Submitted, 2004 Conference on Decision and Control
http://www.cds.caltech.edu/~murray/papers/2004j_imm04-cdc.html

Nonlinear Trajectory Generation for Unmanned Air Vehicles with
Multiple Radars

Tamer Inanc, Kathy Misovec and Richard M. Murray

Abstract—The problem of finding a real time optimal  paths for UAVs to minimize the risk of being destroyed by
trajectory to minimize the probability of detection (to maxi-  ground defenses. In [20], the feasibility of using geometric,
mize the probability of not-being—detected, pnd, function) of - gaterministic solutions to optimal trajectories between two

unmanned air vehicles by opponent radar detection systems . . .
is investigated. This paper extends our preliminary results radars is explored. The optimal paths are compared with the

on low observable trajectory generation in three ways. First, direct path and trajectories found by Voronoi path planning
trajectory planning in the presence of detection by multiple approach and it is limited to exploring the constant—velocity,

radar systems, rather than single radar systems, is consid- single vehicle, constant RCS scenario. Work by McFarland
ered. Second, an overall probability of detection function is et al. [15] uses motion planning techniques using potential

developed for the multiple radar case. In previous work, both . ) .
probability of detection by a single radar and signature were field theory for unmanned air vehicle (UAV) path planning

developed in the theory section, but the examples used only in the presence of detection systems. This is a technique
signature constraints. In this work, the use of the overall originally used in robot motion planning. An analytical

probability of detection function is used, both because it splution yielding the trajectory that minimizes the radar en-

aids in the extension to multiple radar systems and because gqy reflected from the target is derived using the Calculus
it is a more direct measure of the desirable optimization - .
of Variations in [21].

criteria. The third extension is the use of updated signature ) ) ) o
and probability of detection models. The new models have a  In this work, we investigate the problem of finding a
greater number of sharp gradients than the previous models, real time optimal trajectory to minimize the probability

with low detectability regions for both a cone shaped areas of detection function (to maximize the probability of not—
centered around the nose as in the previous paper, as well as a being—detected, pnd, function) of unmanned air vehicles

cone-shaped area centered around rear of the air vehicle. The b t radar detecti ¢ The aim is to find
Nonlinear Trajectory Generation method (NTG), developed y opponent radar detection systems. fhe aim IS 1o Tind a

at Caltech, is used and motivated by the ability to provide real time nonlinear optimal trajectory maximizing the pnd
real time solutions for constrained nonlinear optimization function of UAV's against hostile radar detection systems
problems. Numerical simulations of multiple radar scenarios as well as minimizing the total flight time between a
|[Iustrate UAV trajectories optimized for both detectability and given base station and a final destination. Thus, maximizing
time. o . .
the survivability of the aircraft. This work extends our
preliminary results on low observable trajectory generation
[. INTRODUCTION in three ways. First, trajectory planning in the presence of

One of the main threats for Unmanned Air Vehiclegetection by multiple radar systems, rather than single radar
(UAVs) is radar detection systems. Designing optimal traSystems, is considered. Second, an overall probability of
jectories for UAV's which reduces their detectability againstletection function is developed for the multiple radar case.
radar systems has been attracting much attention in the I48tprevious work, both probability of detection by a single
few years. In [18], we find low—observable trajectories foradar and signature were developed in the theory section,
a UAV in the presence of a single radar without modelingut the examples used only signature constraints. In this
the radar as an obstacle region. Martin Norsell et al. [19)0rk, the use of the overall probability of detection function
uses similar approach to our method. He uses radar crd§sused, both because it aids in the extension to multiple
section (RCS) constraints in flight path optimizations. Théadar systems and because it is a more direct measure of
optimization problem is separated into two stages and tibe desirable Op'[lmIZ(fltIOH criteria. The thl_l’_d exten5|on_|s
radar detection constraint is invoked during the first stagée use of updated signature and probability of detection
only, on the other hand, the minimum time constraint ignodels. The new models have a greater number of sharp
invoked during the second stage. In [17], Kim and Hespanm;[a_dlents than the previous models, with low detectability
addressed the weighted anisotropic shortest—path problé@gions for both a cone shaped areas centered around the
on a continuous domain and applied it to the computation ¢fose as in the previous paper, as well as a cone-shaped area

centered around rear of the air vehicle.
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Hence, by interspersing maximum pnd times where the Piecewise polynomials offer a local support, each seg-
UAV's observability to the radar systems is minimized withment of the piecewise polynomial approximates the tra-
the short periods of high observability regions it might bgectory and satisfies the constraints locally, and it can be
possible to find optimal trajectories among the radar regiorechieved with relatively low order polynomials. Therefore,
and as well as in the radar regions. This is achieved lthey are more suitable for optimal control problems. It is
driving the radar systems into a condition calledk—loss also possible to patch the polynomial segments in such a
in which a radar system aborts its plans after a specifiaglay so that the resulting trajectory has several continuous
time of no detection. The Nonlinear Trajectory Generatioderivatives at all points. Any smooth piecewise polynomial
(NTG) algorithm developed at Caltech by Mark Milam et al.is called aSpline
[1] is, then, used to generate real-time trajectories achievingSplines are most conveniently constructed when ex-
these goals with other constraints. The NTG algorithnpressed as B-Splines. B-Spline curves are generalizations of
first finds flat outputs using differential flatness property t@Gézier curves. It is constructed by joining sevefaézier
reduce the problem dimension, and then parameterizes thesgves with a prescribed level of continuity between them.
outputs using B-Spline curves. The coefficients of the BThe points at which the curves are joined are cabbeshk
Spline curves are further solved by the sequential quadrafi@ints The nondecreasing list of real numbers containing
programming to satisfy the optimization objectives andhe breakpoints is calledkanot vector Thesmoothness; of
constraints. a breakpoint provides the level of continuity at a breakpoint.
The paper is organized as follows. The second sectigh breakpoint is(s; — 1) times continuously differential.
gives the necessary background on aircraft and detectionA trajectory z(x), with prescribed smoothnessand k'"
models, NTG and tensor product B-Splines. Next sectioprder of the piecewise polynomials can be written as
introduces formulation of the trajectory generation problem
which maximizes the pnd function while also minimizes 2(x) = ZleBi,kC'i
the total mission time. This section also gives a brief
information on how to use tabular data modeled by B—
Splines in the NTG formulation. Numerical simulations Where the number o’; coefficients is given by =
with multiple radars are provided in the fourth section/(k —s)+ s, which can be used to customize the trajectory,
Finally, the last section gives the conclusions and futurerepresents the number of intervals. The functidhg ()

work. are B-Spline basis functions defined by
Il. BACKGROUND .
B (l‘) _ 1 if ,<z< tit1
In this section, brief introductions to B—Spline functions, il 0 otherwise (1)
Nonlinear Trajectory Generation software package, aircraft
and detection models are given. if ti=tiy1 Bi1=0
A. Tensor Product B-Spline Functions Higher order terms can be found usiigpx-de Boor

. . . recursion formula:
Spline functions have been extensively used as an ap-

proximation tool in areas such as curve fitting, computer .

graphics, image and signal processing, motion planning andpi.x(z) = ﬁ&,k—l(éﬁ) + ﬁ3i+1,k71(w) » B> 1

trajectory generation for mechanical systems [9], [10]. For &)

a detailed information, the reader is directed to the book by o . ) o

Carl de Boor [11]. Neuman and Sen in [12] were one of the The derivatives of the B-Spline functions, which is

earliest researchers to apply cubic splines to solve optim3gcessary to use in the NTG formulation, are also easy to

control problems. They used cubic spline collocation of@lculate. For example, the first derivative ofk#' order

a uniform mesh to solve several optimal control problem8—Spline function is &k — 1) order B-Spline function

with quadratic objective functions. Ever since then, spline&nd is given by

have been used extensively to formulate and solve optimal a1

control problems numerically. If ZBi,kC' = Z BixCi on [t, -t
Although polynomials are favorable to approximate func- p it 1

tions due to their ease of evaluations using simple arithmetic

operations, they have two major problems: (1) if a function

to approximate is in a large interval then the approximating <

polynomial order can be quite large, (2) polynomials have

the global dependence on local parameters, i.e., if a fit is

poor in a small area then it will be poor in whole curve whereD represents the first order derivative. Finally, 2D

[11]. Solution is to usepiecewisepolynomials. tensor product B—Spline functions which we use to find

s—1
Ci—Ci1
B; .C; | = k—1)————— B g1 0N[ty---ts
E ik ) E ( )tz‘-i,-k—l_ti ik—1 0N | ]

i i=r—k+2



analytical models for radar signature and probability o et e Detctun o
. . . . Radar position o
detection tables in the next sections are given by Qe D (euAC sonration)
Destination Hirerad l’ " Arioneth \ \
P, Py Waypoint e | | Soorioate . [Frevation ‘;f:m . T
Z(ZE, y) = Z Z Bi,km (m)Bj,ky (y)C’L,j Soeed | Sinplifed m‘:graﬁ A M:nm L ] | Projabif
i=1 j=1 = e Fackr =
Curse , o | | comen,
Derivatives of the tensor product B—Spline functions cal| Yé# i’%" s .
. , e
be calculated as in 1D case. LY
B. Nonlinear Trajectory Generation Algorithm (NTG) Fig. 1. The Aircraft and Detection Models.

The software package called Nonlinear Trajectory Gen-

eration (NTG) designed at Caltech by Mark B. Milam et aljs zero, (3) radars are mono-static. The first assumption
[1] to solve optimal control problems in real-time is basedmplies that the azimuth effects are more dominant than
on three components; (1) Parameterization to map systefie elevation effects. This assumption is more realistic at
dynamics to lower dimensional space using differentiadtand-off ranges. Elevation has a more pronounced effect
flatness property (it will be easier and computationally morgs the aircraft gets closer in distance to the radar. The
efficient to solve a lower dimensional problem), (2) B-second assumption derives from assuming that the turn
Splines as basis functions for parameterization (B-Spling@fnes are small compared to the time between waypoints.
are used as basis functions for their flexibility and Ca'CU'atfhis assumption becomes less valid as the Waypoint routes
ing their derivatives), (3) Sequential quadratic programmingecome finer. Mono—static radars consist of a collocated
to solve for B-Spline coefficients to minimize the desiredransmitter and receiver, and each station uses a different
cost function subject to the linear and nonlinear ConStrainfﬁequency so that there is no interaction between observers.
(the sequential quadratic programming package NPSOL Current position, velocity, heading and the destination po-
by Gill et al. [8] is used as the nonlinear programmingsition are the inputs to the aircraft model, while the outputs
solver in NTG). The user specifies a problem to NTG byre the aircraft position and attitude in inertial coordinates
stating the problem in terms of some choice of outputsNorth, East, Up). The point mass model equations below
and its derivatives, providing the cost and the constrainigpresent the state equations for the vehicle traveling from
in terms of these outputs and their derivatives, specifyingiaypointi to the next waypoint + 1.

the regularity of the variables, the placement of the knot
points, the order and regularity of the B-Splines, and the

collocation points for each output. e = Uicos(vi)
The main advantages of the NTG over other techniques bac = Uisin(i;)
is that NTG produces approximate but very fast, optimal Uge = 0 (3)
trajectories which makes it very useful for real-time ap- _1 €qc
plications. In addition to that, linear as well as nonlinear vi = tan Trae (4)

con_straints ('Femporal and spatial) and cost functions CaPheren,., e,., andu,. are the aircraft positions along the
be included in the problem formulation of NTG. Spec'f'north, east and up axes, respectivély.is the speed and

ically, these constraints and cost functions are structurqﬂ is the heading, which is the angle between the nose and
in NTG formulation as: (1) Linear Initial Constraints, (2) north and is positive clockwise about thg axis.

Linear T_rajectory _Constraints_, (3) Linear Einal Con§traints, Assuming zero pitch and bank angles, a vector from the
4) Nonl_lnear Initial _Constre_unts, (5) No_nhnear Trf"‘_JeCtoryaircraft (Racs Cac, Uac) 10 the radar(ng, e, ug) is given in
Constraints, (6) Nonlinear Final Constraints, (7) Initial Coshody axes as:
Function, (8) Trajectory Cost Function, (9) Final Cost
Function. In this paper, the use of NTG is also motivatenl T Rac cos()  sin(y) 0 (nR — Nac)
by recent extensions in NTG’s ability to deal with temporal ] = [ —sin(y) cos(yp) 0O ] [ (er — €ac) ] (5)
constraints [4] as well as tabular data (analytically modele 0 0 1 (ur — Uac)
by B-Splines) constraints [18]. Other applications of NTG
to several control problems can be found in [2], [3] and [6]. )
D. Detection Model
C. Aircraft Model As shown in Fig. (1), the inputs to the detection model
The aircraft and the detection models, as shown in Figire the azimuth, elevation and slant rarige, el, R,). To
(1), are the two main components based on the Opébtain these values the vector in (5) is transformed to
Experimental Platform (OEP) [7]. Although the OEP modebpherical coordinates as follows
allows for more complexity, we use here simplified models.
We also assume that (1) the UAV maintains a constant 1 —(nR — Nac)€ac + (€R — €ac)Nac
altitude and the pitch angle is zero, (2) the bank angleaz = tan ( (MR — Nac)Ttac + (ER — €ac)€ac ) ®6)

YRac
ZRac




Jl Radar

el =tan™! Ur — Yac 7
<\/(7’LR —nac)? + (er — eac)2> ") Y.
»ug
Ry =/(ng —nac)? + (er — €ac)? + (ug — Uye)?  (8) Y @l‘

Fig. 2. Two event types; High and Low pnd Periods.

For the next part of the detection model, radar signature
and probability of detection tables are used. The tables
depend on the type of aircraft, the configuration of the represents the unknown final event times which is
aircraft, as well as the type of radgr. In this paper, we USRtroduced to be able to include temporal constraints in
tables based on the large UAV with normal configuration,e NTG algorithm. Thus, in the optimization formulations

and medium Surface Air Missile (SAM) radar model papaiow scaled time variable — % is used [4]. The system

rameters. Details of the aircraft and detection models C"’cﬂ/namics for this problem consist of the vehicle dynamics

be found in [7] and [18]. The first table computes the radgp, 4) together with the following dynamics on the new state
signature given the azimuth and elevation angles in radiang; iaples

The signature is a unitless, intermediary variable that is 4 AT
related to radar cross section. The second table computes the =% —( and —271
probability of detection function given the radar signature dr dr
and range values. In the next section, tensor product fNote that the system is dif‘ferentially flat. All variables of
Spline functions are used to find analytical models to thedBterest can be written as a function of the output variables,

tables to compute probability of not-being—detected, pnékac: €ac, T2i; T2i4+1 and their derivatives.
function. Next, we define the probability of not—being—detected

function, pnd, as;

=0 i=0,.n—1 (9

1. TRAJECTORY GENERATION

NT
This section introduces formulation of the trajectory pnd = H (1 — pd[k]) (20)
generation problem which maximizes the probability of k=1

not-being—detected (pnd) function while also minimizegyhere N, represents number of radar systemsg. =

the total mission time. This section also gives a brieypd(sig,m) indicates the probability of detection as a

information on how to use tabular data modeled by Bnction of signature (sig) and range (rg) valuesy =

Splines in the NTG formulation. fsig(el, az) represents the signature and it is a function of

elevation (el) and azimuth (az) angles. These two functions

are found using tensor product B—Spline functions to fit
The problem is to find a real-time nonlinear trajectoryanalytical models to the sig and pd tables shown in Fig. (1)

of a UAV which maximizes the survivability of the aircraft and it will be explained in more details in the next section.

against radar detection systems in minimum flight tim@fter defining these functions, a set of cost and constraint

given that radar locations and types, an aircraft type arféinctions can be developed.

configuration, a start location and initial heading angle of

the aircraft and a destination location are known. First, let8- Cost Functions

A. Problem Formulation

define two types of events; Cost functions are given based on the programming
« Probability of not—being—detected function (pmdyst ~ structure of the NTG algorithm as follows:
be high betweerl,; | <t < Ty, « Initial Cost Function:
« Probability of not—being—detected function (produld Jicg =W,  where T = Z(T% + T2i41)
be low betweenTy; <t < Th;y1 i=0

for ¢ = 0,1,---,n. High pnd times, where the UAV's « Trajectory Cost Function:

observability to the radar systems is minimized, scattered 1 ) )

with the short periods of low pnd times (high observability — J;.; :/ (VV; ((dnac) N (dEac) ) B prnd) Tdr
regions) as shown in Fig. (2) might make it possible to find o \T dr dr

optimal trajectories among the radar regions and as well &;, W, and W, represent the weight functions on the
in the radar regions. This is achieved by driving the radaotal mission time, speed and pnd functions, respectively.
systems into a condition callddck—lossin which a radar J;.; minimizes the total mission time while/,.; puts
system aborts its plans after a specified short time of nmenalties on the speed to bound the control action, and on
detection. the probability of not—being—detected function to maximize




the survivability of the aircraft. The integral i.; is while during the high pnd regioiVy, > 1.0 (low

respect to the scaled time, and has bounds from zero signature is forced), i.e.;
to one. In the NTG code setup, the initial cost function is
used to add constant terms to the cost and the trajectory cost I To <t < Toipr — Ws =10

function subroutine is used for the costs that are integrated. I Ty i <t<Th — W, >1.0

C. Constraint Functions Note that the constraint equations are scaled to aid in

Based on the programming structure of the NTG algo-  convergence of the nonlinear optimization codes.

rithm a set of constraint functions is given as « Nonlinear Final Constraints:
o Linear Initial Constraints:
2

Nac(0) < Nae(T)]r=0 < 1ac(0) 0 < Wy ((naC(l) - nf)2 + (€ac(1) — ef)) <1
eac(o) S eCLC(T)|T:O S eac(o) dege

) dnge . O < Wy -atan di; <6

Nac(0)T < ——|7 =0 < 1ge(0)T Fre

T

The UAV’'s arrival to the final destination waypoint

) de . e o ;
Mac(0)T < —"5|7 = 0 < 14.(0)T (ng,er) within a specified area is ensured by the
T o first constraint. Note that this constraint, as all other
Ty < Toilr—o < To;, ©=0,1,---n constraint and cost functions, is also a function of the

scaled timer, and herer = 1 represents the final
scaled time, i.e., it = T (T is the unknown real
final time) then fromr = £ — 7 = 1. A constraint

on the final heading of the UAV to ensure that the
aircraft is heading toward future waypoints is given by
the next inequality. Note tha® is the heading angle
betweenwaypoint(k + 1) and waypoint(k). © and

© represent lower and upper bounds on the heading

angle, respectively.

Toit1 < Toipilr=0 < Toiy1, ©=0,1,---n

where(-) = % . Since we would like to drive radar
systems into thdockloss condition Ty; 1 << Tb;
where T, ; represents the upper bound on the final
time of the events where low pnd is allowed afig
represents the upper bound on the final time of the
events where high pnd is forced. No linear trajectory
or linear final constraints are used.

« Nonlinear Trajectory Constraints: D. B-Spline Models

Analytical models to the signature (sig) and the probabil-

v L ((dnac>2 N (deac)Q) -1 ity of detection (pd) tables shown in Fig. (1) can be found
2 T T2 dr dr = efficiently using tensor product B—Spline functions:
dnge dtzeaC _ deac dzn,lC Slg - f%g el (ZZ Z ZBl kel el Js kaz(a’z)al]
—1<W. dr__dr? dr d7—215§1 lel
((4g22)" + (422)*) »
pd = fpd sig, Tg Z Z B; Ksig SZg Gikrg (Tg)bz]

=1 j=1

2 2
0 < Wi (nac = nres)” + (€ac = €rep)” <1 It is important to notice that when azimuth angle changes

betweers30 degrees and-31 degrees there is a big change
0 < Wy(max(sign;)) <1, i=1,2,--- N, in the magnitude of the signature function of the UAV as it
is shown in Fig. (3). The same phenomena occurs when the
The first constraint puts a limit on the velocity of @zimuth angle changes betwegn59 degrees andr160
the UAV. The next constraint is the curvature ratedegrees. This introduces several local minima and sharp
formulated to highlight the features of the NTG methocthanges in the gradients. Thus, the underlying optimization
for more realistic flight models. The third constraintProblem is in fact quite difficult.
helps UAV to follow a straight-line reference trajectory Fig. (5) and Fig. (6) show the result of the fit function
between waypoints within a specified radius so that inodels by B—spline tensor product functions versus the
can change its trajectory to maximize its pnd functionactual data points indicated by ‘o’. The order of the polyno-
Finally, the last constraint is the signature constrainfnials in the models used afel = 4, kaz = 2, ksig =2
which limits the maximum signature of the UAv andkrg = 4 and number of coefficients are = 9, n =
among all present radar systems. During the low pnéll, » = 7 andr = 30. Note the sharp changes in signature
region W, = 1.0 (maximum signature is allowed), for azimuths aroundr30 and +159 degrees in Fig. (5).



oaz |0 |30 |31 | M9 | 160 | +-I80 signature function, should be done using the chain rule
+90 1E0 | 1E0 1E0 | 1E0 1E0 1E0
+45 SE-3 | 5E-3 1E0 1E0 SE-3 SE-3 el = fe (w(naca eac)a Nac, eac)
+20 SE-4 | SE-4 SE-1 | SE-1 SE-4 SE-4 az = for(V(Nac, €ac)s Nac, €ac)
0 SE-S | SE-S SE1 | SE-1 SE-S SE-S dsig  _ dsig | del | dsig . das
20 SE-4 | SE-4 SE1 | SE-1 SE-4 SE-4 dnae — del  dng. daz  dnae
45 SE3 | SE-3 1E0 | 1E0 SE-3 SE-3
90 1E0 | 1E0 1E0 | 1E0 1E0 1E0 dsig _ dsig del dsig  das
dége - del dége daz dége

Fig. 3. Large UAV Signature Data. Derivatives of the pd and hence pnd function can be

implemented similarly.

Signature Value] Paq= 0.99 Pag=0.5| Pag=0.1| Pag= 0.01
1.0 275.0 3482 402.1 475.2 IV. NUMERICAL SIMULATIONS
15; 1:;‘-2 1?2? fgj; fggg In order to investigate the proposed approach, several
o 715 55 == e examples are presented in this section. We assume that pitch
1E-4 275 348 402 475 and bank angles are zero and altitude is fixed at 12km.
1E-5 515 1BE 2286 25K There are 6 temporal events used between each waypoints
1E-6 8.7 11.0 127 15.0

in all examples, 3 for high pnd regions, and 3 for low pnd
Fig. 4. Large UAV / Medium SAM Probability of Detection (Acquisition) regions. It is important to mention that the radar regiong ar_e
Data. notmodeled as obstacles in any examples. The only thing it
is assumed that the locations, types and engagement zones
of radars are known so that the elevation and azimuth angles
E. Implementation Issues can be calculated and appropriate signature and pd tables
can be used. Outside of the engagement zones of the radars,

Tensor Product B-Spline models can be efficiently foungown with circular regions in the examples, the signature
using MATLAB’s Spline Toolbox, especially witispap2 and probability of detection are assumed to be zero.
and spaps functions. Once the models are fourspbrk The first simulation considers planning a trajectory from
function is used to extract the knots vectors, degree &fi€ base location at (-50km , -50km) to a final destination
polynomials and coefficient matrix. Implementing the B-8t (150km , 150km). As it is seen in Fig. (7), the resulting
Spline models in the NTG formulations requires little carelrajectory successfully avoids the radar detection systems
The models can be implemented in NTG by writing Jgepresented with circular regions in the figure. A straight—
subroutine which calculates the B-Spline basis functiorfd'® trajectory would directly go through the centers of
and evaluates the value of the models and their derivativdi€ radar detection systems in this simulation. Fig. (8) and
respect to a given location of the aircraft. Interested readefdd-(9) show the second simulation. First figure shows the
are directed to the information given in the section (lI{F&/€ctory found through the radar regions between locations
A) and the book by Carl de Boor [11]. Implementation(-100km , -40km) and (-20km , Okm). The second one,

of derivatives of the B—Spline models, for example forSNows a different trajectory between locations (-100km , -
40km) and (-50km , 30km) for the same radar regions as in

Tensor Product B-Spline Fit for Signature vs. Data Points Tensor Product B-Spline Fit for pd vs. Data Points

Signature
Probability of Detection (pd)

Azimuth Angle (rad)

Elevation Angle (rad) Range

Signature

Fig. 5. The Signature Model Approximation Using B-Spline TensorFig. 6. The pd Model Approximation Using B—Spline Tensor Product
Product Functions. Functions.



Ground Track Ground Track
200 50

1500 L
/—\/ ol
100 oR2 L R

50

(km)
(km)

-50

50 o
100 ; . ! -150 . . :
-100 -50 0 50 100 150 200 -120 -100 -80 -60 -40 -20 Q
Noc (km) Noc (km)
Fig. 7. Ground track of the UAV for 2—radar example. Fig. 9. Ground track of the UAV for 2—radar example.

the first one. Note that this is the shortest path avoiding the V. CONCLUSIONS AND FUTURE WORKS
radar region since the optimization also tries to minimize |4 this paper, we proposed a method of finding real—
the total flight time. A similar simulation is shown in Fig. time nonlinear trajectories for unmanned aerial vehicles to
(10) and Fig. (11) between locations from (-100km , -40kmy,aximize the probability of-not—being detected function in
to (-20km , -120km) and from (-100km , -40km) to (-50kmminimal total flight time so that survivability of the aircraft
, -150km). is maximized against radar detection systems. This method
The last simulation is to find an optimal trajectory from apuilds on our initial results previously presented in CDC
base location, (-100km , -100km) to 3 different target sitegQ03.
located inside radar zones at (Okm , 30km), (200km , 20km) Based on tensor product B-Spline functions, analytical
and (200km , -130km). Other initial waypoints are locategnodels of the signature and probability of detection tables
at (-46km , -30km), (100km , 25km) and (200km , -40km)syvere found. Then, the trajectory generation problem and
These initial course waypoints construct initial straight-lingts implementation in the NTG were explained in detail.
trajectories between the base point and 1st target, 1st afidstrative numerical simulations which indicate the ability
2nd targets and finally 2nd and the last targets. Radars ajeour proposed method to find real-time nonlinear optimal
located at (Okm , Okm), (200km , 50km) and (200km ¢rajectories from a start point to a final destination point

-100km). Fig. (12) clearly illustrates that the UAV findspetween radar detection systems, as well as, inside radar
optimum entrance points to the targets to maximize its pnggions were provided.

function and to minimize the total ﬂ|ght time. We noticed that as the Comp|exity of the prob'em in-
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Fig. 8. Ground track of the UAV for 2-radar example. Fig. 10. Ground track of the UAV for 2—radar example.
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Fig. 11. Ground track of the UAV for 2—radar example.

creases by using probability of detection table with thélo]
signature table, this leads to more complicated convergence
issues. Our future work will focus on convergence issues, di
extending the proposed method to 3D, and on understandipg;
the issues involved with using NTG in a closed loop,

receding horizon manner. [13]
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