for computing π, α, ν,

γ − 1, wall temperature tw as found previously in the initialize parameters routine. Also, this

new subroutine contains algorithms for computing conductivity, nuby3, and ttrd as found originally

in the ddt routine.

182

B.7 independents Module

The algorithms for providing the various functionality to the code, such as upstream boundary-

layer noise, downstream acoustic forcing, buffer regions, filters, and compressors, are taken out of

the initialize independents subroutine and are implemented as individual subroutines. The

new subroutine names are setup upsnoise, and so on. The code for these algorithms is otherwise

unchanged.

B.8 testing Module

This new module is defined to include most of the various debugging and testing subroutines written

for the program. These include the existing test cfl routine for computing the cfl condition and

the maximum allowable timestep. New subroutines are included as follows:

test mpi indices Calls the mpi indices routine to verify that the spatial discretization is valid.

test mpi packing Communications are made to verify the sending of 2-D array data as 1-D array

data.

test mpi transfer Communications are made to verify the sending and receiving of 2-D data.

Specifically, the q state variables are passed across processors to validate the accuracy of

processor-to-processor communication.

test print q A simple routine for writing the state variables q from the original 2-D+State Length

to a strictly 3-D format.

183

Please refer to the code for listings of these routines.

B.9 Results

B.10 Comparision with Serial diffuser Results

Computations were performed using the serial and parallel codes to simulate a flow. The flow

parameters are as follows: Re = 500, M = 0.65. The domain is rectangular at a resolution of 41

x 21 with boundary conditions as follows: nonreflecting inflow at the upstream end, nonreflecting

outflow at the downstream end, symmetry along one side of the flow and a wall boundary on the

other side. The initial condition contains a Blasius boundary layer with inflow boundary-layer

displacement thickness δ = 0.05.

The computations were performed with a time step of 0.007 for ten time steps. At the end of the

computation, the binary output files (containing the state variable information) were compared

using the UNIX diff utility. The utility reported no differences in the output files over the en-

tire computation. From this comparison, it is reasonable to conclude that the serial and parallel

programs would compute identical flows given the same initial conditions, at least to the (single)

precision of the written output files.

184

B.11 Benchmark Timing Study

The parallel program was tested using a Hewlett-Packard Exemplar V2500 system (a Caltech

CACR facility). The program was run on this system using between 2-32 nodes to examine speedup

behavior. The flow to be computed corresponds to a Re = 10, 000 flow on a diffuser (area ratio of

1.4) at a Mach number of M = 0.65. The grid resolution is 1001x251. These results after computing

800 time steps are shown in Figure B.2.
0 10 20 30

0

5

10

15

20

25

30

35

Number of processors

M
ul

tip
le

s
of

 s
er

ia
l c

om
pu

ta
tio

na
l t

im
eComputational Time for 200 time steps: Re = 10K, grid 1001x251 (black = linear, red = error bounds)

0 10 20 30
0

5

10

15

20

25

30

35

Number of processors

M
ul

tip
le

s

400 time steps

0 10 20 30
0

5

10

15

20

25

30

35

Number of processors

M
ul

tip
le

s

800 time steps

Figure B.2: Timing study on the V2500 for the parallel code. The measure is defined as the multiple
of the required runtime for a 2-node computation.

The measure used in the timing study is defined as the multiple of the time required to perform

a computation on two nodes. The error bars are included in the figure because the computational

times were rounded to the nearest minute upon report to the user. As shown in this figure, the

speedup behavior is very close to the theoretical limit. Note that extra computations are required for

the neighbor-buffer regions. It is then clear that increasing the number of nodes for the computation

185

would result in a larger total computational domain. This extra computational requirement may

be responsible for the deviation of the speedup behavior away from the theoretical limit.

B.12 Program Compilation and Execution

Program compilation is performed using the mpif90 utility usually offered in the MPI distribution.

Program execution is very straightforward in the MPI environment. The following are the main

commands for either the HP V2500 or Beowulf cluster (mixing), found in the CACR network (see

CACR, 2001).

HP V2500 mpirun -np number of nodes .../a.out

Beowulf (mixing) mpirun rsh -np number of nodes N??? ... N??? .../a.out

Preparing the file directories and grid generation is similar to that for the serial version of the code

(Suzuki et al., 2004).

The command given for mixing is for the MVICH (ServerNet) protocols, whose performance has

not been thoroughly tested. A similar command is given that uses standard Ethernet protocols.

Please consult the CACR documentation (see CACR, 2001) for further information.

186

B.13 Bugs

• Output to the diffuser.out file, for reporting initialization and post-processing steps, is not

fully functional in the parallel implementation. The processors compete for access to the file,

and so not all of the intended information is written to this file.

• Output to the probe files. Not all of the probe files are being written. There is probably an

error in the flow control algorithm for selecting processor responsibilities upon reading the

probe.inp file.

187

Bibliography

M. Amitay, D. Pitt, and A. Glezer. Separation in duct flows. J. Aircraft, 39:616–620, 2002.

D. D. Apsley and M. A. Leschziner. Advanced turbulence modelling of separated flow in a diffuser.

Flow Turbulence and Combustion, 63:81–112, 1999.

Argonne National Laboratories. MPICH-a portable implementation of MPI, 2001. http://www-

unix.mcs.anl.gov/mpi/mpich.

L. Back and R. Cuffel. Experimental investigation of turbulent wall-jets in the presence of adverse

pressure gradients in a rectangular diffuser. Intl. J. Heat Mass Transfer, 25:871–887, 1982.

M. Ben Chiekh, J. C. Bera, and M. Sunyach. Synthetic jet control for flows in a diffuser: vectoring,

spreading and mixing enhancement. J. Turbulence, 4, 2003.

M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential equations.

J. Comput. Phys., 53:484–512, 1984.

H. S. Bhat, R. C. Fetecau, J. E. Marsden, and M. West. Lagrangian averaged fluids. Submitted to

SIAM J. Multiscale Modeling and Simulation, 2003.

T. J. Bogar, M. Sabjen, and J. C. Kroutil. Characteristic frequencies of transonic diffuser flow

oscillations. AIAA Journal, 21:1232–1240, 1983.

188

A. Brandt. Multi-level adaptive solutions to boundary value problems. Math. Comput, 31:333–390,

1977.

L. Brillouin. Remarques sur la mecanique ondulatoire. J. Phys. Radium, 7:353–368, 1926.

A. Brunn and W. Nitsche. Separation control by periodic excitation in a turbulent axisymmetric

diffuser flow. J. Turbulence, 4, 2003.

CACR. Network and resource documentation, 2001. http://www.cacr.caltech.edu.

B. D. Coller. Vortex model for control of diffuser pressure recovery. In Proceedings of the 39th

IEEE Conference on Decision and Control, Sydney, Australia, 2000.

B. D. Coller, B. R. Noack, S. Narayanan, A. Banaszuk, and A. I. Khibnik. Reduced-basis model

for active separation control in a planar diffuser flow. In Proceedings of the 30th AIAA Fluid

Dynamics Conference and Exhibit, Denver, Colorado, U.S.A., June 19–22, 2000. AIAA Paper

2000-2562.

T. Colonius and S. Pirozzoli. The diffuser simulation. Caltech internal document, 2002.

Commissariat à L’Energie Atomique, 2001.

http://www-fusion-magnetique.cea.fr/gb/fusion/physique/trajectoire.htm.

H. S. Dou and S. Mizuki. Analysis of the flow in vaneless diffusers with large width-to-radius ratios.

Journal Of Turbomachinery—Transactions Of The ASME, 120(1):193–201, 1998.

W. E and B. Engquist. The heterogeneous multiscale methods. Comm. Math. Sci., 1:87–132, 2003.

S. H. Feakins, D. G. MacMartin, and R. M. Murray. Dynamic separation control in a low-speed

asymmetric diffuser with varying downstream boundary condition. In Proceedings of the 33rd

189

AIAA Fluid Dynamics Conference and Exhibit, Orlando, Florida, June 23-26, 2003. AIAA Paper

2003-4161.

R. W. Fox and S. J. Kline. Flow regime data and design methods for curved subsonic diffusers.

ASME D: J. of Basic Engineering, 84:303–312, 1962.

R. W. Fox, A. T. McDonald, and P. J. Pritchard. Introduction to Fluid Mechanics. Wiley, 2004.

J. B. Freund. Proposed inflow/outflow boundary condition for direct computation of aerodynamic

sound. AIAA Journal, 35:740–742, 1997.

J. Fung. Modifications to derivative computation in the diffuser code. Caltech internal document,

2001.

C. W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall,

1971.

C. W. Gear and I. G. Kevrekidis. Projective methods for differential equations. SIAM J. Sci. Comp.,

24(4):1091–1106, 2003a.

C. W. Gear and I. G. Kevrekidis. Telescopic projective methods for parabolic differential equations.

J. Comput. Phys., 197(1):95–109, 2003b.

C. W. Gear and I. G. Kevrekidis. Computing in the past with forward integration. Phys. Lett. A,

321(5-6):335–343, 2004.

C. W. Gear, I. G. Kevrekidis, and C. Theodoropoulos. “Coarse” integration/bifurcation analysis

via microscopic simulators: micro-galerkin methods. Computers and Chemical Engineering, 26

(7-8):941–963, August 15 2002.

190

C. W. Gear, J. Li, and I. G. Kevrekidis. The gap-tooth method in particle simulations. Phys. Lett. A,

316(3-4):190–195, 2003.

A. H. Gibson. On the resistance to flow of water through pipes or passages having divergent

boundaries. Royal Society of Edinburgh Trans., 48(1):97–116, 1911–1912.

A. Glezer and M. Amitay. Synthetic jets. Ann. Rev. Fluid Mech., 34:503–529, 2002.

J. W. Hamstra, D. N. Miller, P. P. Truax, B. A. Anderson, and B. J. Wendt. Active inlet flow

control technology demonstration. Aeronaut. J., 104:473–479, 2000.

D. D. Holm, J. E. Marsden, and T. S. Ratiu. Euler-poincaré models of ideal fluids with nonlinear

dispersion. Phys. Rev. Lett., 349:4173–4177, 1998.

P. Holmes, J. L. Lumley, and G. Berkooz. Turbulence, Coherent Structures, Dynamical Systems

and Symmetry. Cambridge University Press, 1996.

C. A. Holzhauser and L. P. Hall. Exploratory investigation of the user of area suction to eliminate

air-flow separation in diffusers having large expansion angles. NACA TN 3793, NACA, 1956.

G. Hummer and I. G. Kevrekidis. Coarse molecular dynamics of a peptide fragment: Free energy,

kinetics, and long-time dynamics computations. J. Chem. Phys., 118(23):10762–10773, 2003.

G. Iaccarino. Predictions of a turbulent separated flow using commercial cfd codes. Journal Of

Fluids Engineering—Transactions Of The ASME, 123(4):819–828, 2001.

H.-J. Kaltenbach, M. Fatica, R. Mittal, T. S. Lund, and P. Moin. Study of flow in a planar

asymmetric diffuser using large-eddy simulation. J. Fluid Mech., 390:151–185, 1999.

191

I. G. Kevrekidis, C. W. Gear, and G. Hummer. Equation-free: The computer-aided analysis of

comptex multiscale systems. AIChE Journal, 50(7):1346–1355, 2004.

I. G. Kevrekidis, C. W. Gear, J. M. Hyman, P. G. Kevrekidis, O. Runborg, and C. Theodoropoulos.

Equation-free multiscale computation: enabling microscopic simulators to perform system-level

tasks. Communications in the Mathematical Sciences, 1:715–762, 2003.

A. I. Khibnik, S. Narayanan, C. A. Jacobson, and K. Lust. Analysis of low dimensional dynamics of

flow separation. In D. Henry and A. Bergeon, editors, Continuation Methods in Fluid Dynamics,

number 74 in Notes on Numerical Fluid Mechanics, pages 167–178. Vieweg, Wiesbaden, 2000.

P. Koumoutsakos. Active control of vortex-wall interactions. Physics of Fluids, 9(12):3808–3816,

1997.

H. A. Kramers. Wellenmechanik und halbzahlige quantisierung. Z. Phys., 39:828–840, 1926.

A. H. M. Kwong and A. P. Dowling. Unsteady flow in diffusers. ASME I: J. of Fluids Engineering,

116:842–847, 1994.

S. K. Lele. Compact finite difference schemes with spectral-like resolution. J. Comput. Phys., 103:

16 – 42, 1992.

J. Li, P. G. Kevrekidis, C. W. Gear, and I. G. Kevrekidis. Deciding the nature of the “coarse

equation” through microscopic simulations: the baby-bathwater scheme. SIAM J. Multiscale

Modeling and Simulation, 1(3):391–407, 2003.

S. Lim and H. Choi. Optimal shape design of a two-dimensional asymmetric diffuser in turbulent

flow. AIAA Journal, 42(6):1154–1169, 2004.

192

R. G. Littlejohn. Variational principles of guiding centre motion. J. Plasma Phys., 29(1):111–125,

1983.

R. G. Littlejohn. Geometry and guiding center motion. Contemporary Mathematics, 28:151–167,

1984.

D. G. MacMartin, R. M. Murray, A. Verma, and J. D. Paduano. Active inlet flow control technology

demonstration. Journal Of Fluids Engineering—Transactions Of The ASME, FEDSM 2001-

18275, 2001.

D. MacMynowski. Root locus computation of an El Niño model. private communiation., 2005.

A. G. Makeev, D. Maroudas, and I. G. Kevrekidis. ”coarse” stability and bifurcation analysis using

stochastic simulators: Kinetic monte carlo examples. J. Chem. Phys., 116(23):10083–10091,

2002a.

A. G. Makeev, D. Maroudas, and I. G. Kevrekidis. “Coarse” stability and bifurcation analysis

using stochastic simulators: Kinetic monte carlo examples. J. Chem. Phys., 116(23):10083–

10091, 2002b.

A. G. Makeev, D. Maroudas, A. Z. Panagiotopoulos, and I. G. Kevrekidis. Coarse bifurca-

tion analysis of kinetic monte carlo simulations: A lattice-gas model with lateral interactions.

J. Chem. Phys., 117(18):8229–8240, 2002c.

J. E. Marsden and T. S. Ratiu. Introduction to Mechanics and Symmetry. Springer-Verlag, 1994.

J. E. Marsden and S. Shkoller. Global well-posedness for the Lagrangian averaged Navier-Stokes

(LANS-α) equations on bounded domains. Phil. Trans. R. Soc. Lond. A, 2001.

193

A. T. McDonald and R. W. Fox. An experimental investigation of incompressible flow in conical

diffusers. Int. J. Mechanical Sciences, 8:125–139, 1966.

I. Moon. Distributed suction boundary layer control on conical diffusers. Research Report 17,

Mississippi State College, Aerophysics Department, August 1958.

S. Narayanan and A. Banaszuk. Experimental study of a novel active separation control approach.

In Proceedings of the 41st AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January

6–9, 2003. AIAA Paper 2003-0060.

S. Narayanan, A. I. Khibhik, C. A. Jacobson, I. G. Kevrekidis, R. Rico-Martinez, and K. Lust.

Low dimensional models for active control of flow separation. In Proceedings of the 1999 IEEE

Int. Conference on Control Applications, Kohala Coast, Hawaii, USA, 1999.

W. B. Nicoll and B. R. Ramaprian. Performance of conical diffusers with annular injection at inlet.

ASME D: J. of Fluids Engineering, 92:827–835, 1970.

M. Nishi, K. Yoshida, and K. Morimitsu. Flow control in wide-angled conical diffusers. ASME D:

J. of Fluids Engineering, 98:728–735, 1976.

M. Nishi, K. Yoshida, and K. Morimitsu. Control of separation in a conical diffuser by vortex

generator jets. JSME International Journal Series B—Fluids And Thermal Engineering, 41:

233–238, 1998.

T. G. Northrop. The adiabatic motion of charged particles. Interscience Publishers, 1963.

P. S. Pacheco and W. C. Ming. Introduction to message passing programming: MPI user guide in

FORTRAN, 1997.

194

H. Peters. Conversion of energy in cross sectional divergences under different conditions of inflow.

NACA TM 737, NACA, 1934.

T. J. Poinsot and S. K. Lele. Boundary conditions for direct simulations of compressible viscous

flows. J. Comput. Phys., 101:104–129, 1992.

D. M. Rao. A method of flow stabilisation with high pressure recovery in short, conical diffusers.

J. of the Royal Aeronautical Soc. TN, 75:336–339, 1971.

L. R. Reneau, J. P. Johnston, and S. J. Kline. Performance and design of straight, two-dimensional

diffusers. ASME D: J. of Basic Engineering, 89:141–150, 1967.

R. Rico-Martinez, C. W. Gear, and I. G. Kevrekidis. Coarse projective kMC integration: for-

ward/reverse initial and boundary value problems. J. Comput. Phys., 196(2):474–489, 2004.

C. W. Rowley, T. Colonius, and R. M. Murray. Model reduction for compressible flows using POD

and galerkin projection. Physica D, 189(1-2):115–129, 2004.

O. Runborg, C. Theodoropoulos, and I. G. Kevrekidis. Effective bifurcation analysis: A time-

stepper based approach. Nonlinearity, 15, May 2002.

J. T. Salmon, T. J. Bogar, and M. Sabjen. Laser doppler velocimeter measurements in unsteady,

separated, transonic diffuser flows. AIAA Journal, 21:1690–1697, 1983.

J. U. Schlüter, X. Wu, and H. Pitsch. Large-eddy simulations of a separated plane diffuser. In

Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibi, Reno, Nevada, January

10-13, 2005. AIAA Paper 2005-0672.

195

A. Seifert, A. Darabi, and I. Wygnanski. Delay of airfoil stall by periodic excitation. J. Aircraft,

33:691–698, 1996.

A. Seifert and L. G. Pack. Oscillatory control of separation at high Reynolds numbers. AIAA

Journal, 37:1062–1071, 1999.

L. F. Shampine and M. K. Gordon. Computer Solution of ordinary differential equations: the initial

value problem. W. H. Freeman, 1975.

Y. H. Shin, K. H. Kim, and B. J. Son. An experimental study on the development of a reverse

flow zone in a vaneless diffuser. JSME International Journal Series B—Fluids And Thermal

Engineering, 41(3):546–555, 1998.

G. M. Shroff and H. B. Keller. Stabilization of unstable procedures: the recursive projection

method. SIAM J. Num. Anal., 30:1099–1120, 1993.

C. I. Siettos, A. Armaou, A. G. Makeev, and I. G. Kevrekidis. Microscopic/stochastic timesteppers

and coarse control: a kmc example. AiChE Journal, 49(7):1922–1926, 2003a.

C. I. Siettos, M. D. Graham, and I. G. Kevrekidis. Coarse Brownian dynamics for nematic

liquid crystals: Bifurcation, projective integration, and control via stochastic simulation.

J. Chem. Phys., 118(22):10149–10156, 2003b.

C. I. Siettos, I. G. Kevrekidis, and D. Maroudas. Coarse bifurcation diagrams via microscopic

simulators: A state-feedback control-based approach. International Journal of Bifurcation and

Chaos, 14(1):207–220, 2004.

C. I. Siettos, C. C. Pantelides, and I. G. Kevrekidis. Enabling dynamic process simulators to

196

perform alternative tasks: A time-stepper based toolkit for computer-aided analysis. Industrial

and Engineering Chemistry Research, 42(26):6795–6801, 2003c.

C. R. Smith. Transitory stall time-scale for plane-wall air diffuser. ASME D: J. of Fluids Engi-

neering, 100:133–135, 1978.

C. R. Smith and S. J. Kline. An experimental investigation of the transitory stall regime in a

two-dimensional diffuser. ASME D: J. of Fluids Engineering, 96:11–15, 1974.

T. Smith. Comparison of coarse time integration and pod/galerkin simulation of channel flow

turbulence. private communiation., 2005.

T. R. Smith, J. Moehlis, and P. Holmes. Low-dimensional models for turbulent plane Couette flow

in a minimal flow unit. submitted to Journal of Fluid Mechanics, 2005.

R. K. Sullerey and A. M. Pradeep. Secondary flow control using vortex generator jets. Journal Of

Fluids Engineering—Transactions Of The ASME, 126(4):650–657, 2004.

T. Suzuki and T. Colonius. Inverse-imaging method for detection of a vortex in a channel. AIAA

Journal, 41(9):1743–1751, 2003.

T. Suzuki, T. Colonius, and S. Pirozzoli. Vortex shedding in a two-dimensional diffuser: theory

and simulation of separation control by periodic mass injection. J. Fluid Mech., 520:187–213,

2004.

C. K. W. Tam and J. C. Webb. Dispersion-relation-preserving finite difference schemes for compu-

tational acoustics. J. Comput. Phys., 107:262–281, 1993.

197

J. S. Tennant. A subsonic diffuser with moving walls for boundary-layer control. AIAA Journal,

11:240–242, 1973.

C. Theodoropoulos, Y.-H. Qian, and I. G. Kevrekidis. “Coarse” stability and bifurcation analysis

using time-steppers: A reaction-diffusion example. Proceedings of the National Academy of

Sciences, 97:9840–9843, August 29 2000.

C. Theodoropoulos, K. Sankaranarayanan, S. Sundaresan, and I. G. Kevrekidis. Coarse bifurcation

studies of bubble flow Lattice Boltzmann simulations. Chemical Engineering Science, 59(12):

2357–2362, 2004.

T. Tsukiya, E. Tatsumi, T. Nishinaka, N. Katagiri, Y. Takewa, H. Ohnishi, M. Oshikawa,

T. Mizuno, Y. Taenaka, H. Takano, and S. Kitamura. Design progress of the ultracompact

integrated heart lung assist device-part 2: Optimization of the diffuser vane profile. Artificial

Organs, 27(10):914–919, 2003a.

T. Tsukiya, E. Tatsumi, T. Nishinaka, N. Katagiri, Y. Takewa, H. Ohnishi, M. Oshikawa, K. Shioya,

T. Mizuno, Y. Taenaka, H. Takano, and S. Kitamura. Design progress of the ultracompact

integrated heart lung assist device-part 1: Effect of vaned diffusers on gas-transfer performances.

Artificial Organs, 27(10):907–913, 2003b.

L. van Lier, S. Dequand, A. Hirschberg, and J. Gorter. Aeroacoustics of diffusers: an experimental

study of typical industrial diffusers at Reynolds numbers of o(105). J. Acoust. Soc. Am., 109(1):

108–115, 2001.

M. Vinokur. Conservation equation of gas-dynamics in curvilinear coordinate systems. J. Com-

put. Phys., 14:105–125, 1974.

198

M. R. Visbal and G. V. Gaitonde. High-order-accurate methods for complex unsteady subsonic

flows. AIAA Journal, 37:1231–1239, 1999.

M. Vujic̆ić and C. Crnojević. Calculation of the separation point for the turbulent flow in plane

diffusers. Facta universitatis: Mechanics, Automatic Control and Robotics, 3(15):1001–1006,

2003.

G. Wentzel. Eine verallgemeinerung der quantenbedingung fur die zwecke der wellenmechanik.

Z. Phys., 38:518–529, 1926.

G. B. Whitham. Linear and Nonlinear Waves. John Wiley and Sons, 1974.

