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Abstract— We introduce an algorithm for the optimal con-
trol of stochastic nonlinear systems subject to temporal logic
constraints on their behavior. We compute directly on the state
space of the system, avoiding the expensive pre-computation
of a discrete abstraction. An automaton that corresponds to
the temporal logic specification guides the computation of a
control policy that maximizes the probability that the system
satisfies the specification. This reduces controller synthesis
to solving a sequence of stochastic constrained reachability
problems. Each individual reachability problem is solved via the
Hamilton-Jacobi-Bellman (HJB) partial differential equation of
stochastic optimal control theory. To increase the efficiency of
our approach, we exploit a class of systems where the HJB
equation is linear due to structural assumptions on the noise.
The linearity of the partial differential equation allows us to
pre-compute control policy primitives and then compose them,
at essentially zero cost, to conservatively satisfy a complex
temporal logic specification.

I. INTRODUCTION

We present a method for synthesizing control policies
for continuous-time stochastic nonlinear systems with co-
safe temporal logic task specifications. We are motivated
by safety-critical robotics applications involving autonomous
ground and air vehicles executing complex tasks. In such
applications, it is desirable to automatically synthesize a
control policy that provably implements specified system
behavior, despite nonlinearities and disturbances.

Linear temporal logic (LTL) is a task specification lan-
guage that has been widely used for specifying properties of
hybrid systems, robotics, and software. We use syntactically
co-safe LTL, an expressive finite-time fragment of LTL, to
specify a wide range of properties relevant to autonomous
systems. These properties include safety, response to the
environment, and goal visitation. Such properties generalize
classical motion planning [21].

Common approaches for control policy synthesis for
stochastic systems with LTL specifications first abstract
the dynamical system as a finite Markov decision process
(MDP) [10], [19]. Each state in this MDP corresponds to a
subset of the system state space, and transition probabilities
between states in the MDP encode possible system behaviors.
Given such an MDP and an LTL specification, control
policies can be automatically constructed using an automata-
based approach [9], [19]. This approach extends work in the
formal verification community [8], [18] to hybrid systems
via the use of finite abstractions. The main drawback of this
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approach is that it is computationally expensive to create a
finite abstraction [10], [19].

We avoid the expensive computation of an MDP ab-
straction, and instead directly compute on the state space
of the system using techniques from stochastic optimal
control. We use an automaton representing the temporal logic
specification to guide the computation of a control policy
that maximizes the probability that the system satisfies the
specification. We treat this automaton as an MDP, where
states (modes) encode progress towards task completion and
each action corresponds to a control policy for the continuous
system. We use dynamic programming to maximize the
probability that the system satisfies the specification from
its initial state. A feedback control policy is returned which
selects the current action based on the system’s continuous
state and its mode.

By avoiding the computation of a discrete abstraction of
the system, our approach lets one take advantage of recent
advances in computing constrained reachability relations for
nonlinear stochastic systems. Recently it has been shown that
the Hamilton-Jacobi-Bellman (HJB) equation, a nonlinear
partial differential equation (PDE) central to stochastic opti-
mal control, may be transformed to a linear PDE given sev-
eral mild assumptions [16], [30]. Linear PDEs can be solved
with a number of computational tools, some of which scale
relatively well with dimension, such as those based on the
Feynman-Kac lemma [23], semidefinite programming [14],
and sparse tensor discretization [15], [25].

Additionally, the solutions to linear PDEs obey the prin-
ciple of superposition, a characteristic previously exploited
in [29]. We build upon this previous work, leveraging su-
perposition to quickly solve problems defined with temporal
specifications. Indeed, the computation of solutions by su-
perposition is appealing in situations where many control
problems must be solved over a common domain, as in
many temporal logic planning problems. For such prob-
lems, the specification creates a large number of constrained
reachability subproblems, where we leverage the property of
superposition to efficiently compose the subproblems.

Our main contribution is an efficient framework for con-
trol policy synthesis for stochastic nonlinear systems for
syntactically co-safe LTL. Our framework is general in
that it can utilize any technique that computes solutions
to a stochastic constrained reachability problem. We take
advantage of the case where the HJB equation is linear
to specialize and increase the efficiency of our approach.
This is done by exploiting the fact that solutions constructed
for individual specifications may be superimposed to satisfy
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richer specifications.
Our work is closely related to recent automata-guided

approaches for control policy synthesis for discrete-time
deterministic [32] and stochastic [28] systems subject to tem-
poral logic specifications. Our work is also related to [11],
which similarly encodes the relationship between sequential
tasks via the boundary conditions to HJB equations. These
approaches directly compute over the state space of the
system. Our work differs in that we present a compositional
approach based on superposition of solutions to linear PDEs.
This allows solutions to be quickly computed, albeit with a
degree of conservatism (see Section V).

II. PRELIMINARIES

Notation: An atomic proposition is a statement that is either
True or False. The expectation of a random variable is
denoted by E[·], and the probability of an event is denoted
by P[·].
A. System Model

We consider continuous-time stochastic nonlinear systems
that evolve with dynamics

dxt = (f(xt) +G(xt)ut) dt+B(xt)H d!t, (1)

with state xt 2 X ⇢ Rn, control input ut 2 Rm, Brownian
motion !t 2 Rm, and disturbance matrix H 2 Rn⇥m.
The functions f(xt), G(xt), and B(xt) are continuously
differentiable, and the set X is compact.

Let AP be a finite set of atomic propositions. The labeling
function L : X ! 2

AP maps the state to the set of atomic
propositions that are True. The set of states where atomic
proposition p 2 AP holds is denoted by [[p]].

Definition 1. A memoryless control policy for a system of
the form (1) is a map µ : X ! Rm. A finite-memory control
policy is a map µ : X ⇥M ! Rm ⇥M where the finite set
M is called the memory.

The trajectory x(x0, µ,!) = x : R�0 ! X represents
a solution of (1) induced by an initial state x0 2 X , a
given control policy µ, and an instance of Brownian motion
!. A word of a trajectory x is an infinite sequence of
labels L(x) = L(xt0)L(x⌧0)L(xt1)L(x⌧1)L(xt2) . . ., such
that t0 = 0 and for all i � 0, ti+1 � ti, ⌧i 2 [ti, ti+1], and
L(xt) = L(x⌧i) for all t 2 (ti, ti+1). A word of trajectory x

defines the behavior of x in terms of the label sequence. We
assume that during any finite time interval, the label changes
a finite number of times.

The set of words of system (1) with initial state x0 2
X induced by a control policy µ is denoted by x(x0, µ).
The Brownian motion induces a probability measure over
the trajectories of the system x(x0, µ), and thus the words.

B. Specification Language
We use syntactically co-safe linear temporal

logic (sc-LTL) [17] to concisely and unambiguously
specify desired system behavior over a finite horizon. In
this paper, we only consider system behavior over a finite

Fig. 1. A set of three example trajectories of a system satisfying the
specification ' = (S U A) ^ (S U B), meaning visit regions A and B

before leaving region S. The grey indicates a region outside of S. The word
for the two dashed trajectories is w = S(A^S)S(B^S), while the dotted
trajectory re-enters A, giving the word w = S(A^S)S(A^S)S(B^S).

horizon due to the unbounded disturbances in equation (1).
We give a brief introduction to the syntax and semantics of
sc-LTL and refer the reader to [17] for details.

An sc-LTL formula is formed from the Boolean operators:
¬ (negation), _ (disjunction), ^ (conjunction), and the
temporal operators: U (until) and 3 (eventually). An sc-
LTL formula is written in positive normal form (i.e., nega-
tions are only allowed in front of atomic propositions). We
do not include the # (next) temporal operator, which is ill-
defined in continuous-time.

Definition 2. A syntactically co-safe LTL (sc-LTL) formula
over a set of atomic propositions is inductively defined as
follows:

' ::= p | ¬p | '1 _ '2 | '1 ^ '2 | '1 U '2 | 3',

where p 2 AP is an atomic proposition.

The semantics of an sc-LTL formula is defined over
infinite words w = w0w1w2 . . . where wi 2 2

AP . Infor-
mally, '1 U '2 means that '1 is True until '2 is True
and 3' means that ' eventually is True. More complex
specifications can be defined by combining Boolean and
temporal operators. The satisfaction of an sc-LTL formula
is guaranteed in finite time [17]. An example of a temporal
logic planning problem is shown in Figure 1.

There is a useful connection between sc-LTL formulae and
deterministic finite automata.

Definition 3. A deterministic finite automaton (DFA) is a
tuple A = (Q,⌃, �, q0, F ) with a finite set of states Q, a
finite alphabet ⌃, a transition function � : Q ⇥ ⌃ ! Q, an
initial state q0 2 Q, and a set of accepting states F ⇢ Q.

An accepting run � of an automaton A on a finite word
w = w0 . . . wk over ⌃ = 2

AP is a sequence of states
� = q0 . . . qk+1 such that q0 is the initial state, qk+1 2 F ,
and qi+1 = �(qi, wi) for all i = 0, . . . , k.

For any sc-LTL formula ', there exists a deterministic
finite automaton A' that accepts exactly the prefixes of all



satisfying words. Software exists for constructing such a
deterministic finite automata from an sc-LTL formula [20].

III. PROBLEM STATEMENT

We now formally state our main problem. We begin by
defining the probability of satisfaction of a specification by
a stochastic system of the form (1).

The stochastic system (1) may have an infinite set of words
x(x0, µ) for a given initial state x0 and control policy µ.
There is a well-defined probability measure over this infinite
set of words [3], which gives rise to the notion of the
probability that a specification is satisfied.

Definition 4. Let x(x0, µ) be a set of words of system (1)
from initial state x0 under control policy µ with an associated
probability measure. Let ' be an sc-LTL formula over AP .
Then, P(x(x0, µ) |= ') is the probability that ' is satisfied
by system (1) under control policy µ.

Problem 1. Given a system of the form (1) and a syntac-
tically co-safe LTL formula ' over AP , compute a control
policy µ⇤ that maximizes the probability that ' is satisfied,
i.e., µ⇤ 2 argmaxµ P(x(x0, µ) |= ').

We give an efficient, yet conservative, solution to Prob-
lem 1. At a high level, we reduce Problem 1 to a series of
stochastic constrained reachability (reach-avoid) problems,
where the system attempts to reach a goal region while
avoiding another region, e.g., obstacles. Each of these in-
dividual constrained reachability problems can be solved
using stochastic optimal control techniques. We show how to
chain these solutions together, via a dynamic programming
argument, to solve temporal tasks specified by sc-LTL speci-
fications. For complex specifications, many such constrained
reachability problems must be solved. The resulting com-
plexity typically stymies existing techniques. By leveraging
the principle of superposition on the underlying repetitive
task of solving optimal control problems over a common
domain, we can scale to more complex tasks.

IV. STOCHASTIC CONSTRAINED REACHABILITY

We first define the stochastic constrained reachability
problem. Such problems will later be composed to construct
a control policy for a temporal logic planning problem. A
solution to a constrained reachability problem is a control
policy that maximizes the probability that the system reaches
the boundary of set X2 before reaching the boundary of set
X1, e.g., reach a goal region before running into obstacles.
This stochastic reachability problem always has an optimal
memoryless policy [4].

Problem 2 (Stochastic constrained reachability). Given a
system of the form (1) and sets X1, X2 ✓ X , compute a
control policy µ⇤ that maximizes the probability that the
system reaches the boundary of set X2 before reaching the
boundary of set X1.

Solving a stochastic constrained reachability problem is
generally undecidable [7]. However, there exist numerous
sound algorithms that compute solutions to constrained

reachability problems using PDE-based methods [1], [14],
[22], [31].

We make the standing assumption that there exists an
oracle for computing a solution to a stochastic constrained
reachability problem that under-approximates the probabil-
ity of reaching the goal set. We denote this method by
CSTREACH(X1, X2), with constraint set X1 and reach set
X2. For a given query, CSTREACH returns a memoryless
control policy µ⇤. We now detail a method to solve the
CSTREACH problem with an under-approximation for the
case when the stochastic reachability problem has a particu-
larly simple form.

A. The Linear Hamilton-Jacobi-Bellman Equation

In this section, we describe a technique for solving
stochastic constrained reachability, i.e., Problem 2, for sys-
tems of the form (1), as a stochastic optimal control problem.
The system has positive-valued costs r(xt, ut) : X ⇥Rm !
R>0 accrued at time t according to

r(xt, ut) = q(xt) +
1

2

uT
t Rut,

where q(x) is a non-negative state dependent cost. The goal
is to minimize the trajectory functional

J(x, u) = �T (xT ) +

Z T

0
r(xt, ut)dt,

where �T represents a state-dependent terminal cost. We
consider the first-exit (or shortest path) problem, where the
system continues to operate and accrue cost in the compact
domain ⌦ until it reaches its boundary @⌦ at time T .
The choice of boundary may be due to the nature of the
environment or desired operation, e.g. the presence of a goal
region or an obstacle.

The construction of the constrained reachability value
function Vr(x) presented here follows the development and
notation in [27]. The solution to the optimization, beginning
from an initial point xt at time t, is given by the value
function

Vr (xt) = min

ut:T

E [J (xt)] .

The Hamilton-Jacobi-Bellman equation associated with this
problem is the nonlinear, second order partial differential
equation (PDE) [13]

0 = q + (rxVr)
T f � 1

2

(rxVr)
T GR�1GT

(rxVr)

+

1

2

Tr
�
(rxxVr)B⌃✏B

T
�
,

where ⌃✏ = HHT . This nonlinear PDE is difficult to solve
in general. However, it has recently been found [16], [27],
[30] that under the assumption

�G(xt)R
�1G(xt)

T
= B(xt)⌃✏B(xt)

T , ⌃t, (2)

and the logarithmic transformation

Vr = �� log , (3)



one can obtain, after substitution and simplification, the
linear PDE

0 = � 1

�
q + fT

(rx ) +
1

2

Tr ((rxx )⌃t) . (4)

The transformation of the value function Vr to  (called
the desirability [29]), provides a computationally appeal-
ing method to calculate the value function. Any solution
calculated for (4) can easily be transformed to the value
function via the bijection (3). We will therefore use the cost-
to-go (value function) throughout. Note that any boundary
conditions specified by � must be transformed to a boundary
condition of (4) as  |@⌦= e�

�
� .

Remark 1. The condition prescribed by (2) relates the
system’s disturbances to the effect of its control input.
Interestingly, the condition is satisfied when the dynamics
are such that

dxt = f(xt)dt+B(xt) (utdt+ d!t)

i.e. the noise enters with the control input, a common
assumption in adaptive control [2]. Further analysis of the
assumption is given in [29].

We are concerned about the ability for the system to
satisfy the specification and not necessarily the cost to do
so, giving the designer freedom with control effort R and
state cost q. The state cost may be set to q = 0. However,
it is not simple to minimize the effects of control cost.
Examining constraint (2) and the transformation (3), we
see that the control effort penalty R cannot be brought
to zero naively. The cost-to-go thus includes a non-zero
control cost, and is therefore a conservative approximation of
the probability of satisfying the specification. Nonetheless,
the degree of approximation introduced will be balanced
by the computational gains present in this optimal control
framework.

B. Numerical Methods for Solving Linear PDEs

In all but the most elementary of examples, the solution
to (4) is difficult to calculate analytically, and numerical
methods must be employed. Methods have also recently
been developed to generate suboptimal, over-approximate
solutions to (4) through the use of a relaxation on the partial
differential constraints [14]. The Feynman-Kac lemma has
also been used to determine the solution through sampling
for high dimensional systems [26]. Recent results in the use
of sparse tensor discretization have allowed for PDEs of
dimension twelve and higher to be solved in a manner of
minute [15]. As an alternative, it is possible to simply treat
(4) as a general PDE and use existing numerical techniques
such as Finite-Difference or the Finite Element Method.

V. COMPOSITION OF SOLUTIONS TO LINEAR PDES

The superposition principle can be used to construct
solutions to arbitrary specifications from the solutions of
individual specifications over labeled regions. The method
consists of two parts, the calculation of individual solutions

for individual propositions in Algorithm 1, and the gen-
eration of solutions to a complete reachability problem in
Algorithm 2.

Algorithm 1 Pre-processing of constituent solutions
Given compact domain ⌦, and labeled regions R = {Ri}:

1) Set @� = {@⌦, {@Ri}}
2) Set  0 |@⌦= C, null elsewhere
3) For each Ri 2 R

a) Set  0 |@Ri= 0

4) Solve for  d with PDE constraints (4) and boundary
conditions  d |@�= e� 0

5) For each Ri 2 R
a) Solve for  i

p according to (4) with boundary
conditions  i

p = 1 on @Ri,  i
p = 0 on @�\@Ri

6) Return
�
 d,

�
 

i
p

  

Algorithm 2 Generation of Value-maps
Given solution to Algorithm 1

�
 d,

�
 

i
p

  
, and a set of

penalties Ci for each region in R:
1) Initialize value-map  ⇤

:=  d

2) For each region i 2 I
a) Set  ⇤

:=  

⇤
+ Ci · i

g

3) Return  ⇤

The development of Algorithm 1 begins with the observa-
tion that the transformed Hamilton-Jacobi-Bellman PDE (4)
is linear, which allows for superposition of solutions.

Theorem 1. (Superposition Principle [12]) Given a pair of
partial differential boundary value problems P ( i) = 0,
i = 1, 2 on ⌦, where P is an arbitrary linear differential
operator, with boundary conditions  1 = f ,  2 = g on @⌦,
then  ⇤

=  1 +  2 is the solution to the boundary value
problem with  ⇤

= f + g on @⌦.

The method we propose is to solve a stochastic constrained
reachability problem (i.e., Problem 2) separately for each
labeled region. The activation of these regions as either
goal regions or obstacles as part of a specification is then
accomplished through superposition of the solutions of each
individual activated region.

To begin, suppose we are given all labeled partitions as
well as the domain. We first construct the default solution
 d as that for which the boundary of the region is taken into
account. The result is the boundary value problem

0 = � 1

�
q d + fT

(rx d) +
1

2

Tr ((rxx d)⌃) ,

1 =  d |@⌦,
0 =  d |@�\@⌦ .

The next step is the calculation of a solution primitive  p

for an individual labeled region R. Recall that such solutions
will be added, and it is therefore necessary that the solution



Fig. 2. Illustration of the construction of a solution primitive. On the left
the solution is created for the boundary-only problem with the boundaries
of the labeled regions set to zero, indicated by dashed lines. In the middle,
the PDE is solved for one region activated, while all other regions and the
boundary are set to zero. On the right, a complete solution is shown with
the solutions added.

not alter the boundary values at other labeled regions. Thus,
the boundary conditions for this problem are set to

 p |@�\@R= 0.

Note that these conditions are also set for the domain
boundary @⌦ ⇢ @�. When solutions constructed in this
manner are superimposed, the resultant boundary conditions
then have the correct values. The approach is illustrated
graphically in Figure 2.

Remark 2. We note that composing solution in this manner
is not a form of averaging the solution primitives. The
principle of superposition dictates that the solution will
exactly match the composite problem.

VI. TEMPORAL PLANNING SOLUTION

In this section we present a method for (conservatively)
solving Problem 1. We exploit the fact that every syn-
tactically co-safe LTL formula can be represented by a
deterministic finite automaton. A word, i.e., a labeled system
trajectory, satisfies an sc-LTL formula if and only if the
acceptance condition of the automaton holds. This reduces
Problem 1 to computing a control policy that maximizes the
probability that the system reaches an accepting state in the
automaton. We modify the deterministic finite automaton by
including stochastic transitions between modes, which ac-
counts for uncertainty due to the stochastic system dynamics.

We use a deterministic finite automaton (DFA) correspond-
ing to the sc-LTL specification to guide the computation
of a control policy that (conservatively) solves Problem 1.
Informally, the modes (i.e., states) in the DFA represent
progress towards the completion of the task, and our goal
is to compute a control policy that maximizes the prob-
ability that the system will reach an accepting mode of
the automation from its initial state. However, transitions
between modes in the automaton are not deterministic due
to the system’s stochastic noise. Thus, we construct an MDP
corresponding to the DFA, where the actions correspond
to memoryless control policies that are executed by the
continuous system. A control policy selects the appropriate
action (i.e., memoryless control policy) at each mode in the
automaton.

A. Automata-Guided Task
At each node of the automaton, the specification is reduced

to a set of constrained reachability tasks over the set of

regions, with their reach or avoid nature indicated by the
relevant propositions. Given the output O of Algorithm 1,
Algorithm 2 generates the value-map for the current task
specified by the node. The constrained reachability regions
are selected, and based on their manifestation in the propo-
sition, appropriately scaled by some constant Ci. For each
region these scalings may be collected into a vector of
coefficients E = {Ci}i=1,...,|R|. The solutions  = { i}
to these individual solutions are then added and scaled
appropriately to produce the desired solution

 

⇤
= ET · 

Once the goal region is reached, the current node on the
graph is transitioned according to which goal was achieved,
and the process repeats.

B. Dynamic Programming
As the completion of the specification of Problem 1

involves multiple individual steps, each corresponding to
Problem 2, future goals must be weighted according to their
future reward when planning in the current time step. By
Bellman’s Principle of Optimality, this suggests that at stage
i the goals should be weighted according to their cost-to-go
when beginning stage i+1. By proceeding from the accepting
state, it is therefore possible to perform dynamic program-
ming for this problem by setting the boundary conditions,
i.e. the vector E , for precedent problems according to their
subsequent cost-to-go. Further analysis of the relationship
between HJB boundary conditions and temporal planning is
available in [11].

Dynamic programming in this setting therefore proceeds
as follows. The final accepting states of a DFA representing
the temporal specification are selected. For each accepting
state, the corresponding regions of the domain are acti-
vated as goal regions with zero cost-to-go, and this final-
stage stochastic reachability problem is then solved using
Algorithm 2, with the other labeled regions inactive. This
yields the solution to the final stage of the temporal planning
problem.

The process then repeats recursively as follows. For each
parent node of the automaton accepting states, the cost-to-go
at the boundaries of the other labeled regions are selected.
These values are then used as boundary conditions for the
constrained reachability problem of the parent state of the
automaton. The process is repeated, proceeding backwards
in time, with the the boundary conditions of the labeled
regions at each automaton state corresponding to the cost-to-
go for those regions at the child automaton state. Each such
constrained reachability problem is solved via superposition
by weighting the boundaries according to their cost-to-
go using Algorithm 2. This process is repeated until the
beginning of the specification is reached.

C. Limitations of Our Approach
Several simplifying assumptions are necessary in the cre-

ation of the superposition framework that introduce a degree
of conservatism. The first of these is that the boundary



conditions remain consistent for all reachability problems,
requiring that boundary conditions for all regions be pre-
scribed. Unfortunately, this prevents the elimination of some
regions, for example if an obstacle is not necessarily to be
avoided at some stages of the task. A straightforward method
to fix the issue is to penalize the boundary conditions until
they achieve a cost-to-go above the surrounding domain,
i.e. such that @ 

@n |Oi� 0 for n a normal vector on the
surface of Oi. The effect is that the cost-to-go of reaching
this deactivated region is higher than it would otherwise
be. Although this will result in approximation error, the
approach only overstates the expected cost of reaching the
goal, resulting in a unnecessarily conservative but sound
policy.

A second caveat is that the efficient construction of value
functions also required boundary of each region be weighted
according to a constant value, an unlikely situation. To
facilitate this, we weight each region R according to its
worst-case cost-to-go. This again results in a conservative
but sound policy, with the solution treating some boundary
values with a higher cost than is truly the case.

A last difficulty arises in that it is impossible to detect
the exact cost-to-go from the boundary of the previous stage
region. This is prevented by steps 2 and 3 of Algorithm 2,
which prescribe boundary conditions along all labeled re-
gions, preventing us from calculating what the cost-to-go
would be if that region was not present. It is possible to
raise the boundary condition from the region whose cost-
to-go is to be approximated until it is greater than all
neighboring states, i.e. such that the gradient away from the
region is negative. This implies that the cost to go from the
boundary of the region is greater than it would have been
otherwise, and provides, again, an under approximation of
the satisfaction probability.

D. Introduction of New Propositions

Once Algorithm 1 has been completed, it is still possible
to add a newly created region. The need could arise from
varying requirements over the course of execution, due to
perhaps the introduction of a previously unseen obstacle, or
if it desirable to completely eliminate a region.

Given an existing specification ' with solution  , we wish
to add a proposition a that an unlabeled region A. We first
wish to adjust the value of the solution to match �(x) |@A=
C. The existing cost-to-go is captured from the boundary
@A, and the boundary value problem is solved with boundary
conditions

� |@A = �(x),

� |@�\@A = 0,

with solution denoted  e. This captures the effects of the
existing solution along @A upon the rest of the solution.
The process is repeated with the new boundary conditions

� |@A = 1,

� |@�\@A = 0,

Fig. 3. Results for last stage cost-to-go of Example 1. The domain is x, y 2
[0, 1]2\C for C = {x 2 [0.2, 0.6], y 2 [0.25, 0.4]}. The goals are A =
{x 2 [0.7, 0.85] , y 2 [0.7, 0.8]}, B = {x 2 [0.7, 0.8] , y 2 [0.15, 0.25]}.
A trajectory of the closed loop system begins at the grey square.

producing solution  n. The new solution with the added
boundary conditions may then be constructed. Note however
that this new solution is particular to the boundary conditions
prescribed on @�, and cannot be scaled and used as part of
the superposition framework.

E. Complexity
The primary cost in this framework is the calculation of the

solution to the PDE (4), which must be computed once for
each element of R, and once more for all elements R set
to zero. The Finite Difference Method requires O

⇣�
1
h

�d⌘

for discretization length h and state space dimension d.
Methods based on Monte Carlo sampling, such as Feynman-
Kac, are known to have accuracy that scale independently
of state space dimension at O(n

1
2
) where n are the number

of samples used in the estimation process. More recently,
methods to directly solve linear PDEs that scale linearly with
dimension, but cubically in the tensor-rank of the solution,
have also appeared [5], [15].

The computation of the deterministic finite automaton
for the specification is worst-case doubly exponential [6].
The convergence of the value iteration for the specification
MDP is guaranteed as the continuum of actions exists in a
compact set, and the costs of the actions are non-negative [4].
Investigation of the specific convergence rate in this context
is the subject of future research.

The gains of the framework presented lies in the compo-
sition of solutions. At each step in the automaton it is nec-
essary to calculate the solution to a constrained reachability
problem. This is done through simple vector addition of the
primitives in Algorithm 2. As all primitives are used, this
is an O (|R|) operation, but with a quite small constant as
vector addition is computationally negligible. Denoting the
method of calculating an individual PDE solution as having
complexity O(p), Algorithm 1 requires O (|R| p) time.

VII. EXAMPLES

We illustrate the approach on two examples. The first ex-
ample illustrates our method, and the second example shows
how this compositional approach scales with task complexity.
For simplicity, the finite difference method is used to solve



Fig. 4. Individual value function primitives for regions A, B on the left
and right respectively.

Fig. 5. Results of using composition method on the two region visit task
of Example 1.

all PDEs. The standard approach to similar problems rely
on a discrete abstraction with transition probabilities gained
from Monte Carlo simulation [19]. These simulations create
a high computational burden, taking as much as several
hours, as well as approximation error in the model. We are
able to avoid these issues in our approach, with computation
time in the tens of seconds. In both of these examples we
use a nonlinear two dimensional example, as it facilitates
visualization, and demonstrates the generality of the method.

A. Two goal problem

The first example is to visit two goal regions A and B
while remaining in an obstacle-free bounded domain S. The

(a) (b)
Fig. 6. Exact and approximate cost-to-go before either region is visited on
the left and right respectively. A trajectory, beginning from the grey square
is shown in black when following the induced policies. After visiting A the
trajectories are continued in Fig. 3, 5.

Fig. 7. Calculation times using the exact (blue) and superposition (red)
methods for visitation problem with n regions to visit.

formal specification is ' = (S U A) ^ (S U B) and the
system dynamics, taken from [24] are given by


dx
dy

�
=

✓ �2x� x3 � 5y � y3

6x+ x3 � 3y � y3

�
+


u1

u2

�◆
dt

+


d!1

d!2

�

The state cost is set to q = 0.4 with control penalty is R =

0.05I2⇥2. In Figure 3 the geometry is shown along with
the cost-to-go in the last stage of the automaton after having
visited one of the goals. The value function for the first stage
is calculated and shown in Figure 6a.

The problem is then repeated using the compositional
approach. The primitives are shown in Figure 4. These are
superimposed to produce the solution from the last stage,
shown in Figure 5, where the worst-case cost-to-go is applied
to the last visited region. These worst-case values are then
used as the boundary conditions for the first-stage value
function, shown in Figure 6b.

B. n�visit problem

We expand upon the previous example, now scaling the
number of goal regions n up to ten in a larger domain ⌦ =

[0, 130]2 with discretization size h = 1.0, and goals equally
spaced with width four. Specifically, the specification is ' =

(S U A1) ^ · · · ^ (S U An).
The problem can be solved exactly and using the method

of superposition as before. As the exact approach requires
the solution of a PDE for each edge of the automaton, the
computation also scales with the size of the automaton. In
contrast, using superposition the policy at each automaton
node requires only vector additions and a maximization
operation over a vector that describes the region boundaries.
Calculation times for the two are shown in Figure 7.



VIII. CONCLUSIONS

We introduced a method for efficiently synthesizing con-
trol policies for stochastic nonlinear systems with syntacti-
cally co-safe LTL specifications. A certain structural assump-
tion was made on the stochasticity of the system, allowing for
the construction of a linear Hamilton Jacobi Bellman equa-
tion for individual stochastic constrained reachability prob-
lems. In turn, this allowed for temporal planning problems to
be solved efficiently via the principle of superposition. The
method relies on pre-computed primitives, each of which are
solutions to individual stochastic optimal control problems
related to the reachability of an individual region. Solutions
to individual constrained reachability problems are cheaply
constructed by simple vector addition of these pre-computed
solutions, allowing for the individual stages of an automaton
specified task to be solved quickly. The method relies on
computation in the state space of the system and requires no
a-priori discretization or cellular decomposition.

The drawbacks of this method are that the PDE utilized
requires all boundary conditions to be specified. A region
may be removed exactly, but this requires the solution of
an additional PDE boundary value problem, and is not
applicable when any of the other boundary conditions are
changed. The need to incorporate all regions, it is possible to
construct a sound but conservative solution with mild penalty
on the inactive regions. While inexact, the method has many
benefits, among which is the ability to rapidly adapt to new
specifications over the existing labeled regions in real time.

IX. ACKNOWLEDGEMENTS

The authors thank the anonymous reviewers for their
helpful comments. The first and second authors were sup-
ported by NSF GRFP and NDSEG fellowships, respectively.
Additional support was provided by the Boeing Corporation.

REFERENCES

[1] A. Abate, M. Prandini, J. Lygeros, and S. Sastry. Probabilistic
reachability and safety for controlled discrete time stochastic hybrid
systems. Automatica, 44(11):2724–2734, 2008.
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