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Abstract— The problem of finding a real time optimal
trajectory to minimize the probability of detection (to maxi-
mize the probability of not–being–detected, pnd, function) of
unmanned air vehicles by opponent radar detection systems
is investigated. This paper extends our preliminary results
on low observable trajectory generation in three ways. First,
trajectory planning in the presence of detection by multiple
radar systems, rather than single radar systems, is consid-
ered. Second, an overall probability of detection function is
developed for the multiple radar case. In previous work, both
probability of detection by a single radar and signature were
developed in the theory section, but the examples used only
signature constraints. In this work, the use of the overall
probability of detection function is used, both because it
aids in the extension to multiple radar systems and because
it is a more direct measure of the desirable optimization
criteria. The third extension is the use of updated signature
and probability of detection models. The new models have a
greater number of sharp gradients than the previous models,
with low detectability regions for both a cone shaped areas
centered around the nose as in the previous paper, as well as a
cone-shaped area centered around rear of the air vehicle. The
Nonlinear Trajectory Generation method (NTG), developed
at Caltech, is used and motivated by the ability to provide
real time solutions for constrained nonlinear optimization
problems. Numerical simulations of multiple radar scenarios
illustrate UAV trajectories optimized for both detectability and
time.

I. INTRODUCTION

One of the main threats for Unmanned Air Vehicles
(UAVs) is radar detection systems. Designing optimal tra-
jectories for UAV’s which reduces their detectability against
radar systems has been attracting much attention in the last
few years. In [18], we find low–observable trajectories for
a UAV in the presence of a single radar without modeling
the radar as an obstacle region. Martin Norsell et al. [19]
uses similar approach to our method. He uses radar cross
section (RCS) constraints in flight path optimizations. The
optimization problem is separated into two stages and the
radar detection constraint is invoked during the first stage
only, on the other hand, the minimum time constraint is
invoked during the second stage. In [17], Kim and Hespanha
addressed the weighted anisotropic shortest–path problem
on a continuous domain and applied it to the computation of
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paths for UAVs to minimize the risk of being destroyed by
ground defenses. In [20], the feasibility of using geometric,
deterministic solutions to optimal trajectories between two
radars is explored. The optimal paths are compared with the
direct path and trajectories found by Voronoi path planning
approach and it is limited to exploring the constant–velocity,
single vehicle, constant RCS scenario. Work by McFarland
et al. [15] uses motion planning techniques using potential
field theory for unmanned air vehicle (UAV) path planning
in the presence of detection systems. This is a technique
originally used in robot motion planning. An analytical
solution yielding the trajectory that minimizes the radar en-
ergy reflected from the target is derived using the Calculus
of Variations in [21].

In this work, we investigate the problem of finding a
real time optimal trajectory to minimize the probability
of detection function (to maximize the probability of not–
being–detected, pnd, function) of unmanned air vehicles
by opponent radar detection systems. The aim is to find a
real time nonlinear optimal trajectory maximizing the pnd
function of UAV’s against hostile radar detection systems
as well as minimizing the total flight time between a
given base station and a final destination. Thus, maximizing
the survivability of the aircraft. This work extends our
preliminary results on low observable trajectory generation
in three ways. First, trajectory planning in the presence of
detection by multiple radar systems, rather than single radar
systems, is considered. Second, an overall probability of
detection function is developed for the multiple radar case.
In previous work, both probability of detection by a single
radar and signature were developed in the theory section,
but the examples used only signature constraints. In this
work, the use of the overall probability of detection function
is used, both because it aids in the extension to multiple
radar systems and because it is a more direct measure of
the desirable optimization criteria. The third extension is
the use of updated signature and probability of detection
models. The new models have a greater number of sharp
gradients than the previous models, with low detectability
regions for both a cone shaped areas centered around the
nose as in the previous paper, as well as a cone-shaped area
centered around rear of the air vehicle.

The first, we find analytical models for the probability of
not–being–detected (pnd) function using tensor product B–
Splines. Then, we define two different event types where
in the first one maximum pnd function must be satisfied,
and in the second onelimited time high–observability
(minimum pnd) periods to the radars might be allowed.
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Hence, by interspersing maximum pnd times where the
UAV’s observability to the radar systems is minimized with
the short periods of high observability regions it might be
possible to find optimal trajectories among the radar regions
and as well as in the radar regions. This is achieved by
driving the radar systems into a condition calledlock–loss
in which a radar system aborts its plans after a specified
time of no detection. The Nonlinear Trajectory Generation
(NTG) algorithm developed at Caltech by Mark Milam et al.
[1] is, then, used to generate real–time trajectories achieving
these goals with other constraints. The NTG algorithm
first finds flat outputs using differential flatness property to
reduce the problem dimension, and then parameterizes these
outputs using B-Spline curves. The coefficients of the B-
Spline curves are further solved by the sequential quadratic
programming to satisfy the optimization objectives and
constraints.

The paper is organized as follows. The second section
gives the necessary background on aircraft and detection
models, NTG and tensor product B–Splines. Next section
introduces formulation of the trajectory generation problem
which maximizes the pnd function while also minimizes
the total mission time. This section also gives a brief
information on how to use tabular data modeled by B–
Splines in the NTG formulation. Numerical simulations
with multiple radars are provided in the fourth section.
Finally, the last section gives the conclusions and future
work.

II. BACKGROUND

In this section, brief introductions to B–Spline functions,
Nonlinear Trajectory Generation software package, aircraft
and detection models are given.

A. Tensor Product B–Spline Functions

Spline functions have been extensively used as an ap-
proximation tool in areas such as curve fitting, computer
graphics, image and signal processing, motion planning and
trajectory generation for mechanical systems [9], [10]. For
a detailed information, the reader is directed to the book by
Carl de Boor [11]. Neuman and Sen in [12] were one of the
earliest researchers to apply cubic splines to solve optimal
control problems. They used cubic spline collocation on
a uniform mesh to solve several optimal control problems
with quadratic objective functions. Ever since then, splines
have been used extensively to formulate and solve optimal
control problems numerically.

Although polynomials are favorable to approximate func-
tions due to their ease of evaluations using simple arithmetic
operations, they have two major problems: (1) if a function
to approximate is in a large interval then the approximating
polynomial order can be quite large, (2) polynomials have
the global dependence on local parameters, i.e., if a fit is
poor in a small area then it will be poor in whole curve
[11]. Solution is to usepiecewisepolynomials.

Piecewise polynomials offer a local support, each seg-
ment of the piecewise polynomial approximates the tra-
jectory and satisfies the constraints locally, and it can be
achieved with relatively low order polynomials. Therefore,
they are more suitable for optimal control problems. It is
also possible to patch the polynomial segments in such a
way so that the resulting trajectory has several continuous
derivatives at all points. Any smooth piecewise polynomial
is called aSpline.

Splines are most conveniently constructed when ex-
pressed as B-Splines. B-Spline curves are generalizations of
Bézier curves. It is constructed by joining severalBézier
curves with a prescribed level of continuity between them.
The points at which the curves are joined are calledbreak
points. The nondecreasing list of real numbers containing
the breakpoints is called aknot vector. Thesmoothnesssi of
a breakpoint provides the level of continuity at a breakpoint.
A breakpoint is(si − 1) times continuously differential.

A trajectoryz(x), with prescribed smoothnesss andkth

order of the piecewise polynomials can be written as

z(x) =
∑p

i=1Bi,kCi

where the number ofCi coefficients is given byp =
l(k− s)+ s, which can be used to customize the trajectory,
l represents the number of intervals. The functionsBi,k(x)
are B-Spline basis functions defined by

Bi,1(x) =
{

1 if ti ≤ x < ti+1

0 otherwise

if ti = ti+1 Bi,1 = 0

(1)

Higher order terms can be found usingCox-de Boor
recursion formula:

Bi,k(x) = x−ti
ti+k−1−ti

Bi,k−1(x) +
ti+k−x

ti+k−ti+1
Bi+1,k−1(x) , k > 1.

(2)

The derivatives of the B–Spline functions, which is
necessary to use in the NTG formulation, are also easy to
calculate. For example, the first derivative of akth order
B–Spline function is a(k − 1)th order B–Spline function
and is given by

If
∑

i

Bi,kCi =
s−1∑

i=r−k+1

Bi,kCi on [tr · · · ts]

D

(∑
i

Bi,kCi

)
=

s−1∑
i=r−k+2

(k−1)
Ci − Ci−1

ti+k−1 − ti
Bi,k−1 on [tr · · · ts]

whereD represents the first order derivative. Finally, 2D
tensor product B–Spline functions which we use to find



analytical models for radar signature and probability of
detection tables in the next sections are given by

z(x, y) =
Px∑
i=1

Py∑
j=1

Bi,kx
(x)Bj,ky

(y)Ci,j

Derivatives of the tensor product B–Spline functions can
be calculated as in 1D case.

B. Nonlinear Trajectory Generation Algorithm (NTG)

The software package called Nonlinear Trajectory Gen-
eration (NTG) designed at Caltech by Mark B. Milam et al.
[1] to solve optimal control problems in real-time is based
on three components; (1) Parameterization to map system
dynamics to lower dimensional space using differential
flatness property (it will be easier and computationally more
efficient to solve a lower dimensional problem), (2) B-
Splines as basis functions for parameterization (B-Splines
are used as basis functions for their flexibility and calculat-
ing their derivatives), (3) Sequential quadratic programming
to solve for B-Spline coefficients to minimize the desired
cost function subject to the linear and nonlinear constraints
(the sequential quadratic programming package NPSOL
by Gill et al. [8] is used as the nonlinear programming
solver in NTG). The user specifies a problem to NTG by
stating the problem in terms of some choice of outputs
and its derivatives, providing the cost and the constraints
in terms of these outputs and their derivatives, specifying
the regularity of the variables, the placement of the knot
points, the order and regularity of the B-Splines, and the
collocation points for each output.

The main advantages of the NTG over other techniques
is that NTG produces approximate but very fast, optimal
trajectories which makes it very useful for real-time ap-
plications. In addition to that, linear as well as nonlinear
constraints (temporal and spatial) and cost functions can
be included in the problem formulation of NTG. Specif-
ically, these constraints and cost functions are structured
in NTG formulation as: (1) Linear Initial Constraints, (2)
Linear Trajectory Constraints, (3) Linear Final Constraints,
(4) Nonlinear Initial Constraints, (5) Nonlinear Trajectory
Constraints, (6) Nonlinear Final Constraints, (7) Initial Cost
Function, (8) Trajectory Cost Function, (9) Final Cost
Function. In this paper, the use of NTG is also motivated
by recent extensions in NTG’s ability to deal with temporal
constraints [4] as well as tabular data (analytically modeled
by B–Splines) constraints [18]. Other applications of NTG
to several control problems can be found in [2], [3] and [6].

C. Aircraft Model

The aircraft and the detection models, as shown in Fig.
(1), are the two main components based on the Open
Experimental Platform (OEP) [7]. Although the OEP model
allows for more complexity, we use here simplified models.
We also assume that (1) the UAV maintains a constant
altitude and the pitch angle is zero, (2) the bank angle

Fig. 1. The Aircraft and Detection Models.

is zero, (3) radars are mono–static. The first assumption
implies that the azimuth effects are more dominant than
the elevation effects. This assumption is more realistic at
stand-off ranges. Elevation has a more pronounced effect
as the aircraft gets closer in distance to the radar. The
second assumption derives from assuming that the turn
times are small compared to the time between waypoints.
This assumption becomes less valid as the waypoint routes
become finer. Mono–static radars consist of a collocated
transmitter and receiver, and each station uses a different
frequency so that there is no interaction between observers.

Current position, velocity, heading and the destination po-
sition are the inputs to the aircraft model, while the outputs
are the aircraft position and attitude in inertial coordinates
(North,East, Up). The point mass model equations below
represent the state equations for the vehicle traveling from
waypoint i to the next waypointi+ 1.

ṅac = Uicos(ψi)
ėac = Uisin(ψi)
u̇ac = 0 (3)

ψi = tan−1 ėac

ṅac
(4)

wherenac, eac, anduac are the aircraft positions along the
north, east and up axes, respectively.Ui is the speed and
ψi is the heading, which is the angle between the nose and
north and is positive clockwise about theup axis.

Assuming zero pitch and bank angles, a vector from the
aircraft (nac, eac, uac) to the radar(nR, eR, uR) is given in
body axes as;[
xRac

yRac

zRac

]
=

[
cos(ψ) sin(ψ) 0
−sin(ψ) cos(ψ) 0

0 0 1

][
(nR − nac)
(eR − eac)
(uR − uac)

]
(5)

D. Detection Model

As shown in Fig. (1), the inputs to the detection model
are the azimuth, elevation and slant range(az, el, Rs). To
obtain these values the vector in (5) is transformed to
spherical coordinates as follows

az = tan−1

(
−(nR − nac)ėac + (eR − eac)ṅac

(nR − nac)ṅac + (eR − eac)ėac

)
(6)



el = tan−1

(
uR − uac√

(nR − nac)2 + (eR − eac)2

)
(7)

Rs =
√

(nR − nac)2 + (eR − eac)2 + (uR − Uac)2 (8)

For the next part of the detection model, radar signature
and probability of detection tables are used. The tables
depend on the type of aircraft, the configuration of the
aircraft, as well as the type of radar. In this paper, we use
tables based on the large UAV with normal configuration
and medium Surface Air Missile (SAM) radar model pa-
rameters. Details of the aircraft and detection models can
be found in [7] and [18]. The first table computes the radar
signature given the azimuth and elevation angles in radians.
The signature is a unitless, intermediary variable that is
related to radar cross section. The second table computes the
probability of detection function given the radar signature
and range values. In the next section, tensor product B–
Spline functions are used to find analytical models to these
tables to compute probability of not–being–detected, pnd,
function.

III. TRAJECTORY GENERATION

This section introduces formulation of the trajectory
generation problem which maximizes the probability of
not–being–detected (pnd) function while also minimizes
the total mission time. This section also gives a brief
information on how to use tabular data modeled by B–
Splines in the NTG formulation.

A. Problem Formulation

The problem is to find a real–time nonlinear trajectory
of a UAV which maximizes the survivability of the aircraft
against radar detection systems in minimum flight time
given that radar locations and types, an aircraft type and
configuration, a start location and initial heading angle of
the aircraft and a destination location are known. First, let’s
define two types of events;

• Probability of not–being–detected function (pnd)must
be high betweenT2i−1 ≤ t ≤ T2i

• Probability of not–being–detected function (pnd)could
be low betweenT2i ≤ t ≤ T2i+1

for i = 0, 1, · · · , n. High pnd times, where the UAV’s
observability to the radar systems is minimized, scattered
with the short periods of low pnd times (high observability
regions) as shown in Fig. (2) might make it possible to find
optimal trajectories among the radar regions and as well as
in the radar regions. This is achieved by driving the radar
systems into a condition calledlock–lossin which a radar
system aborts its plans after a specified short time of no
detection.

Fig. 2. Two event types; High and Low pnd Periods.

T represents the unknown final event times which is
introduced to be able to include temporal constraints in
the NTG algorithm. Thus, in the optimization formulations
below scaled time variableτ = t

T is used [4]. The system
dynamics for this problem consist of the vehicle dynamics
in (4) together with the following dynamics on the new state
variables

dT2i

dτ
= 0 and

dT2i+1

dτ
= 0 i = 0, ...n− 1 (9)

Note that the system is differentially flat. All variables of
interest can be written as a function of the output variables,
nac, eac, T2i, T2i+1 and their derivatives.

Next, we define the probability of not–being–detected
function, pnd, as;

pnd =
Nr∏
k=1

(1− pd[k]) (10)

where Nr represents number of radar systems.pd =
fpd(sig, rg) indicates the probability of detection as a
function of signature (sig) and range (rg) values.sig =
fsig(el, az) represents the signature and it is a function of
elevation (el) and azimuth (az) angles. These two functions
are found using tensor product B–Spline functions to fit
analytical models to the sig and pd tables shown in Fig. (1)
and it will be explained in more details in the next section.
After defining these functions, a set of cost and constraint
functions can be developed.

B. Cost Functions

Cost functions are given based on the programming
structure of the NTG algorithm as follows:

• Initial Cost Function:

Jicf = WtT, where T =
n∑

i=0

(T2i + T2i+1)

• Trajectory Cost Function:

Jtcf =

∫ 1

0

(
Wu

T 2

((
dnac

dτ

)2

+

(
deac

dτ

)2
)

− Wppnd

)
Tdτ

Wt, Wu and Wp represent the weight functions on the
total mission time, speed and pnd functions, respectively.
Jicf minimizes the total mission time whileJtcf puts
penalties on the speed to bound the control action, and on
the probability of not–being–detected function to maximize



the survivability of the aircraft. The integral inJtcf is
respect to the scaled time,τ , and has bounds from zero
to one. In the NTG code setup, the initial cost function is
used to add constant terms to the cost and the trajectory cost
function subroutine is used for the costs that are integrated.

C. Constraint Functions

Based on the programming structure of the NTG algo-
rithm a set of constraint functions is given as

• Linear Initial Constraints:

nac(0) ≤ nac(τ)|τ=0 ≤ nac(0)

eac(0) ≤ eac(τ)|τ=0 ≤ eac(0)

ṅac(0)T ≤ dnac

dτ
|τ = 0 ≤ ṅac(0)T

ṅac(0)T ≤ deac

dτ
|τ = 0 ≤ ṅac(0)T

T2i ≤ T2i|τ=0 ≤ T2i, i = 0, 1, · · ·n

T2i+1 ≤ T2i+1|τ=0 ≤ T2i+1, i = 0, 1, · · ·n

where ˙(·) = d(·)
dt . Since we would like to drive radar

systems into thelockloss condition T2i+1 << T2i

whereT2i+1 represents the upper bound on the final
time of the events where low pnd is allowed andT2i

represents the upper bound on the final time of the
events where high pnd is forced. No linear trajectory
or linear final constraints are used.

• Nonlinear Trajectory Constraints:

v2

v2 ≤Wv
1
T 2

((
dnac

dτ

)2

+
(
deac

dτ

)2
)
≤ 1

−1 ≤Wc

dnac

dτ
d2eac

dτ2 − deac

dτ
d2nac

dτ2((
dnac

dτ

)2
+
(

deac

dτ

)2)1.5 ≤ 1

0 ≤Wr · (nac − nref )2 + (eac − eref )2 ≤ 1

0 ≤Ws(max(signi)) ≤ 1, i = 1, 2, · · · , Nr

The first constraint puts a limit on the velocity of
the UAV. The next constraint is the curvature rate
formulated to highlight the features of the NTG method
for more realistic flight models. The third constraint
helps UAV to follow a straight–line reference trajectory
between waypoints within a specified radius so that it
can change its trajectory to maximize its pnd function.
Finally, the last constraint is the signature constraint
which limits the maximum signature of the UAV
among all present radar systems. During the low pnd
region Ws = 1.0 (maximum signature is allowed),

while during the high pnd regionWs > 1.0 (low
signature is forced), i.e.;

If T2i < t ≤ T2i+1 −→Ws = 1.0

If T2i−1 < t ≤ T2i −→Ws > 1.0

Note that the constraint equations are scaled to aid in
convergence of the nonlinear optimization codes.

• Nonlinear Final Constraints:

0 ≤Wf

(
(nac(1)− nf )2 + (eac(1)− ef )

)2 ≤ 1

Θ ≤Wd · atan

(
deac

dτ
dnac

dτ

)
≤ Θ

The UAV’s arrival to the final destination waypoint
(nf , ef ) within a specified area is ensured by the
first constraint. Note that this constraint, as all other
constraint and cost functions, is also a function of the
scaled timeτ , and hereτ = 1 represents the final
scaled time, i.e., ift = T (T is the unknown real
final time) then fromτ = t

T → τ = 1. A constraint
on the final heading of the UAV to ensure that the
aircraft is heading toward future waypoints is given by
the next inequality. Note thatΘ is the heading angle
betweenwaypoint(k + 1) andwaypoint(k). Θ and
Θ represent lower and upper bounds on the heading
angle, respectively.

D. B–Spline Models

Analytical models to the signature (sig) and the probabil-
ity of detection (pd) tables shown in Fig. (1) can be found
efficiently using tensor product B–Spline functions:

sig = fsig(el, az) =
m∑

i=1

n∑
j=1

Bi,kel
(el)Bj,kaz

(az)aij

pd = fpd(sig, rg) =
p∑

i=1

r∑
j=1

Bi,ksig (sig)Bj,krg (rg)bij

It is important to notice that when azimuth angle changes
between∓30 degrees and∓31 degrees there is a big change
in the magnitude of the signature function of the UAV as it
is shown in Fig. (3). The same phenomena occurs when the
azimuth angle changes between∓159 degrees and∓160
degrees. This introduces several local minima and sharp
changes in the gradients. Thus, the underlying optimization
problem is in fact quite difficult.

Fig. (5) and Fig. (6) show the result of the fit function
models by B–spline tensor product functions versus the
actual data points indicated by ‘o’. The order of the polyno-
mials in the models used arekel = 4, kaz = 2, ksig = 2
and krg = 4 and number of coefficients arem = 9, n =
11, p = 7 andr = 30. Note the sharp changes in signature
for azimuths around∓30 and∓159 degrees in Fig. (5).



Fig. 3. Large UAV Signature Data.

Fig. 4. Large UAV / Medium SAM Probability of Detection (Acquisition)
Data.

E. Implementation Issues

Tensor Product B–Spline models can be efficiently found
using MATLAB’s Spline Toolbox, especially withspap2
and spaps functions. Once the models are foundspbrk
function is used to extract the knots vectors, degree of
polynomials and coefficient matrix. Implementing the B–
Spline models in the NTG formulations requires little care.
The models can be implemented in NTG by writing a
subroutine which calculates the B–Spline basis functions
and evaluates the value of the models and their derivatives
respect to a given location of the aircraft. Interested readers
are directed to the information given in the section (II-
A) and the book by Carl de Boor [11]. Implementation
of derivatives of the B–Spline models, for example for

Fig. 5. The Signature Model Approximation Using B–Spline Tensor
Product Functions.

signature function, should be done using the chain rule

el = fel(ψ(ṅac, ėac), nac, eac)
az = faz(ψ(ṅac, ėac), nac, eac)
dsig
dnac

= dsig
del ·

del
dnac

+ dsig
daz ·

daz
dnac

...
...

...
dsig
dėac

= dsig
del ·

del
dėac

+ dsig
daz ·

daz
dėac

Derivatives of the pd and hence pnd function can be
implemented similarly.

IV. NUMERICAL SIMULATIONS

In order to investigate the proposed approach, several
examples are presented in this section. We assume that pitch
and bank angles are zero and altitude is fixed at 12km.
There are 6 temporal events used between each waypoints
in all examples, 3 for high pnd regions, and 3 for low pnd
regions. It is important to mention that the radar regions are
not modeled as obstacles in any examples. The only thing it
is assumed that the locations, types and engagement zones
of radars are known so that the elevation and azimuth angles
can be calculated and appropriate signature and pd tables
can be used. Outside of the engagement zones of the radars,
shown with circular regions in the examples, the signature
and probability of detection are assumed to be zero.

The first simulation considers planning a trajectory from
the base location at (-50km , -50km) to a final destination
at (150km , 150km). As it is seen in Fig. (7), the resulting
trajectory successfully avoids the radar detection systems
represented with circular regions in the figure. A straight–
line trajectory would directly go through the centers of
the radar detection systems in this simulation. Fig. (8) and
Fig.(9) show the second simulation. First figure shows the
trajectory found through the radar regions between locations
(-100km , -40km) and (-20km , 0km). The second one,
shows a different trajectory between locations (-100km , -
40km) and (-50km , 30km) for the same radar regions as in

Fig. 6. The pd Model Approximation Using B–Spline Tensor Product
Functions.



Fig. 7. Ground track of the UAV for 2–radar example.

the first one. Note that this is the shortest path avoiding the
radar region since the optimization also tries to minimize
the total flight time. A similar simulation is shown in Fig.
(10) and Fig. (11) between locations from (-100km , -40km)
to (-20km , -120km) and from (-100km , -40km) to (-50km
, -150km).

The last simulation is to find an optimal trajectory from a
base location, (-100km , -100km) to 3 different target sites
located inside radar zones at (0km , 30km), (200km , 20km)
and (200km , -130km). Other initial waypoints are located
at (-46km , -30km), (100km , 25km) and (200km , -40km).
These initial course waypoints construct initial straight–line
trajectories between the base point and 1st target, 1st and
2nd targets and finally 2nd and the last targets. Radars are
located at (0km , 0km), (200km , 50km) and (200km ,
-100km). Fig. (12) clearly illustrates that the UAV finds
optimum entrance points to the targets to maximize its pnd
function and to minimize the total flight time.

Fig. 8. Ground track of the UAV for 2–radar example.

Fig. 9. Ground track of the UAV for 2–radar example.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a method of finding real–
time nonlinear trajectories for unmanned aerial vehicles to
maximize the probability of–not–being detected function in
minimal total flight time so that survivability of the aircraft
is maximized against radar detection systems. This method
builds on our initial results previously presented in CDC
2003.

Based on tensor product B–Spline functions, analytical
models of the signature and probability of detection tables
were found. Then, the trajectory generation problem and
its implementation in the NTG were explained in detail.
Illustrative numerical simulations which indicate the ability
of our proposed method to find real–time nonlinear optimal
trajectories from a start point to a final destination point
between radar detection systems, as well as, inside radar
regions were provided.

We noticed that as the complexity of the problem in-

Fig. 10. Ground track of the UAV for 2–radar example.



Fig. 11. Ground track of the UAV for 2–radar example.

creases by using probability of detection table with the
signature table, this leads to more complicated convergence
issues. Our future work will focus on convergence issues, on
extending the proposed method to 3D, and on understanding
the issues involved with using NTG in a closed loop,
receding horizon manner.
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