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Living organisms are differentiated by their genetic material – millions to billions of DNA

bases encoding thousands of genes. These genes are translated into a vast array of proteins,2

many of which have functions that are still unknown. Previously, it was believed that simply

knowing the genetic sequence of an organism would be the key to unlocking all understanding.4

However, as DNA sequencing technology has become affordable, even cheap, it has become

clear that living cells are governed by complex, multilayered networks of gene regulation that6

cannot be deduced from sequence alone. Synthetic biology as a field might best be characterized

as a learn-by-building approach, in which scientists attempt to engineer molecular pathways that8

do not exist in nature, and in doing so, test the limits of both natural and engineered organisms.

Synthetic biology broadly encompasses the genetic engineering of organisms in order to10

implement and test new biological functions. A relatively young field, synthetic biology relies

on biological discoveries in gene function as well as improvements in molecular biology tools12

for manipulation of DNA [1]. Current applications of synthetic biology include production of

biofuels and other valuable chemicals [2], [3], molecular computation and logic [4], [5], medical14

diagnostics [6], and artificial microbial communities [7], [8]. These engineered biological circuits

are often not robust because of sensitivity to environmental conditions, context effects within the16

host organism, and stochastic noise due to inherently low molecular counts. Applying feedback

control would potentially allow biological circuits to perform their intended function more18

robustly across a variety of operating conditions, and ease the transition from very controlled

lab conditions to practical real world applications.20

This survey aims to provide a general overview of relevant terms and resources for

understanding the intersection of synthetic biology and control theory. A reader with a22

background in control theory should come away with a reasonable understanding of the current

state-of-the-art of biological system identification, controller design and implementation, and24
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the open challenges facing the field. Additionally, this review updates and builds upon previous

publications on this subject [9], [10], [11]. As this particular work is limited to a selected number2

of topics, additional reviews are suggested throughout the text for deeper reading.

In the following sections, each of the challenges is addressed within the typical workflow4

for control implementation of more traditionally engineered systems (Figure 1). Engineered

biological systems present a number of challenges to all stages of this workflow for reasons6

such as limitations in real-time measurement, resource competition with the host organism, and

incomplete knowledge of underlying biological processes. First, strategies for framing a biologi-8

cal organism as a system with defined inputs, outputs, sensors, actuators, and measurements are

discussed (Figure 1a). Obtaining dynamic and reliable measurements within biological organisms10

is a daunting challenge, engineered or otherwise. An overview of the state-of-the-art tools for

modeling and characterizing biological systems is presented, followed by system identification12

methods specifically designed for the types of data available from biological measurements. The

difficulty in engineering complex genetic networks, combined with severe limitations in real-14

time measurement, means that the body of work for controller design (Figure 1b) is limited –

as a result, we discuss the open problems and challenges awaiting the entrepreneurial reader,16

and also present a number of examples of feedback loop implementation in living cells (Figure

1c). Finally, the necessary challenges in synthetic biology and development of control theoretical18

frameworks that need to be addressed in order to advance the field are discussed.

Introduction to Synthetic Biology20

In the last two decades, advances in molecular biology techniques have led to the

development of reliable methods for extraction, duplication, and insertion of DNA elements22

into non-native host organisms. Combined with the advent of affordable commercial DNA

sequencing, these cloning techniques paved the way for the beginnings of synthetic biology.24

The universality of the central dogma (i.e. all organisms store information in the form of

DNA) means that genes previously identified from many different types of prokaryotic and26

eukaryotic organisms can be inserted and expressed in a non-native host organism (Figure 2a;

see also “Sidebar: Central Dogma”). Host organisms are usually so-called “model organisms”28

that have been domesticated to increase efficiency of taking on foreign DNA and growth under

controlled laboratory conditions. The most commonly used model organisms include the gram-30

negative bacteria Escherichia coli, the gram-positive bacteria Bacillus subtilis, the eukaryotic

yeast Saccharomyces cerevisiae, and the mammalian Chinese Hamster Ovary cell line (CHO).32

Synthetic biology takes the approach of an engineering discipline, albeit one in which many

of the moving parts are not well characterized nor optimally designed for the function that is34
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being built. While there is a large emphasis on building molecular systems de novo, synthetic

biology relies on protein characterization and discovery from biology and biochemistry, as well2

as continued elucidation of natural molecular networks from systems biology.

The potential applications for safe and reliably engineered organisms for future societies4

are vast. Biofuels could be produced sustainably and on-demand in programmable fermentation

tanks. Medicines from rare or endangered plants could be produced in distributed fermentors,6

reducing production costs and reliance on weather and rainfall. Nutritional deficiencies could

be corrected with engineered gut bacteria that can detect and produce essential vitamins or8

break down accumulated toxins. Organisms for bioremediation could be tailored to specifically

respond to the type of environmental contamination. While many of these concepts have been10

proven in the laboratory, the field faces major challenges in reliability and robustness outside of

extremely controlled conditions. Inherently, synthetic biomolecular systems must compete with12

natural processes for survival and replication, resulting in a strong evolutionary pressure for cells

to turn off or disrupt engineered pathways.14

Published works in synthetic biology can be loosely separated into two categories: modular

circuits to demonstrate and characterize the dynamics of novel biomolecular networks (synthetic16

gene circuits), and the expression of large metabolic pathways in new host organisms for the

purposes of large scale production of a specific product (metabolic engineering). Figure 2b18

illustrates several well known synthetic circuits. One of the first, and most widely known,

examples of a synthetic circuit is the repressilator, named as such for its oscillating output20

behavior generated by a network of three transcriptional repressors [12]. In the same year, the

bistable toggle-switch utilized mutual repression of two proteins to create a memory switch [13].22

Since the publication of these studies in 2000, there have been many additional examples of

oscillators [14], [15], [16], [17], switches [18], logic gates [19], [20], [21], [22], [23], counters24

[24], finite state machines [25], [26], and memory [27], [28], [29]. Quorum sensing systems

from different microbes can effectively be used for artificial cell-cell signaling for predator-prey26

systems [30] and two-dimensional pattern generation [31].

In parallel with these completely synthetic gene circuits, there has been a huge effort28

to express entire transplanted pathways for the large-scale production of small molecules. In

metabolic engineering, the engineered host organisms are used as catalysts to convert a simple30

carbon source, usually glucose or other sugar, into complex chemical and protein products (Figure

2c). Notably, this has led to the commercial scale production of molecules such as the anti-32

malarial drug artemisinin [32], the biofuels farnesene [33] and 1, 4-butanediol [34], and polymers

such as spider silk [35]. With industrial synthetic biology, chemicals and materials that have34

traditionally been impossible to farm at large scale, or harvested from increasingly endangered
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plants, can be produced at commerical scale in a renewable way.

Many challenges exist in improving robustness of engineered strains. At the heart of the2

issue is that synthetic protein production competes for resources with existing cellular processes

for survival and replication (Figure 2d). Synthetic gene circuits usually rely on the heavy4

overexpression of non-native proteins, an energy-intensive process that diverts away from the

common pool of cellular resources. Furthermore, even if the synthetic pathway is regulated6

with a switch, these molecular mechanisms can be “leaky”, resulting in unwanted background

expression even when “off”. In [36], the relative carrying capacity of engineered E. coli was8

measured by using growth rate as a proxy for carrying capacity. In this study, the growth of cells

with an active synthetic circuit was compared against the growth rate of cells with an empty10

plasmid vector. This data was then used to determine designs to minimize load on the cell. At

the first possible opportunity, host organisms will find ways to mutate away or repress synthetic12

pathways that are particularly deleterious to growth [37]. As a result, synthetic biologists have

relied on the use of antibiotic selection, nutrient auxotrophy, or toxin-antitoxin systems to select14

against cells that mutate away from the original design [38]. While these strategies are not

covered in detail here, a review on building in biosafety can be found in [39]. The ideal design16

would force the host to rely on the synthetic circuit, and for the synthetic circuit to only be

functional in that specific host. However, without careful design, these strategies could add to18

the cellular cost of implementing the synthetic circuit and may not be reliable at scale.

Concurrent with building experimental systems, there has been a large body of work on20

modeling these synthetic circuits, particularly since the complexity of the cell requires a great

deal of assumptions and curation to decide which parts of the system need to be represented.22

Model classes (see: “Sidebar: Model Classes”) and implementation will be discussed in detail

in later sections. Due to the limited scope of this review, we will focus exclusively on studies24

on either engineered or natural biological systems that feature feedback control.

Natural Inspiration for Controller Design26

Endogenous systems in organisms display many principles of feedback control and can

be sources of inspiration when designing controllers. These networks display a wide array of28

performance characteristics and robustness to perturbations that engineered de novo biomolecular

networks have yet to achieve.30

In general, integral control is crucial for natural biomolecular pathways because organisms

must maintain tight regulation over all aspects of their internal environment (e.g. temperature,32

pH, nutrients), a phenomenon known as homeostasis. The zero steady state error property
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makes integral feedback an excellent choice for robust regulation of the cellular environment.

In cows, the concentration of calcium in the blood is maintained when the demand for calcium2

increases by a control system involving two hormones: parathyroid hormone (PTH), and 1-25-

dihydroxycholecalciferol (1,25-DHCC) (Figure 3a). It is shown in [40] that PTH implements a4

proportional response to a calcium shortage while 1,25-DHCC implements an integral response

over a longer timescale. Together, the two hormone system makes a PI controller, where a fast6

proportional term removes the majority of the error quickly, and a slow integral term leads to

eventual zero steady state error. Other examples of integral control in natural systems that are8

not discussed in detail here include bacterial chemotaxis [41], [42] and yeast osmoregulation

[43]. Finally, in [44], there is a comprehensive summary of the different synthetic gene circuit10

topologies that are known to be capable of providing near exact adaptation.

Recently, positive feedback was proposed as a mechanism for maintenance of bacterial12

persisters within populations [45] (Figure 3b). Compared to the rest of the population, persisters

have greatly reduced nutrient intake and growth, which actually endows higher levels of antibiotic14

tolerance, since many antibiotics target cellular machinery for replication and metabolism. This

can result in survivors that can mutate and develop resistance. The proposed mechanism of16

positive feedback is that stochastic entry into a low metabolic flux state becomes perpetuated by

internal stress responses. Cells in the persister state can only be rescued back into the high18

metabolic flux state with stochastic increases in metabolic enzymes or stochastic decreases

in production of growth-inhibiting proteins. There are also quite a few examples of positive20

feedback as a mechanism for trigger waves. Trigger waves, unlike diffusing molecules, do not

slow down nor lose amplitude as they propagate. Examples of trigger waves include neuronal22

action potentials, calcium waves across tissues, and mitotic waves in Xenopus frog eggs [46].

Other studies have attempted to elucidate the complex interactions of natural networks.24

In [47], some of the multiple feedback pathways that regulate galactose metabolism in the

yeast S. cerevisiae were investigated (Figure 3c). Galactose is one of many sugars that yeast can26

metabolize, and in the absence of galactose the pathway is kept in the OFF-state. This is achieved

by a mechanism in which a repressor protein, Gal80, actively sequesters an activator protein,28

Gal4. In the presence of galactose, Gal80 is itself sequestered by two additional proteins, Gal3

and Gal1. Gal3 and Gal1 independently amplify their own production with positive feedback.30

Through a combination of experimental knockouts and simulation, [47] demonstrates that this

positive feedback is essential for creating a bimodal response to galactose in yeast.32

Studies on the regulation of single cell competence in the gram-positive bacteria B. subtilus
suggest similarly nested positive and negative feedback loops (Figure 3d) [48]. Competence is34

a cellular condition in which a single cell takes in foreign DNA from the environment, and
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is triggered by stress response. In [48], it is found that activation of bacterial competence is

regulated through competitive inhibition of the protein degradation machinery. The regulatory2

network is characterized by fast positive feedback for the main regulator ComK, but slow negative

feedback by ComS. ComS competitively inhibits degradation of ComK, allowing ComK to4

activate the competence genes. ComS is up-regulated by the stress response genes and so its

buildup results in accumulation of ComK. However, ComK also indirectly inhibits ComS, thus6

allowing the cell to turn off competence and return to the normal vegetative state.

As the mechanisms of natural signaling pathways become better understood and more8

accurately measured, it is clear that biology takes full advantage of redundancy, fast and slow

time responses, molecular sequestration and titration, and nested feedback to maintain near-10

perfect adaptation and response to the constant flow of perturbations. Synthetic biology has just

only begun to imitate these natural networks.12

Characterization and Identification of Biological Systems

System identification is particularly challenging for biological systems because a majority14

of the processes that occur within the organism are part of the underlying host biology,

which may not be well understood and also difficult to measure. This can result in severe16

limitations on creating accurate models of synthetic gene circuits that can be used for control

design or other computational explorations of circuit behavior (see: “Sidebar: Uncertainty in18

Biology”). Considerations for model choice and methodology for system identification are largely

dependent on which types of data can be collected (see “Sidebar: Model Classes” and “Sidebar:20

Measurement Types”). This section will feature discussion of results for identifiability of

synthetic gene circuits, followed by a description of methods for deterministic identification from22

bulk measurements. Finally, an overview of techniques for inferring parameters for stochastic

biological circuits from single cell population snapshots or time series data will be discussed.24

Figure 4 illustrates the procedure of Bayesian system identification for both deterministic and

stochastic synthetic gene circuits.26

Identifiability of Synthetic Gene Circuit Models

Theoretical and computational considerations of the identifiability of synthetic gene circuits28

tend to focus on whether circuit parameters are identifiable for stochastic models given single

cell population snapshot data. This is because these types of data are not typically collected in30

other engineering disciplines. However, even for bulk data and deterministic models, there are

specific issues with system identification for synthetic gene circuits.32
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As the identifiability problem is difficult to assess, theoretical results tend to focus on linear

systems where the theory is tractable. In [49], the observability problem for linear systems in2

which the linear system evolves a distribution over time was considered. Within this framework,

the linear system represents the dynamics of a synthetic gene circuit, and the distribution at each4

time represents the distribution of the state of the circuit across a large population of cells. The

output is then the distribution of an output for all time. The observability problem is to reconstruct6

the initial distribution of the system given the output distribution at every time. This distributional

observability problem was shown in [49] to be strictly harder than the standard observability8

problem of finding a single initial state from a single output trajectory. Furthermore, it was proven

that a sufficient condition for reconstructing the initial state distribution is to have an observable10

system with an output dimension of at least n � 1, where n is the state dimension. Finally,

the problem of structural identifiability of linear systems driven by white noise is considered in12

[50]. In this system, the entire steady state covariance of the system can be measured over time,

but only certain subsets of state can be measured in time series. It is assumed that even though14

the system itself is stochastic, measurements are perfect and the steady state covariance and

output correlations can be measured exactly. Results from [50] showed that a combination of16

the steady state covariance and output correlations can be sufficient to determine the dynamics

of the system exactly. This work is relevant to biological circuits, because often many species18

can be measured simultaneously in steady state population snapshot measurements, but only a

few species can be measured simultaneously in time series measurements.20

Computational approaches to the identifiability problem rely on using simulated data sets to

test the performance of system identification. In [51], the problem of identifying the parameters of22

a stochastic model of a genetic toggle switch given bulk data on the circuit, marginal distributions

of the species, or the full joint distribution of the species in the system is addressed. The results24

show that only the full joint distribution is sufficient to recover uniquely the true parameters of

the model.26

Identification of Deterministic Biological Circuits

Techniques for identification of deterministic models of biological circuits are often quite28

similar to the techniques used for general identification of nonlinear systems. However, for

synthetic gene circuits, data can typically be collected only for a few outputs at limited time30

resolution. Limited time resolution makes it hard to filter the time derivative of the output,

which makes it difficult to apply a lot of traditional system identification methods that rely32

on the derivative of the measured output. Furthermore, most biological models contain many

species, reactions, and parameters, and because only a small number of outputs can be measured,34

there are often many sets of parameters that can fit the measured data equally well. This effect,
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known as “parameter degeneracy,” can make it difficult to resolve the best parameters for the

modeled system. Many techniques for system identification for synthetic gene circuits focus on2

alleviating the issue of parameter degeneracy.

For example, the extended Kalman filter is often used for parameter estimation, where the4

state is augmented with the parameters. However, [52] demonstrated that in a biological setting,

matching the noise characteristics of the filter in addition to fitting the trajectory to measured6

data can help resolve parameter degeneracy. In [53], [54], relaxation type procedures are used to

consider parameters sets that are consistent with the measured data, resulting in a set of regions in8

parameter space that fit the data within some error tolerance. Additionally, standard techniques

based on Markov chain Monte Carlo (MCMC) can also be used [55]. Another approach to10

system identification for nonlinear systems is to build a dictionary matrix based on candidate

functions and then use `1 regularization to select only a subset of the candidate functions to12

model the dynamics [56]. However, this approach requires full state measurements, which limits

its applicability to synthetic gene circuits.14

Identification for Stochastic Biological Circuits from Population Snapshots

With population snapshots, a large amount of data can be collected for a group of cells for16

a single moment in time. While a population can be continuously sampled and measured, each

sampling will be a different group of cells. Generally, population snapshots are not resolved18

in time, but can generate more data per sample than a time-course experiment (See: “Sidebar:

Measurement Types”). Identification methods for stochastic biological circuits from population20

snapshot data can be categorized into three different types: methods based on optimization and

the finite state projection, methods based on moment closure, and Bayesian methods based on22

stochastic simulations of the system and MCMC.

In the optimization-based methods, the finite state projection method [57] is used to create24

a large linear system whose state is approximately the distribution of the chemical species in the

system. The state distribution time trajectory can be calculated by solving the linear system, and26

the likelihood function can be computed from the observed data using a multinomial likelihood

function. This method has been used to discriminate between different models of yeast osmotic28

stress response [58]. In [51] and [59], the same method is applied, but instead of a multinomial

likelihood, a `1 norm penalty on the difference between the observed and predicted distribution is30

used. These types of methods work well for systems with small state spaces because the full state

distribution can be solved. However, for systems with many species or high molecular counts, the32

finite state projection yields increasingly huge linear systems that become prohibitively expensive

to repeatedly evaluate. Note that while [57], [59], [51], [58] all use the finite state projection34
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to do an optimization based fit of the parameters in their models, the same likelihood function

could be used in a Bayesian inference scheme as well.2

Moment closure methods are one way to get around the curse of dimensionality in modeling

stochastic gene circuits. With moment closure methods, the moments of the system can be4

modeled over time using a system of ODE’s and these simulated moments can be compared

with the experimentally measured moments for different parameter sets. Though these methods6

are known to struggle in instances where the distributions are bimodal, they have been shown

to successfully predict an observed bimodal experimental data set in limited cases [60]. In8

other cases, moment based methods can be used to characterize the causal relationships between

different genes [61]. In [62], moment based inference in conjunction with an optimal experiment10

design technique based on maximizing the expected Fisher information is used to characterize

a light inducible synthetic gene circuit. The limitation of moment closure methods is that the12

equations for the N th order moments usually depend on higher order moments, and so to avoid

having an infinite dimensional system of ODE’s, the higher order moments have to be assumed14

to have some known form. In some cases, the higher order moments can be computed from

the lower order moments if the distribution is of a known type such as a normal or log-normal16

distribution [63]. In other cases, the third order cumulants are assumed to be zero [60]. A

data-based identification procedure based on moment closure has also been developed, in which18

the reaction rate parameters are identified from the mean moment equations and the covariance

values are plugged in from experimentally measured data [64]. In this way, no prior assumptions20

on the distributions of the chemical species are required. Finally, semidefinite programming can

be used to compute upper and lower bounds on the moments of a stochastic differential equation22

[65]. This approach is more computationally expensive than simple moment closure but provides

a theoretical guarantee that the moment of interest lies within a specific interval.24

The third class of methods for identifying circuits from population snapshot data is methods

based on repeated stochastic simulations of the system. Some methods are based on approximate26

Bayesian computation [66], where the data is simulated for many different parameter sets and

parameter sets that produce results in agreement with experimental data are kept. The INSIGHT28

method developed in [67] uses concentration inequalities to bound the deviation between the

experimentally observed cumulative distribution function (CDF) of a certain output and the30

simulated CDF for a given parameter set. This deviation decreases as the sample size increases.

With this technique, the method is able to quickly reject bad parameter sets after a very small32

number of simulations, vastly improving computation speed.

While stochasticity is one way to explain the variation in circuit output across a population34

of cells, another possible explanation is heterogeneity between cells. Not every cell has exactly
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the same environment, and if different cells have different parameters and initial conditions, then

the output will follow a distribution even if the circuit dynamics within each cell are deterministic.2

In [68] and [69], there is both the assumption that the circuit dynamics are deterministic, and

that parameters for the cells are sampled from an underlying distribution or that there is a4

discrete number of cell types. This leads to a Bayesian inference procedure that can recover the

parameters for each cell type, or the parameter density for a heterogenous population of cells.6

Identification for Stochastic Circuits from Time Series Data

Single cell time series data usually involves using microscopy to track the dynamics of8

a small sample of single cells for an extended period of time (See: “Sidebar: Measurement

Types”). While these data are limited in sample size, the time resolution can be on the order10

of milliseconds over a period of minutes to hours. Identification of stochastic biological circuits

from single cell time series data is typically done using methods based on Approximate Bayesian12

Computation or particle filtering. By selecting parameter sets and simulating a data set for each

set of parameters, it is possible to perform Bayesian inference using MCMC without having to14

explicitly compute likelihoods [70]. This method is used in [55] to perform system identification

on a simulated data set generated by a stochastic model of a repressilator. This type of likelihood-16

free method does not work well when the data is of a large dimension, and a better method is the

particle marginal Metropolis Hastings method, where a particle filter is used to approximately18

compute the likelihood of the data given a set of parameters [71]. In [71], methods for speeding

up the inference by using diffusion approximations to the stochastic simulation procedure are20

proposed.

Heterogeneity between cells can also be an issue for system identification. In [72], the22

heterogeneity between cells is modeled by assuming each cell has extrinsic factors and rate

parameters distributed according to a gamma distribution. This choice of distribution allows24

for integrating out the extrinsic factors and parameter uncertainty while performing Bayesian

inference. This approach was termed ‘dynamic prior propagation’, and was demonstrated on26

experimental data obtained from an inducible synthetic circuit in yeast.

Biological Controller Design28

There are two main ways to design controllers for synthetic gene circuits. The first way

is to design the controllers to be synthetic gene circuits in single cells. In this case, each30

cell has its own copy of the controller. However, because the controller must be implemented

using a set of chemical species and reactions, the controller structure is highly constrained.32

Additionally, because the controller species themselves are subject to stochastic fluctuations,
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there are fundamental limits on how well the controller can control the downstream process.

To alleviate these issues, controllers can also be implemented at the population level using a2

computer in the loop. In this case, the controller dynamics can be arbitrary, but the control must

be implemented at the population level, as current technology does not allow for independent4

actuation of distinct single cells. This section will discuss the fundamental limits for control of

synthetic gene circuits, followed by controller design for synthetic gene circuits in single cells6

or with a computer in the loop.

Fundamental Limits of Control8

While the fundamental limits of controller performance associated with standard control

design still persist in synthetic gene circuits, stochasticity introduces a new class of hard limits10

on performance. In traditional control design, Bode’s integral formula [73] provides a hard limit

on controller performance.12

Stated formally, if a system has a loop transfer function L(i!), then the closed loop transfer

function from disturbance to output is given by the sensitivity function, which is another transfer14

function given by

S(i!) =
1

1 + L(i!)
.

It is desirable to make the magnitude of sensitivity function small in order to minimize the16

effect of disturbances on the output. However, for a loop transfer function that has no right half

plane poles and at least two more poles than zeros, Bode’s integral formula gives the following18

constraint.

Z 1

0

ln |S(i!)| d! = 0 (Bode’s integral formula)

Therefore, in order to mitigate the effects of disturbances and reduce the sensitivity function20

at one frequency, it is necessary that the sensitivity function increases and disturbance rejection

worsens at another frequency. This effect is informally termed the waterbed effect, because22

pushing down on the sensitivity function at one frequency causes it to increase at another

frequency. Effects reminiscent of the waterbed effect have been observed in natural biological24

systems.

For example, in [74], yeast are subjected to an environment that oscillates between normal26

salt levels and high salt levels that induce osmotic stress. During the course of the experiment, the

yeast spend half of the total time in the stress environment. As the frequency of the environmental28
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switching was varied from every 30 seconds to every 128 minutes, it was observed that at the

fastest and slowest time scales, the yeast grew at a rate similar to an environment with no2

stress. This suggested that the yeast could adapt very well to an environment that fluctuates

very slowly or very quickly. However, when the high salt condition was switched on and4

off at 8 minute intervals, the yeast grew much more slowly. The stress response performance

is thus tuned for excellent performance at very high and low frequencies at the expense of6

performance at intermediate frequencies, which is consistent with the waterbed effect. Whether

or not this limitation occurs because of mechanistic hard limits in the yeast’s control architecture8

is unknown, but the results are consistent with the limits on control imposed by Bode’s integral

formula.10

In [75], control theory was applied to gain additional understanding of a phenomenon

known as glycolytic oscillations, in which ATP levels oscillate in yeast. Adenosine triphosphate12

(ATP) is the molecule unit of energy within all living cells. The oscillations were explained

as the result of fundamental trade-offs in a control system designed to control ATP levels in14

the cell. An essential feature of robust control theory is the trade-off between robustness and

performance of a control system [73]. In [75], because ATP is the source of energy in cells, the16

ATP supply control system is tuned with a heavy bias towards performance, which means that

it is less robust and prone to losing stability, thus creating glycolytic oscillations.18

In addition to the traditional hard limits on control performance, stochasticity introduces

further limitations. Because the reactions and species that implement the controller are subject20

to stochastic fluctuations, the controller, which is supposed to reduce noise in the system, can

also introduce additional noise. For a general class of feedback systems, [76] showed that the22

standard deviation of the output distribution goes as the inverse fourth root of the number of

signaling events used by the controller. That is, if the goal is to decrease the standard deviation24

of the output by 10-fold, then 10,000 times more signaling is needed. The resulting trade off is

then one between output regulation and signaling effort, which is common in standard optimal26

control. However, certain classes of biological systems fall outside the scope of the systems

considered in [76]; these classes of systems may not be subject to such devastating fundamental28

limits.

Control Design in Single Cells Using Gene Circuits30

In controllers implemented in single cells with gene circuits, it is difficult not only to have

general controller structures but also to quantitatively tune gains. Because the controller must32

be implemented in cells with a set of chemical reactions, the chosen set of chemical reactions

sets the structure of the controller. Tuning the gains for the controller then consists of selecting34
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different genetic parts that can modulate the expression of the controller chemical species. This

is typically done by varying the ribosome binding site (RBS) sequences for the controller species2

using a library of RBS’s with known relative strengths [77]. However, the absolute strengths of

these parts depend on context and are typically not known. Therefore, instead of setting one4

absolute optimal gain, the control designer must do multiple iterations to tune the gain in a

relative manner. A comprehensive review of different types of genetic parts and their respective6

tunability can be found in [78].

The control design then consists of two phases. The first phase is one of selecting the8

synthetic genetic parts that will implement feedback, and the second phase consists of tuning the

gains to achieve the desired control metrics. Mathematically, the first phase of design effectively10

sets the model of the closed system, where a set of ODE’s or stochastic chemical reactions

describes the process and controller reactions. The second phase then consists of optimizing the12

tunable parameters in the model to get the desired closed loop behavior.

With respect to the first phase, many researchers have worked on how to design chemical14

reaction systems that implement integral control. In [79], [80], a general model of integral control

was studied and it was shown that in order to have integral control, one of the ODE’s in the16

system should depend effectively only on the output. For example, the rate of change of a control

species x might look like18

dx

dt
= f(y),

where f is some function and y is the output that needs to be regulated. Then, if the system

reaches a steady state, y must satisfy f(y) = 0. If f is selected such that its only root occurs20

at the desired steady state value of y, then if the system reaches an equilibrium, the output y is

guaranteed to have the desired steady state value.22

In practice, dilution due to cell growth can cause the dynamics of x to depend on the amount

of x present. However, if the controller acts on a much faster time scale than cell growth, the24

dilution can be ignored. This system implements a general version of integral feedback, where

x in some sense integrates the output over time and ensures that y always has the same steady26

state value.

In [81], it is shown that exact adaptation can be accomplished without even having negative

feedback in metabolic flux networks. A minimal example of a reaction system discussed is one

where A is produced with a constant rate, metabolized to B, and B is then degraded. The
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dynamics of this system are given by the equations

Ȧ = k0 � k1A, (1)

Ḃ = k1A� k2B. (2)

It is then straightforward to verify that the steady state value of B of the system exhibits perfect

adaptation with respect to variation in the parameter k1.2

In the stochastic regime, [82] developed a theory of stochastic integral control, where

an arbitrary reaction network can be augmented with 4 simple reactions to accomplish mean4

reference tracking of an output species. By using time evolution equations for the moments of

the species in the system, it was shown that the first moment of the output species must converge6

to the desired reference value if the system converges to a steady state. In this case, the steady

state of the system is a distribution, and thus ensuring convergence consists of showing that the8

system of stochastic chemical reactions is ergodic. This result holds for a large class of stochastic

systems, and its simplicity is promising for implementation in single cells.10

The main limitation of integral control in cells is the fact that in growing cells, all species

are constantly subject to dilution due to cell growth. In both the deterministic and stochastic case,12

dilution had to be ignored in order to get zero steady state error. In actual implementation, integral

control should perform well as long as the actual reactions in the system and controller occur14

on a much faster time scale than dilution, thus minimizing dilution’s effect on integral control

performance. The time scale of dilution varies according to the host organism; E. coli have a16

doubling time of 20 minutes, while mammalian cells can take hours to days. Figure 5 illustrates

examples of biological integral control in both the deterministic and stochastic regimes. For a18

more detailed explanation of the examples in Figure 5, please see “Sidebar: Integral Control for

Synthetic Gene Circuits.”20

In addition to the theoretical work on picking optimal control structures for integral

control, much work has also been done on analyzing and optimizing parameters for a given22

control architecture. In [83], a mathematical model was used to explore the possibility of using

feedback control to improve biofuel production in E. coli (Figure 6). Biofuels are toxic to24

E. coli, and so efflux pumps must be produced to export the biofuels out of the cell (Figure

6a). However, producing too many efflux pumps is toxic to the cells as well. Therefore, using26

feedback to produce efflux pumps only when too much biofuel has accumulated could improve

overall biofuel production. The authors consider a number of different biologically reasonable28

implementations of feedback – no feedback (constant production of pump proteins), an open

loop response to biofuel levels, a repressor cascade, and a feedforward loop (Figure 6b-e). Each30

of these implementations has a unique associated ODE model. For each model, the authors
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optimize biofuel production by tuning the model parameters. As expected, they find that the

performance of a feedback control strategy is more robust to unknown parameter variation than2

an open loop strategy. Notably, the results showed that a loop combining negative feedback

with a feed forward system had the optimal performance (Figure 6f). In this system, excess4

intracellular biofuel induces a small immediate increase in efflux pump production followed by

a delayed large increase in pump production if the biofuel level stays high. This helps filter6

out sporadic short term biofuel accumulation due to intrinsic variation in the system, while still

responding appropriately to a long term build-up of intracellular biofuel.8

An important consideration for synthetic gene circuits is the limited amount of resources

available within in each cell for the expression of circuit genes. In [84], modeling is used to10

guide the design and testing of an activation cascade gene circuit. Each gene in the cascade is

supposed to activate the next gene, but in fact, a gene can also repress a downstream gene by12

competing with it for resources. In [84], modeling and analysis is used to design an activation

cascade that actually preserves full activation. A similar type of work that considers feedback14

synthetic circuits will likely be necessary in order to successfully implement complex controllers

in cells.16

Balancing cellular resources and understanding relative kinetics are crucial for identifying

potential bottlenecks. In [85], a system using proportional feedback to control gene expression18

was modeled. Detailed parametric analysis of the model found limitations due to saturation in the

rates of different component reactions and the limited dynamic range of other processes. In [86],20

regulation of metabolic pathways was investigated by tuning enzyme production and feedback

to avoid failure cases in which an excess of pathway intermediates or products build up. This22

work was extended in [87] to consider noise propagation in a metabolic pathway with feedback.

In the case of a low-yield metabolic pathway, it is shown that a synthetic feedback circuit may24

amplify the stochastic noise of the pathway. Design strategies are suggested for attenuating this

noise propagation.26

Multicellular systems and control theory

Tools from control theory have had an especially notable impact in the design of28

multicellular synthetic gene circuits. In these circuits, interactions between cells play a role

in addition to the typical genetic interactions that occur within single cells. Here, we describe30

three representative pieces of research in which control techniques were used to aid in the design

or analysis of multicellular systems.32

First, [88] showed that multicellular gene circuits can improve the robustness of the genetic
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toggle switch [13]. As shown in Figure S5 (“Sidebar: Model Classes”), the standard toggle switch

will spontaneously switch steady state due to noise after some period of time. A new toggle2

switch design was proposed, one that operates at the population level in which cells communicate

with each other and influence each other’s steady state. In this case, even if a few cells switch4

their steady state due to noise, the rest of the population can drive those cells back to the correct

steady state. Thus, the communication between cells makes this multicellular toggle much less6

likely to randomly switch steady states. Notably, the design in [88] relies heavily on monotone

systems theory [89] to show theoretically that spontaneous errors in single cell steady states will8

be suppressed.

On the analysis side, stability analysis techniques have been used to determine the stability10

of gene circuit dynamics in networks of cells [90]. In this case, each cell is modeled as having its

own system of nonlinear ODE’s describing its internal dynamics, and the interactions between12

cells are modeled as occurring on a graph with an associated interconnection matrix. Theoretical

conditions for network stability are derived. These conditions depend on both the internal cellular14

dynamics as well as the interconnection structure. These types of techniques could be applied

to predict the behavior of cells laid out spatially, where each cell can only communicate with16

neighboring cells.

As a third example, [91] implemented a synthetic gene circuit design for controlling the18

population size of a microbial culture. As the engineered population increased in size, the cells

produce more of a lethal toxin, creating a negative feedback loop that leads to increased cell20

death. Recently, work in [92] demonstrates that the controller designed and implemented in [91]

is a lag compensator, which is a commonly used controller for reducing steady state error.22

Control Using a Computer in the Loop

Another way to get around the issues of controller implementation in single cells is to24

implement a controller using a computer in the loop. In this case, the cells are controlled at the

population level. Using an experimental setup, the output (usually florescence) is measured for26

a cell population, and then a computer running the control algorithm decides the optimal input,

which is then fed back into the system. The details of the implementation are covered in the28

next section. Here, we briefly review the control design for these systems.

As is the case with many other complicated nonlinear systems, the control scheme of30

choice for controlling synthetic gene circuits with a computer in the loop is model predictive

control (MPC). In MPC, a model of the system is used to plan a trajectory and associated set of32

control inputs for a certain number of time steps. However, only one of these steps is actually
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executed, and then the procedure is repeated [93]. The control scheme then consists of two

parts: a state estimator and a controller. For synthetic gene circuits, the controller is typically a2

standard model predictive control based controller, where the optimal control input is chosen by

solving a non-convex optimization problem at each time step over all possible input sequences.4

The state estimator is usually based on either an extended Kalman Filter (EKF) or a particle

filter.6

The studies described in [94] and [95] both use similar control schemes of combining

an extended Kalman filter with a model predictive controller to control gene expression in a8

population of cells. The model predictive control problem is then solved with general purpose

optimization software. In [96], a particle filter is used in place of an extended Kalman filter10

for state estimation in order to better account for uncertainty in the state estimate. In this case,

the model predictive control input is optimized across a distribution of unknown initial states.12

This is again solved with general purpose optimization software. Notably, it was found that

the combination of a particle filter for state estimation and model predictive control performs14

better than a simple PI controller with tuned gains. In [97], PI control of gene expression was

performed. However, the PI controller was combined with a predictive scheme to help account for16

delays in the actuation of the system. A worked example of model predictive control using a toy

model based on [95] can be found in “Sidebar: Model Predictive Control of Gene Expression.”18

Implementation of Synthetic Biological Controllers

The implementation of synthetic biological controllers involves considerations for the20

timescales of molecular biology and gene expression, the modularity and availability of genetic

components, and the types of inputs and outputs that can be applied to an engineered22

organism in real-time. This section covers these topics, along with examples of implemented

biological controllers. Additional information on the molecular biology workflow and biological24

measurement types can be found in “Sidebar: A Molecular Biology Workflow” and “Sidebar:

Measurement Types.”26

Molecular libraries for implementation of biological controllers

One main motivation for characterization of biological systems is to create libraries of28

synthetic genetic parts that can be used when assembling more complex circuits. Two common

issues that arise when developing libraries of genetic parts are orthogonality and context30

dependence. In most instances, genetic parts are not modular and their performance depends

heavily on their environment. In addition, different parts can suffer from crosstalk with one32

another, which may create unwanted interactions that break circuit behavior. The idea behind well
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characterized part libraries is to create sets of orthogonal parts that have predictable performance

in different contexts. These parts would then be useful for assembling larger synthetic circuits.2

The basic ‘unit’ of a synthetic gene circuit consists of a promoter, a ribosomal binding site

(RBS), and a coding sequence for the protein of interest (Figure 7a). Each of these elements has4

been characterized and engineered in attempts to regulate and predict the behavior in vivo. The

promoter regulates how frequently mRNA gets transcribed from the DNA sequence. The RBS6

regulates how frequently the mRNA gets translated into a chain of amino acids, which then fold

into a complex three-dimensional structure known as the protein.8

Transcription is the process in which RNA polymerase unwinds the DNA and encodes

the information in messenger RNA (mRNA). Transcriptional regulation has historically been10

achieved through a combination of engineering of the DNA promoter sequence itself to affect

RNA polymerase binding efficiency, and through the use of additional protein repressors or12

activators that either obstruct or recruit the polymerase (Figure 7a). The most commonly used

repressors in synthetic biology are known as TetR and LacI, while the most commonly used14

activators are AraC and LuxR. While these commonly used parts have specific binding sequences

that must be incorporated into the promoter, any sequence of DNA can now be targeted with16

activator or repressor variants of the dCas9 protein [98]. Protein activation or repression is

usually characterized in terms of fold change between the OFF state and the ON state. Once it18

can access the promoter, RNA polymerase typically transcribes at a speed of 10–100 DNA bases

per second, with genes varying from ⇠1 kilobase in bacteria to 10 kilobases in humans [99]20

(Figure 7b). Most of the promoters for each host organism were found because they regulate

important processes within the host. In order to be completely orthogonal to host functions, much22

work has been done to engineer additional combinatorial regulation [100], developing orthogonal

repressors [101], and engineering completely synthetic promoters [77].24

Ribosomal binding sites (RBSs) dictate the number of times a single mRNA gets translated

before it is degraded; Ribosomes translate mRNAs at rates on the order of ⇠ 3 – 10 amino acids26

per second [99] (Figure 7c). While RBSs have been relatively well characterized for translational

efficiency and final protein production levels [102], it has also been observed that RBS expression28

strength varies relative to the downstream sequence of the coding region [103]. To investigate

and address the problem of context dependence, a set of ribosome binding sites was engineered30

to have similar relative strengths in gene expression independent of the adjacent promoter and

gene [77]. Since a large part in current engineering of gene circuits involves fine-tuning of gene32

expression levels, any tool that can alleviate context issues becomes immensely valuable.

The half-life of a protein can be tuned by the addition of degradation tags (Figure 7d),34
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which are short amino acid sequences recognized by housekeeping proteases (enzymes with

the specific function of breaking down other proteins). Unlike mRNA, proteins are usually2

remarkably stable in biological conditions. Without a degradation tag, it is generally assumed

that the number of protein molecules within a cell decreases only when the cell divides, at which4

point that number is roughly halved. With a degradation tag however, protein half-life can be

decreased to a range of 40 minutes to ⇠3 hours [104]. Competition for proteases has even been6

used as the mechanism for coupling genetic oscillators [105]. While E. coli has received the most

concerted effort, there have been similar libraries of promoters, RBSs, and degradation tags in8

S. cerevisiae yeast [106], [107], [108], B. subtilis gram-positive bacteria [109], and mammalian

systems [110]. The relative timescales of these essential processes are shown in Figure 7e.10

An important step towards predictive models is to ensure that data from individual

genetic modules is transferable into larger scale systems. Recently, the developers of Cello12

Computer Automated Design (CelloCAD) [111] attempted to encapsulate data from independent

characterizations of orthogonal synthetic modules into a predictive model. In [111], the kinetics of14

16 NOT and NOR logic gates that depend on a library of 16 orthogonal transcriptional repressors

were characterized. With this data and a small set of modular gates, CelloCAD was used to design16

a series of multilayered logic gates: 35 out of 52 designed gates worked as predicted the first

time. CelloCAD demonstrated that individual characterization of all components in a library18

could be extended to predict multi-layered circuit behavior.

In order to escape the costly and slow cycles of transcription and translation, synthetic20

circuits would ideally consist of only protein-protein interactions. Phosphorylation-based signal-

ing is among the fastest. In [112], synthetic phosphorylation domains were developed with the22

purpose of enabling future synthetic circuits to take full advantage of slow and fast time scales.

In native cell signaling systems, there will often be fast pathways for information processing24

and slow pathways for locking in cell state. The fast pathways for information transduction

and processing are mediated by phosphorylation cascades by existing proteins while the slow26

pathways will involve gene expression and protein production. Most synthetic circuits to date

have relied exclusively on gene expression and protein production, which limits the time scales28

at which synthetic circuits can respond. Modular protein domains are engineered such that target

proteins only bind to a scaffold once it has been phosphorylated. This system allows for the30

design of a number of switches that only respond to certain pulse lengths by taking advantage

of fast and slow timescales.32

Additional biomolecular parts include quorum sensing systems and DNA recombinases.

Quorum sensing systems rely on the diffusion of a small molecule called acyl-homoserine lactone34

(AHL). These small molecules diffuse readily across cell membranes, resulting in a response
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that is both fast and proportional to the distance from the source. The system requires production

of two enzymes: an AHL synthase that makes AHL from a precursor molecule, and an AHL2

receptor that will initiate gene transcription when activated by AHL. Orthogonal quorum sensing

systems can be seen as different “channels” of communication between cells and are critical to4

the development of synthetic microbial communities [113]. DNA integrases are tetramers that

physically invert sequences of DNA – the production of the integrases themselves and then6

the subsequent DNA flipping contribute to the slow performance tracking. However, permanent

DNA recombination can be achieved without constant integrase production, thus the low control8

effort. This DNA recombination can be used for logic gates[27], [29], finite state machines

[26], counters[24], and memory [28]. More in-depth coverage of genetic parts for biomolecular10

circuits is reviewed in [114].

Controllers in living cells12

The state-of-the-art thus far for implementation of biological controllers in synthetic

biology can be separated into three categories: synthetic circuits built to demonstrate and14

characterize specific feedback motifs in a modular fashion, feedback used to regulate metabolic

products for increasing titer, and circuits that involve computer-controlled feedback. In this16

section, we will discuss examples of each as well as the difficulties that arise when implementing

these systems in living cells. In many of the examples, we may refer to “heterologous” protein18

expression or circuits – this refers to the addition of non-native genes to a host organism to

enable the production of non-native proteins. The term “toxicity” refers to a spectrum of cellular20

effects ranging from slowdown in growth, to triggering of stress response pathways, to cell death.

Synthetic circuits for demonstration of feedback modules22

A significant portion of studies in synthetic biology has focused on investigating the char-

acteristic properties of feedback modules, as well as a variety of strategies for implementation.24

These feedback modules include positive and negative feedback, integral control, proportional-

integral (PI) control, and feedforward loops (Figure 8a). Commonly, these types of circuits26

will use fluorescent proteins as outputs, as they can be readily detected during the course of

the experiment. Though many of these studies seem simple in their design, they have been28

instrumental in elucidating biological mechanisms, response times, orthogonality of parts, and

unanticipated host interactions.30

Negative feedback regulation has been successfully implemented in a variety of ways in

synthetic circuits, due to a relative abundance of molecular parts for transcriptional, translational,32

and protein-protein repression and sequestration. In [115], the use of negative autoregulation with
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a strong promoter was shown to significantly improve rise-times towards a desired steady state.

[91] used cell-cell communication to implement negative feedback in E. coli to regulate the2

population density. Each bacterium in this system would produce quorum-sensing molecules

but also trigger a lysis protein if the internal concentration was too high. In [85], negative4

feedback on gene expression was implemented using synthetic protein scaffolds to activate or

inhibit a two-component system in E. coli. The negative feedback loop was then used for real-6

time fluorescence tracking of a chemical signal in a microfluidics platform. This system had

two timescales: the slow transcription/translation time for production of the scaffold, but fast8

phosphotransfer dynamics.

Positive feedback has been used to rapidly increase response amplitude – usually this is10

implemented with a transcriptional activator that activates transcription of its own gene. With

a highly expressed positive feedback loop, it was demonstrated in [116] that synthetic circuits12

can drastically disrupt the growth of the host, and that that disruption can feedback onto the

performance of the circuit, resulting in bistability in single cell response.14

Circuit topologies combining positive and negative feedback have been considered to

implement integral and feedforward control. The feedforward loop motif was utilized in [117] to16

generate pulses in response to an input. Incoherent feedforward loops required both an activator

that activates both the output protein and a repressor – as the repressor builds up, the output is18

throttled until it returns to zero. A quorum sensing system combined with a feedforward loop was

used to generate two-dimensional pattern generation in E. coli [31]. In [118], both integral and20

feedforward control were implemented using a quorum-sensing circuit to create scale-invariant

patterning. In [119], the characteristics of the basic feedback modules for gene expression in22

a synthetic system are considered: unregulated gene expression, a repressor-only system, an

activator-only system, and a repressor-activator system. By measuring the mean and distribution24

of E. coli cell populations with these modes of gene expression, [119] demonstrated that the

response of a combined repressor-activator system with positive feedback could be predicted.26

A number of studies have considered many of the theoretical details of integral control

[79], [80], [82]. However, thus far synthetic integral control has only been implemented in in28

vitro DNA circuits [120], where reactions occur in a controlled liquid buffer, not in living cells.

In [79], an experimentally feasible implementation of PI control with just a repressor and an30

activator was designed. In additional to simulating perfect adaptation, it was predicted that the

system set-point and feedback strength can be tuned by varying the concentration and activity32

of each protein.

While the synthetic feedback modules discussed in this section have been important34
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for elucidating relative timescales, circuit reliability, and proof-of-concept circuit topologies,

reliability and predictability remain persistent challenges. A well-characterized circuit in one2

strain will behave very differently at a different temperature, in a new host organism, or in

fermentation conditions. These difficulties are a result of relatively small numbers of usable,4

orthogonal parts, challenges with integration of increasingly large numbers of heterologous genes

into the cell, and limitations in measurement of more than 3–4 fluorescent outputs. However,6

new molecular biology tools and libraries of genetic parts are constantly emerging from active

research.8

Feedback for increased production of metabolic products

Metabolic engineering has a singular focus on increasing the titer of a specific molecular10

product – there are two predominant strategies to achieve this. First, enzymes that produce the

product can be up-regulated to increase the overall flux through the cell. Second, titer can be12

increased by reducing toxicity to the cell caused by the product or its intermediates. Usually,

successful engineering of a host for maximum titer involves multiple iterations of both these14

considerations. Feedback can be utilized to regulate flux through a pathway in a controlled

manner that does not allow buildup of toxic or unused intermediate products; it can also be used16

to export product that does not readily leave the cell, thus preventing additional toxic buildup

(Figure 8b).18

The example of regulating efflux pumps to regulate product buildup has been discussed in a

previous section [83]. Optimization of the isoprenoid production pathway is another example. A20

common metabolic engineering problem is the buildup of toxic intermediate chemicals within the

host cell, slowing cell growth and reducing yield of the desired product. In order to dynamically22

control expression of enzymes along this nine-step pathway, [121] identified transcriptional

promoters that would respond proportionally to the concentration of farnesyl pyrophosphate24

(FPP), one of two toxic intermediates in the pathway. Extensive analysis of whole genome

transcripts allowed for identification of a library of native E. coli promoters that responded26

to FPP toxicity; these promoters could then be engineered to drive the entire FPP production

pathway, thus enabling dynamic, negative feedback control of FPP levels. Furthermore, it was28

demonstrated that implementation of these dynamically controlled pathways had much improved

performance over systems with open loop (constitutive gene expression) or step induction (small-30

molecule activated expression) systems of pathway regulation. The flux through an essential

metabolic pathway can also be monitored by linking the metabolites to a synthetic oscillator.32

[122] rewired E. coli such that high metabolic flux through the glycolysis pathway would result

in fluorescent oscillations that could be observed. This was achieved by linking the promoters for34

production and degradation of acetyl-CoA to its product acetyl phosphate. Numerical simulations
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and Hopf bifurcation analysis predicted that the system would be stable at low glycolytic flux,

and approach a limit cycle as flux increased; Experimentally, the use of different carbon sources2

with known glycolytic flux levels validated this hypothesis.

Designing reliable switches for metabolic engineering is a particularly challenging problem,4

since any leaky expression is amplified with the extremely high volumes of commercial

production. The goal is to have the production pathways turned off while the cells are dividing,6

and then, once enough biomass has been generated, to have all the cells turn on. An imperfect

OFF-state will result in high mutation rates in the engineered strain or extremely slow growth and8

insufficient biomass. An imperfect ON-state means that a large number of cells are consuming

resources without producing product. Most switch designs in synthetic circuits for demonstration10

of feedback motifs rely on small-molecule inducers, which are too expensive to be used in large-

scale fermentations.12

In [123], this issue of metabolic switches was addressed by augmentation of an existing

toggle switch design with a glucose-dependent promoter. The classic synthetic toggle switch14

design uses two repressors that co-repress the reciprocal promoter. Positive feedback results in

stochastic bimodality but the switch can be forced one way or the other by inducers that inhibit16

one of the repressors. In [123], the toggle switch is pre-conditioned in the OFF-state. As the

population grows and divides, it uses up all of the available glucose – when the glucose is18

depleted, this activates a glucose-starvation promoter that flips the toggle switch into the ON-

state, and turning on of the production pathway. The toggle retains memory of the ON-state,20

even when glucose is reintroduced.

The possibility of turning off all RNA polymerase production, and thus all new protein22

production, was explored in [124] as a strategy for separating the growth phase from the metabolic

production phase. [124] replaced the native promoter for the RNA polymerase genes in E. coli24

with an inducible promoter and observed that the growth rate is dependent on the number of

polymerases in an ultrasensitive fashion. Above a certain threshold of RNA polymerase, the26

growth rate of E. coli goes from zero to the maximum with a fitted Hill coefficient of 10;

Furthermore, wild type levels of polymerase were measured to be just above this threshold,28

i.e. maximizing growth while minimizing the cost of making the polymerase itself. Lastly, it

was demonstrated that growth-arrested cells with no new protein production were still able to30

use their existing enzymes to produce glycerol, suggesting that repression of polymerase upon

reaching a certain cell density might be beneficial for fermentation.32

Organisms used for large scale production are usually extremely stressed due to the sheer

volume of product being produced – this makes the population prime for selection of mutations34
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that relieve that stress. An ongoing challenge in metabolic engineering is understanding the

likely breakage points in a pathway, and also exploring ways of up-regulating production titer2

without simply increasing the copy number of every enzyme in the pathway. Implementations

of feedback loops usually involve adding more genes that need to be expressed in addition to4

the dozen or so genes that are already being up-regulated for production purposes. The result

is that feedback to regulate titer often needs additional safeguards to prevent the feedback from6

breaking. These are challenges that would benefit from experimentally informed models and a

more sophisticated control theoretic approach.8

In silico model predictive control of living cells

A number of groups have demonstrated in silico feedback systems in living cells. These10

systems typically involve a custom experimental setup in which the cells are cultured in a

platform that allows cell state to be measured in pre-determined intervals - this information is12

then fed into an algorithm which has real-time control over the cell culture environment (Figure

8c).14

For instance, [95] demonstrated a microfluidics platform for in silico control of the osmotic

stress response in S. cerevisiae yeast. This system features a Kalman filter connected to a model16

predictive control (MPC) system. Yeast have several native fast and slow timescale negative

feedback loops that ensure perfect adaptation to osmotic stress. The robustness of the controller18

was demonstrated by not explicitly modeling these pathways. Instead, a simple two-variable delay

differential equation system was used, where osmotic stress was the first variable and fluorescent20

protein level was the second. Real time image analysis provided the data to calculate the optimal

number of osmotic shocks to apply within a 2 hour window. Then, only the first shock is applied22

and the window is recalculated after six minutes. A toy example of biological model predictive

control based on [95] is given in “Sidebar: Model Predictive Control of Gene Expression.” The24

experimental setup had a yeast monolayer culture in a custom microfluidic device mounted onto

an automated microscope for imaging. Osmotic stress response was quantified by stress-induced26

production of fluorescent proteins inside the yeast nucleus. The brightness of these proteins can

be easily imaged and quantified. The fluorescence levels were then fed into the controller and28

compared to previous time points and set point levels. Osmotic stress levels were modulated by

dynamic switching between just two types of media: regular and high salt media.30

Similarly, [94] designed an experimental system using light-inducible promoters for the

production of a fluorescent protein in S. cerevisiae combined with flow cytometry and in silico32

controllers. This setup enabled automated sampling of liquid cultures into a flow cytometer that

would measure single-cell fluorescence levels across a population. Similar to [95], the system34
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used a Kalman filter in conjunction with MPC to estimate unmeasured states in the model,

calculate a series of light pulse inputs needed to achieve the desired fluorescence set point, and2

then apply only the first pulse prior to recalculating at the next time point. By sampling every

30 minutes and applying light pulses every 15 minutes, single-cell level tracking of the desired4

fluorescence setpoint was demonstrated. In [96], an updated system that could achieve perfect

adaptation of E. coli to perturbations in nutrient levels and temperature was published. This study6

also compared experimental results for open loop, PI, and MPC control of not only fluorescent

protein levels, but also as applied to cellular growth rates.8

MPC of living cells has the advantage of running for long periods of time, and can be used

as a precise way of probing endogenous cellular pathways and synthetic circuit performance.10

However, only the fluorescence output of a few selected nodes in the synthetic circuit can

be observed, presenting a major challenge in inferring rates for other parts of the system.12

Furthermore, a fairly sophisticated experimental setup is needed to successfully run these types

of experiments. In particular, smooth transitions between the computer, the microfluidic device,14

and the image analysis can be notoriously difficult.

Resource limitations and retroactivity16

Biomolecular gene circuits are subject to influence from genetic and environmental context.

For example, in a phenomenon known as “retroactivity,” loading effects from downstream gene18

circuit components can affect the performance of upstream components [125], [126]. In addition,

genes in a synthetic circuit almost always require access to a common pool of cellular resources,20

including ribosomes and RNA polymerases, in order to be expressed. The competition for

these shared resources can cause unwanted interactions between circuit components via resource22

competition. Here, we discuss both of these issues along with efforts to alleviate their impact

on synthetic circuits.24

Retroactivity in genetic circuits is similar to the impedance effects in electrical circuits,

where downstream modules can affect the behavior of upstream modules. In electrical circuits,26

one solution to mitigate these loading effects is to separate the upstream and downstream modules

with an operational amplifier that acts as a unity gain buffer. The op amp uses high gain feedback28

to buffer the upstream module from impedance effects introduced by the downstream module.

However, there are often bandwidth limitations on the dynamics of the upstream and downstream30

modules connected to op amps to ensure that there is sufficient time scale separation between

module dynamics and op amp dynamics for that op amp to behave well as a unity gain buffer.32

An analogous high gain feedback system based on phosphorylation cycles to attenuate
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retroactivity in synthetic gene circuits has been proposed and demonstrated in [127]. Typically,

the upstream and downstream modules in synthetic gene circuits are based on gene expression,2

which occurs on the time scale of minutes. However, phosphorylation cycles occur on the time

scale of seconds, which ensures that there is sufficient time scale separation between the load4

buffering module and the upstream and downstream modules for good buffering performance.

This type of system has been implemented in both bacteria [127] and yeast [128]. For a6

more detailed discussion of phosphorylation based load insulators, see “Sidebar: Attenuation

of Loading Effects in Synthetic Gene Circuits.”8

A proposed solution to resource competition is to design active resource allocation within

the cell, and to have transcriptional machinery that is completely orthogonal to that of the native10

host. This approach was explored in [129] through implementation of a two-part non-native RNA

polymerase in E. coli that requires both a main ‘core’ fragment and a smaller ‘targeting’ fragment12

known as a � factor. Two orthogonal ‘targeting’ fragments were then engineered, allowing for �

factor specific gene expression. Expansion of this system would allow for controllable allocation14

of transcriptional resources through regulation of different ‘targeting’ � factors. Furthermore,

additional regulatory fragments for positive and negative control of the shared polymerase were16

also demonstrated.

As our understanding of biological hosts for synthetic circuits becomes more nuanced,18

synthetic circuit designs will need to compensate for common resource pools and the coupled

effects of retroactivity and loading. This will be essential for increasing the complexity and20

number of circuits that can be accommodated within a single cell, and requires dynamic

regulation of gene expression and resource allocation.22

Conclusion: Prevailing Challenges and Open Problems

The first two decades of synthetic biology research have largely focused on the development24

of genetic engineering tools, biological understanding of host organisms, and the proof-of-concept

demonstration of single function synthetic gene circuits. Although the goal of these synthetic26

gene circuits is to have stackable, modular components, the field has not yet been able to achieve

the kind of abstraction needed to increase the complexity of synthetic circuits beyond 1– 3 layers28

of signal transduction.

There are a number of reasons for this – first, there is still a limited toolbox of genetic30

tools with which we can manipulate DNA, control signal transduction, and maintain memory.

Orthogonality of parts is crucial since all genetic components share the same cellular environment32

and true spatial separation is difficult. This challenge is largely dependent on biological discovery
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or cycles of engineering on existing parts. Secondly, although the tools have grown quite

advanced, it is still slow to experimentally engineer organisms with large numbers of heterologous2

genes. Many efforts are being made to parallelize and speed up large scale engineering of

organisms, but it largely remains a low throughput process. This means that the design-build-4

test cycle time is on the order of weeks to months, instead of hours to days.

Context dependence effects pervade the implementation and performance of synthetic6

circuits. The performance specifications for synthetic gene circuits and components change

significantly with variations in parameters such as temperature, host organism, growth media8

formulation, and position of the genes in the genome. Feedback control, which generally

improves system robustness, has the potential to improve the robustness of synthetic circuits10

across these varying contexts. To conclude this work, we briefly review some of the open

problems in system identification, controller design, and control implementation in synthetic12

biology.

Because of context dependence, system identification is especially crucial for synthetic14

gene circuits. Unlike mechanical or electrical systems, which can be modeled universally to

some degree using physics, synthetic gene circuits must be characterized in their desired context.16

Models for synthetic gene circuits often contain very many parameters and species to describe

a low dimensional output. These large models can suffer from parameter degeneracy as well18

as computational cost. The approaches to alleviate these issues could include model reduction

or computational speed-ups [71], [72]. More development in these areas will help make system20

identification more tractable for more complex synthetic circuits.

In control design, the challenges include stochastic distributional control of populations22

and the development of an algorithmic optimal control procedure. Populations often exhibit bet-

hedging behaviors such as bacterial persistence (see Figure 3b) in which some small percentage24

of cells prepare for a catastrophic event that may or may not occur. In this way, some cells will

be able to survive such an event. In this type of behavior, the steady state of the population is26

not a set of species concentrations inside one cell, but rather it is a steady state distribution of

species concentrations across the population. An open area in control theory is the development28

of design tools for creating synthetic circuits that create a robust distribution of an output across

a population.30

Another major open challenge is the development of optimal control for synthetic gene

circuits in a manner analogous to H2 or H1 optimal control. In [83], the authors compare32

different control architectures for implementation of negative feedback by creating different

models and comparing performance using simulations. Additionally, as shown in Figure 7,34
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feedback can be implemented at different layers in the cell. An optimal control algorithm

that could take some control cost function and automatically produce a control architecture2

minimizing that cost function using feedback at the appropriate layers would help accelerate the

design process.4

A third open challenge is to develop unifying principles for design of feedback gene

circuits that mitigate context dependence effects. There are many feedback systems that mitigate6

context dependence of a certain type, but ideally, synthetic gene circuits would be robust to

multiple difference context effects. For example, a gene circuit should work while varying both8

growth medium and temperature simultaneously. While this may seem as simple as combining

a feedback loop for temperature robustness together with one for growth medium robustness,10

scaling such an approach up will require careful consideration of both resource limits and the

architecture with which to combine multiple feedback loops.12

Design of feedback with resource limits in mind could be especially useful in metabolic

engineering, where feedback can be used to improve yield. However, adding a controller also14

forces the cell to spend energy and material making the controller species, which could divert

flux away from the desired metabolic pathway and reduce performance. Therefore, designing16

efficient genetic controllers could be important.

Finally, the challenges in implementation of controllers greatly overlap with the general18

challenges facing synthetic biology. That is, implementation of complex synthetic circuits is

difficult because of limited characterized and orthogonal parts, slow design build test cycles, and20

context dependence effects. Specifically, control performance is almost always limited by sensing

and actuation capability. Thus, developing more synthetic genetic parts for sensing different22

outputs as well as faster actuators that can reject higher frequency disturbances will help push

the limits of feedback control in single cells.24

As scientists slowly peel back the complex layers of regulation that govern the everyday

survival and function of living cells, it has become abundantly clear that interdisciplinary research26

is necessary in order to integrate all of the data from individual protein function to systems level

networks, and to truly understand the cell as a dynamic system. Synthetic biology presents unique28

challenges for modeling and control; the development of biology-informed control principles is

necessary to take the field to the next level of complexity.2
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Figure 1. The traditional workflow in control engineering (bottom row) contrasted with

engineering of biological systems (top row). (a) The system must be characterized and identified.

Microbial systems can be characterized by assays such as microscopy, while a car or plane might

be tested in a wind tunnel. (b) A controller must be designed. Having multiple control loops

operating at different spatiotemporal scales is common in man-made systems. In engineered

biological systems, feedback with nested loops is not as tractable. (c) The controller is then

implemented. While modern aviation technology is largely autonomous, an engineered yeast

strain must be grown in precisely controlled fermentation tanks to produce the desired molecular

products.
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Figure 2. Synthetic biology repurposes genes for new functions. (a) Modern molecular biology

enables transplanting genes from many different organisms into new host organisms. Example

host chassis organisms that are used most commonly, and thus are the best understood, are E.
coli or B. subtilis bacteria, S. cerevisiae yeast, and Chinese Hamster Ovary (CHO) mammalian

cells. (b) Synthetic gene circuits have been built to demonstrate oscillators, toggle switches,

logic gates, and cell-cell communication pathways. (c) Recombinant genes are used to turn host

organisms into manufacturing systems for products such as biofuels, pharmaceuticals, and protein

therapeutics. (d) Many challenges exist in improving robustness of engineered strains. Synthetic

genes compete for resources with existing cellular processes for survival and replication. Host

organisms will find ways to mutate away or repress synthetic pathways that are too resource

expensive or deleterious to growth. Photographs in part (a) are from Wikimedia Commons -

usage permitted under the Creative Commons license.
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Figure 3. Examples of biological controllers in nature. (a) Proposed mechanism of PI control in

cows to regulate the calcium concentration in plasma [40]. (b) Positive feedback as a possible

example for maintenance of bacterial persisters within an E. coli population [45]. (c) Regulation

of galactose metabolism in S. cerevisiae yeast involves layers of positive and negative regulation

of the main repressor Gal80, resulting in bimodality and hysteresis [47]. (d) Regulation of single

cell competence in the gram-positive bacterium B. subtilus features activation through competitive

inhibition of protein degradation machinery [48].

42



time

Measured
data

Deterministic
System ID

Stochastic
System ID

Simulated
output

x

y

Joint Parameter Density
pdf

✓1

✓2

✓1 ✓2

Measured
data

Marginal Parameter Density
pdf

Marginal Parameter Density

Fit to data

Fit to data

time

x

y

(a) (b) (c)

(d)

(g)

(e) (f)

(h) (i)
time

Figure 4. Bayesian system identification for deterministic and stochastic synthetic gene circuits.

(a) Deterministic data is collected on a bulk culture over time. (b) A model using ODE’s is used to

model the synthetic gene circuit dynamics in a deterministic fashion. (c) The model fit is evaluated

by matching simulated and measured trajectories. (d) Stochastic data is collected by measuring a

distribution of outputs X and Y across a population of cells. (e) Stochastic simulations are used

to compute the distribution of the output given a stochastic model. (f) The fit of the model to the

data is evaluated by comparing output distributions across the population (g,h,i) The output of

the procedure in both cases is a posterior density function over parameters. The joint parameter

density function can show correlations between parameters, suggesting parameter degeneracy.
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Figure 5. Integral control of gene expression in synthetic gene circuits. (a) In the deterministic

case, a control species X , which represses Y , has dynamics dependent only on Y , ensuring

exact adaptation of the steady state Y value. (b) In the stochastic case, the existing network

consisting of species X1, X2, and X3 is augmented with control species Z1 (control input) and

Z2 (measurement). The added reactions involving Z1 and Z2 exactly control the mean output

E[X3] to unity. The rates k1, k2, k3 are sped up at t = 300 and then returned to their original

values at t = 600. The output, despite being perturbed, always recovers to its desired value of

1. The plotted expected values are calculated across a set of 100,000 stochastic simulations.
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Figure 6. Control architectures for biofuel export [83]. (a) E. coli produce biofuels from sugar

but must export the biofuels using efflux pumps to avoid toxicity. (b) Open loop expression of

pump genes at a constant rate. (c) Closed loop expression of pump genes at a rate dependent

on biofuel concentration. (d) Closed loop regulation of pump genes by repressing expression of

a repressor that represses pump genes. (e) Closed loop regulation of pump genes by combining

the two prior architectures. This is a feed-forward loop because biofuels not only immediately

activate pump gene expression but also cause further activation by repressing the repressor. (f)

Simulated final biofuel concentration as a function of the promoter strength (from Figure 6 in

[83]). The feed-forward loop provides the most robust behavior, as the biofuel production is

high across a wide range of promoter strengths. The open loop constant expression strategy only

performs well in a narrow range of promoter strengths.
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Figure 7. Molecular components and relative timescales. (a) Transcription of a desired gene can

be regulated using activator and repressor proteins to either recruit or inhibit DNA polymerase.

(b) DNA is transcribed into mRNA, which contains a ribosome binding site (RBS). RBSs can

be engineered for different translation efficiencies, which affect ribosomal binding rates. (c) The

ribosome translates the mRNA into sequences of amino acids, which then fold to form the

desired protein product. (d) Proteins are constantly being degraded by housekeeping proteases.

The addition of a degradation tag will specifically target the proteins to these proteases, ensuring

much shorter half-lives for quicker turnover. (e) Relative timescales for the essential biological

processes. Cell division can vary from 20 minutes for bacteria to several days for mammalian

cells. Phosphorylation happens on the order of µseconds, and is often only limited by the distance

between proteins, rather than reaction time.
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Figure 8. Implementation of feedback control in living cells. (a) Synthetic feedback modules

have been built to demonstrate the feasibility of feedback in engineered organisms. (b) Feedback

controllers in metabolic engineering are used to reduce toxicity and increase production. This can

be achieved by sensing the final product and repressing overproduction intermediates, or product-

dependent production of pumps to export molecules outside of the cell. Switches can also be

utilized to separate biomass generation from production. (c) Computer-controlled feedback uses

traditional controllers on sophisticated microfluidic actuators that control living cells.
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Sidebar: Synthetic Biology in Context

Synthetic biology is a subfield of bioengineering that overlaps with the fields of systems4

biology, metabolic engineering, and protein engineering (Figure S1). Most researchers in these

areas are associated with at least two of these categories. Synthetic biology might be most easily6

contrasted with systems biology – systems biology seeks to understand natural networks while

synthetic biology seeks to design and build completely new networks. For a given biological8

organism, systems biology attempts to elucidate the complex inner workings of natural pathways

for signaling and regulation. The systems biologist might introduce genetic modifications into the10

organism in order to test hypotheses about molecular interactions or mechanisms of regulation.

This leads to understanding about the natural networks that govern cellular behavior. A synthetic12

biologist would use these same genetic tools to design and build a completely novel molecular

pathway within the same organism. In characterizing the performance of these man-made14

pathways, the synthetic biologist also learns about the natural networks that he or she is

competing with and works to minimize interference between these systems.16

While synthetic biology broadly encompasses any research in which non-native genes

are used to build new systems, metabolic engineering refers specifically to research that seeks18

to optimize production of a certain chemical or protein. Metabolic engineering focuses on

understanding and optimizing natural biosynthetic pathways such that high quantities of a desired20

product, such as a biofuel, can be achieved when cells are grown in large quantities (usually

brewery-like fermentation tanks). These natural biosynthetic pathways often come from plants22

and contain at least 10 – 20 genes. Introducing them into a bacterial or yeast host requires a

great deal of optimization and understanding of how molecular are converted down the pathway.24

Most of the current commercial applications of synthetic biology are examples of metabolic

engineering.26

All biomolecular pathways are actuated by proteins – proteins can bind specifically to

DNA and RNA, to other proteins, and to chemicals and metabolites within the cell. Once bound28

to their target, proteins carry out a huge variety of specific functions such as DNA repair,

chemical conversion, and signal transduction. Although it is known how the DNA sequence in30

a gene is translated into a sequence of amino acids (see Sidebar “Central Dogma”), predicting

how these amino acids actually fold in three-dimensional space into a functional protein is32

very difficult and computationally intensive. Engineering proteins to have new functions or to

bind to new targets requires an understanding of the 3D structure, and often involves screening34

large libraries of protein mutants for the desired characteristics. The field of protein engineering

focuses on predicting, designing, and creating new protein variants through these methods. These

new proteins can then be used throughout synthetic biology, systems biology, and metabolic
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engineering.2

49



Synthetic biology

Systems biology

Metabolic engineering

Protein engineering

Figure S1. Sidebar: Synthetic Biology in Context. Synthetic biology overlaps with the fields

of systems biology, protein engineering, and metabolic engineering. While synthetic biology

refers broadly to any use of genetic engineering to design and build non-native biological

systems, systems biology aims to study existing pathways and signaling networks within an

organism. Metabolic engineering refers to the genetic engineering of organisms to produce a

specific chemical or biological product, and protein engineering focuses on understanding and

engineering the structure and function of individual proteins.
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Sidebar: Central Dogma

All biological organisms rely on the storage of information in DNA. DNA is a polymer4

in which each monomer is one of four nucleotides: adenine (A), guanine (G), thymine (T), or

cytosine (C). The sequence of A’s, G’s, C’s, and T’s in the DNA carries the necessary information6

to produce proteins.

The RNA polymerase enzyme produces a messenger RNA (mRNA) molecule with an8

equivalent sequence as the DNA in a process called transcription. Then, a protein and RNA

complex called a ribosome reads the mRNA sequence and produces a chain of amino acids in10

a process called translation. The ribosome translates the mRNA in increments of 3 bases at a

time. Each 3 base unit is called a codon, and each codon is specific to one of the 20 amino12

acids.

The final chain of typically hundreds of amino acids then folds and matures into a protein.14

Proteins make up the machinery that performs most of the essential tasks in the cell. For

example, RNA polymerase is a protein, and the ribosome contains many different proteins.16

Green fluorescent protein (GFP) is a protein commonly used in synthetic biology as a fluorescent

readout of gene expression.2
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Figure S2. Sidebar: Central Dogma. (a) The DNA double helix is opened by RNA polymerase

(red), which transcribes the DNA to mRNA. The ribosome (blue) translates the mRNA to an

amino acid chain, which folds and matures to a protein (green). (b) The DNA sequence is a

sequence of A,G,C, and T corresponding to the 4 nucleotides of adenine, guanine, thymine,

and cytosine that make up the DNA polymer. The protein sequence is a list of the amino acids

that make up the protein, where each letter corresponds to a different amino acid. There are 20

standard amino acids.
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Sidebar: A Molecular Biology Workflow

Much of synthetic biology is still done at a small scale, particularly in academic labs. Here,4

a typical cloning workflow is illustrated. In cloning, the basic goal is to isolate a desired gene

and insert it into a desired plasmid “vector”. Various plasmid vectors differ in properties such6

as antibiotic resistance, copy number per cell, and host organism compatibility. At the scale of

a single graduate student or postdoc, this process can take three days on average.8

In the first step of cloning, the target gene is isolated from its original source (genomic

DNA, another plasmid) via polymerase chain reaction (PCR), a process in which DNA can be10

exponentially amplified through repeated cycles of heating and cooling. PCR requires the design

and synthesis of short DNA primer fragments (⇠16-20bp), which can be ordered commercially12

and have a turnaround time of about 24 hours. The primers and original source DNA are

added into a microliter (uL) scale buffered solution containing DNA polymerase and nucleotides.14

Modern polymerase enzymes can amplify 1 kilobase in 15 seconds, and typical PCR protocols

can be completed in one hour. The linear PCR products are then run on an electrophoresis gel16

with a DNA ladder and inspected for size.

Following purification of the PCR product, the gene is then considered “linearized” and18

sufficiently amplified to be inserted into the destination vector. Modern scientists have a variety

of options for combining gene and vector (e.g Gibson assembly, Golden gate assembly, and20

variations thereof). These protocols utilize enzymes with unique DNA recognition and cutting

properties, and all take about 1 – 2 hours to complete with 5 – 10 uL reaction volumes.22

In order to select for correctly assembled plasmids, specially prepared E. coli are

transformed with the assembly reaction. These E. coli have been prepared to increase likelihood24

of foreign plasmid uptake, a process known as transformation. In this process, it is assumed that

only a small percentage of the cells will receive a plasmid, and those that do will only have one.26

The E. coli are then grown on nutrient-rich agar plates with selective antibiotic that matches the

resistance of the plasmid vector, thus ensuring that only cells with correct assemblies survive28

and propagate. The growth of cells on the selective agar requires 12 – 16 hours at 37C.

The surviving cells will appear as monoclonal populations on the selective agar – these30

monocolonal populations are known as colonies. Within each colony all of the cells are

genetically identical but between colonies, there may be single base mutations or other errors.32

Therefore, several colonies are usually prepared for sequencing confirmation. The process of

preparing the DNA and submission to commercial sequencing entities usually takes about 2434

hours. Once a newly constructed plasmid has been sequenced verified, it can be used for

experiments.2
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Day 1 - Design Oligo synthesis Day 2 - Assembly Incubation Day 3 - Validation Sequencing Day 4 - Storage

If DNA sequencing results do not match the intended result Work day

Overnight process

Figure S3. Sidebar: A Molecular Biology Workflow. The DNA construct is designed (Day 1), and

the required DNA oligonucleotides are ordered for shipment the following day (Oligo synthesis).

The DNA is then assembled using laboratory techniques such as restriction digest cloning, Gibson

assembly, or Golden gate assembly. Common techniques such as gel electrophoresis are used

to image DNA (Day 2, inset). Bacteria carrying the desired construct are incubated overnight

on agarose with selective antibiotics – this only allows cells with desired DNA assemblies to

grow. Single colonies of bacteria can then be observed the next day (Day 3). The DNA from the

colonies is sent in for DNA sequencing (Sequencing), and the correct construct can be stored

indefinitely in a bacterial culture at -80C (Day 4).
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Sidebar: Uncertainty in Biology

A key differentiating feature of biological systems from those in traditional engineering4

disciplines is the incredible amount of uncertainty that can affect the performance of a synthetic

gene circuit. Synthetic gene circuits do not operate in isolation, yet our understanding of the6

“black box” that is the host cell is very limited. Living organisms already have complex networks

of feedback regulation and redundancy; these networks are still actively being elucidated by8

researchers. The phrase “context dependence” is used to describe the effects of unknown or

dynamically changing surroundings on the performance of a synthetic gene circuit. There are10

many different types of context dependence effects. For example, within the cell a synthetic

circuit may compete with other genes for resources, and its performance may depend on the12

growth rate of the organism or its internal metabolic state. Additionally, any synthetic circuit relies

on global gene expression machinery such as polymerases and ribosomes, and these components14

can vary between different species of organisms, different strains of the same species, or even

different cells of the same strain.16

At the level of the environment, synthetic gene circuits can be affected by factors such

as pH, temperature, oxygen availability, and other factors. Often, these factors do not affect18

the synthetic gene circuit directly, but instead they affect the internal state of the organism,

which then affects the synthetic circuit. Many of these environmental factors trigger internal20

feedback systems and stress responses that allow the cell to survive in harsh conditions. For a

comprehensive review of context dependence effects in biology along with references describing22

the context dependence effects mentioned here and others, [130] is an excellent resource.

Robust control theory is often used in control engineering to mitigate the effects of24

uncertainty in the dynamics of a system while maintaining some level of control performance.

The trade-off is that the control system will be robust with respect to some uncertainties but26

fragile with respect to others. This methodology typically works best when the engineer has

some intuition as to which possible sources of uncertainties are likely to be significant, and28

which sources of uncertainties can be safely ignored. This intuition is lacking for synthetic

gene circuits. In fact, given a specific gene circuit in a specific strain of cells operating at30

a specific set of conditions, it is typically unclear prior to doing experiments which possible

context dependence effects will significantly affect the system.32

Researchers in synthetic biology take a number of approaches to mitigate these unknowns.

Usually, this involves reducing as much variability as possible in experimental conditions (e.g.34

using a well studied host organism and sticking to a single strain, strict adherence to growth

conditions and media formulation, carefully maintaining frozen stocks of engineered strains2
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with reproducible results) and then doing extensive characterization of circuit performance in

those conditions. These measurements, while limited by the types of data that can be collected4

(“Sidebar: Measurement Types”), allow for some modeling parameters to be grounded in reality,

and even predictive for that particular experimental setup. The stringent conditions from which6

modeling parameters are often collected may be challenging for creating broadly applicable

models, and even more so for designing robust controllers.2
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Sidebar: Measurement Types

There are three main types of data that can be collected on synthetic gene circuits operating4

in vivo: bulk data, single cell population snapshot data, and time series single cell data. These

measurement types and the associated output data are illustrated in Figure S4. Bulk data consist6

of measurements of an output for a culture of cells growing in a container, where the measured

output can be thought of as proportional to the sum of the outputs for all the cells in the8

culture. Population snapshot measurements consist of measuring an output for a large number

of individual cells in a population. However, the same cells cannot be followed over time, and at10

the next time point, a different set of cells will be measured. Population snapshot measurements

include techniques such as flow cytometry and mRNA FISH (fluorescence in situ hybridization).12

Finally, with time series measurements, a single cell’s output can be tracked over time using

techniques such as time lapse fluorescence microscopy.14

Automation heavily aids data collection for synthetic gene circuits. For bulk data, plate

reader machines can incubate cell cultures at a specific temperature and collect culture density16

and fluorescence information at regular time intervals. This can be done for hundreds of wells

on a single plate in parallel. In the case of single cells, microscopy can also be automated. Using18

automatic stages, autofocus capability, and the appropriate software, images can be acquired for

over ten positions in parallel at regular time intervals. Finally, flow cytometers can process a20

cell culture and read both cell size and fluorescence for tens of thousands of cells within a few

seconds.22

It is important to note that each of these measurement types provides progressively more

information than the previous type. If we ignore the time series relationships in time series data,24

then it can be considered as a set of population snapshots at different time points. If we take the

mean or sum of a population snapshot output distribution, we can think of the resulting value26

as a bulk measurement.

Finally, the type of measurement collected can and should impact the choice of model for28

the system being studied. As an example, if the data collected is all bulk data, then using a

stochastic model that accounts for noisy gene expression in single cells could be unnecessarily

complex, and a deterministic model based on ODE’s might be a better choice.2
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Figure S4. Sidebar: Measurement Types. The different types of measurements for synthetic gene

circuits. (a) In bulk measurements, total fluorescence and cell population (by measuring optical

density) can be measured for a culture over time using a plate reader. (b) In flow cytometry,

single cells pass through a detector that measures fluorescence for many individual cells. (c) In

time lapse microscopy, fluorescence output can be tracked across a growing lineage of single

cells.
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Sidebar: Model Classes

Synthetic gene networks are typically modeled as systems of chemical reactions occurring4

inside a cell where the chemical species in the circuit, proteins and mRNA’s, are produced and

degraded with different reaction rates. The level of one species can affect the rate of production6

or degradation of another species. This type of interaction is what gives rise to circuit type

behavior.8

For example, in Figure S5a, a simple synthetic gene circuit where two genes X and

Y repress each other’s production can give rise to a bistable toggle switch. In models of10

gene circuits, it is also common to ignore mRNA production and degradation as mRNA is

an intermediary between DNA and protein that typically has fast dynamics and no function of12

its own. In the model of the toggle switch in Figure S5b, the mRNA dynamics are ignored, and

the model simply has the two protein levels X and Y repressing each other’s production.14

The systems of chemical reactions can be modeled deterministically or stochastically.

Deterministic models consist of a set of ODE’s (see Figure S5b). In the stochastic case, each16

reaction is modeled as a discrete event that occurs with a certain propensity [131]. This results

in a continuous time discrete state Markov chain whose probability evolution is described by18

the chemical master equation [132].

Simulation trajectories of the deterministic system can be generated using a standard20

ODE solver. For stochastic models, sample paths of the system can be generated using a

stochastic simulation algorithm [131]. Also, the time evolution of the full state distribution22

can be approximately computed by using techniques such as moment closure [133] or finite

state projection [57]. In moment closure, a system of ODE’s approximately describes the time24

evolution of the moments of the state distribution. In moment closure, the state space is truncated,

so that the time evolution of the state distribution can be approximated by solving a high26

dimensional linear system of ODE’s.

These methods all describe ways to model synthetic gene circuits as chemical reactions28

inside a single cell. However, some synthetic gene circuits operate at a multicellular level, and

thus, cell growth and death must be modeled. In a deterministic setting, cell growth is typically30

modeled as logistic growth with a saturating carrying capacity that depends on the type of cells

and their environment. In the stochastic case, it is important to note that when a cell divides,32

its contents must be partitioned between its daughter cells. The randomness of this partitioning

can introduce further noise into gene circuit dynamics.

When matching synthetic gene circuit models to experimental data, it is necessary to choose2
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a model appropriate for the type of data being collected. For example, if bulk population average

data is being collected, then a deterministic model might be more appropriate than a stochastic4

model. It can also be necessary to iterate on the reactions themselves to get the best fit to the

data. A number of software packages exist that assist in modeling, simulation, and parameter6

inference of synthetic gene circuits [134], [72], [135], [136].

A deterministic and a stochastic simulation of the toggle switch circuit from Figure S5a8

are presented in Figure S5d. The deterministic simulation stays at a low X and high Y steady

state, while the stochastic simulation can randomly switch to the opposite state due to noise.2
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Figure S5. Sidebar: Model Classes. Modeling of a toggle switch synthetic gene circuit. (a)

In a two species toggle switch, two genes X and Y repress each other’s expression, which

creates two steady states where either X is high and Y is low or vice versa. (b,c) Deterministic

ODE’s and parameters for a toggle switch model. Ignoring mRNA, X and Y are produced

at a basal level with additional production repressed by the other gene along with first order

dilution/degradation. (d) A deterministic (solid) and stochastic (dashed) simulation of the toggle

switch. The deterministic simulation stays at a Y high/X low steady state while the stochastic

simulation can switch due to noise.
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Sidebar: Integral Control for Synthetic Gene Circuits

Here, we cover the details of Figure 5, which shows both a deterministic [79], [80] and4

stochastic [82] version of integral control for synthetic gene circuits.

In Figure 5a, the output to control is Y and the control input is X . We have a system of6

ODE’s describing the dynamics

Ẏ = �
Y

K

K +X
� �

Y

Y

Ẋ = �
X

Y � �
X

X

X + ✏
.

In this system, X represses production of Y , and Y activates production of X , which8

creates a negative feedback loop from Y to itself. Additionally, Y is also subject to a dilution

term. We assume that X is actively degraded by an enzyme much more quickly than the dilution10

rate, so we ignore dilution for X . Furthermore, we assume that the degradation of X saturates at

a low level of X , so ✏ ⌧ 1. This allows us to approximate the second equation as Ẋ = �
X

Y ��
X

.12

This means that the steady state value of Y will always be

�X
�X

, regardless of the values of �
Y

and

�
Y

. The plot in Figure 5a shows the levels of X and Y as �
Y

is varied. When �
Y

is increased, Y14

production initially increases, but then X also increases and represses Y back to the same steady

state. When �
Y

is lowered back to the original value, the original steady state is recovered.16

In Figure 5b, we have a stochastic system of chemical reactions in which producing an

actuator species Z1 leads to eventual production of output species X3 through some chemical18

reactions. In this case, the set of chemical reactions is a cascade, but in general, the chemical

reactions can be arbitrary. The output X3 leads to production of a sensor species Z2, which can20

sequester and annihilate the actuator species Z1. We can write down a subset of the moment

equations for this set of reactions.22

dE [Z1]

dt
= µ� ⌘E [Z1Z2]

dE [Z2]

dt
= ✓E [X3]� ⌘E [Z1Z2]

At steady state, E [X3] =
µ

✓

. This allows the control designer to set the expected value of

the output independent of the rates within the actual set of chemical reactions. In Figure 5b, it24

is shown that changing the rates k1, k2, and k3 does not affect the expected value of the output

at steady state.2
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Sidebar: Attenuation of Loading Effects in Synthetic Gene Circuits

Synthetic gene circuits often run into the types of impedance effects that are common in4

electrical circuits. In electrical circuits, an operational amplifier is often used to introduce a high

gain that allows an output voltage to track an input voltage very closely. This is illustrated in6

Figure S6a-b. The use of the op amp makes the steady state output voltage V
out

less susceptible

to impedance effects that could be introduced by additional downstream circuit components.8

In synthetic gene circuits, when a transcription factor is used to activate gene expression,

the transcription factor must bind to a promoter for a gene to recruit RNA polymerase. However,10

as more and more downstream binding targets are added, more transcription factor will bind to

target sites, and the concentration of free transcription factor will decrease. Thus, adding more12

downstream targets decreases the amount of free transcription factor, which decreases activation

strength. In order to mitigate this loading effect, one can implement a high gain feedback loop14

that maintains the concentration of free transcription factor.

The system in Figure S6c is a system that regulates the concentration of free transcription16

factor to mitigate loading effects. In this system, a transcription factor X can be phosphorylated

by an input U to form an active transcription factor X
P

, which can bind to downstream promoters18

and activate gene expression. However, if there are more downstream targets, more X
P

is

sequestered into transcription factor-DNA complexes C, and the amount of free X
P

decreases,20

which would reduce activation strength of the target genes.

This system uses high gain negative feedback to resolve this loading effect. If there is22

enough Y and enough total X in the system, as the free X
P

decreases, the system can just

phosphorylate more X to replace the lost X
P

. If X
P

builds up to too high of a level, then the24

phosphatase Y can quickly convert the active X
P

back to its inactive form X .

The model for this system is given in Figure S6d. The two differential equations provide26

a model of the dynamics in terms of active X
P

and complexes C of X
P

bound to downstream

target promoters. Under high gain conditions when the total amount of X and Y are sufficiently28

high, at steady state the free X
P

in the system is not affected by the load in the system p
tot

,

where p
tot

is the number of downstream DNA binding sites. For a more detailed discussion of

this model and its load buffering properties, please see [127].2
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Figure S6. Sidebar: Attenuation of Loading Effects in Synthetic Gene Circuits. Attenuation of

loading effects in engineered systems. (a,b) In an operational amplifier (op amp), high gain is

used to ensure the output voltage V
out

tracks the input voltage V
in

even with impedance effects

from downstream circuit components. (c) A load buffering device in synthetic biology [127].

The input U phosphorylates a transcription factor X , creating active transcription factor X
P

. X
P

can bind to downstream promoters and activate target gene expression, but this binding creates a

load on the system. (d) The dynamics for the load buffering device written in terms of unbound

active transcription factor X
P

and bound promoter-X
P

complexes C. The output X
P

tracks the

input U independent of load p
tot

when certain high gain conditions are met.
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Sidebar: Model Predictive Control of Gene Expression

This sidebar illustrates a simplified version of the type of model predictive control done4

in [95]. The goal is to control the expression of a fluorescent protein in a cell culture to a

desired reference value. In this system, the cells are engineered to produce fluorescent protein6

upon experiencing osmotic stress. The cells can be exposed to regular media, which means they

will not produce fluorescent protein, or they can be exposed to a high salt media that induces8

osmotic stress, which leads to fluorescent protein production. This means that the input in this

system is binary (i.e. u(t) = 0 or 1), because the cells can either be subjected to osmotic stress10

or not. Furthermore, the cells have a limited tolerance for osmotic stress, so the high salt media

must be applied in short pulses with sufficient time periods between pulses to allow the cells to12

recover.

Following the model in [95], we model gene expression as a function of input with the14

following set of equations.

ẋ1 = u(t)� �1x1 (S1)

ẋ2 = kx1 � �2
x2

x2 +K

Here, the variable x1 represents the host response to osmotic stress. The effect of past16

osmotic stresses decays exponentially over time. The production rate of the output x2 is

proportional to the osmotic stress response x1, and the x2 protein can also be degraded at a18

maximum rate of �2.

For simplicity, we set all parameters in the model to 1. We consider the problem of tracking20

a constant reference value for x2. Starting from an initial condition at the origin, the goal is

to minimize the squared error between x2 and the reference over a finite time window of 0 to22

20 minutes. Furthermore, because the cells have a limited tolerance for osmotic stress and due

to experimental limitations, we limit pulse durations to be between 1 and 5 minutes, and we24

require a minimum gap of 3 minutes between pulses. To simplify the computation, we allow a

maximum of three pulses in the time window. This yields a constrained optimization problem in26

which the error between reference and simulated output is minimized by optimizing the pulse

start and end times. This optimization problem is non-convex and can be solved locally using28

general optimization software.

The results of this procedure are shown in Figure S7, which shows the optimal input

trajectories as well as the simulated output for reference values of 0.5 and 1.0. While the mean2
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tracking works in both cases, the fluctuations around the reference value are unavoidable for

this choice of parameters, because the time scale of the expression dynamics is too fast to be4

controlled with the input. This is because the effective frequency at which the input can be

applied is limited by the required time gap between pulses. This type of time scale related6

limitation is a common one in biological control. Of course, in an actual implementation of

model predictive control, these trajectories would be re-optimized at each time step.8

In [95], the experiments yield much better results than the ones shown in Figure S7.

Application of model predictive control typically requires system identification and online state

estimation as well. The work in [95] details the system identification and state estimation2

procedures for this system in addition to other details.
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Figure S7. Simulated model predictive control of gene expression for the model given in (S1).

Nonlinear optimization can be used to find optimal input pulses (black) for tracking a reference

expression value (dashed red) with the simulated output (solid red). The procedure works for a

reference of 1.0 (left) and 0.5 (right). Poor tracking performance highlights the potential time

scale based limitations of biological control.
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Sidebar: Article Summary4

This review introduces basic concepts in synthetic biology and potential applications of

control theory within this field. Synthetic biology is a subfield of bioengineering in which6

researchers use the tools of genetic engineering to build novel biomolecular pathways. In the last

two decades, these synthetic pathways have been demonstrated in bacteria, yeast, and mammalian8

cells. These technologies potentially enable on-demand fermentation of necessary medicines,

specialized organisms for bioremediation, or renewable production of molecules currently derived10

from petroleum. While many of these concepts have been proven in the laboratory, the field

faces major challenges in reliability and robustness of engineered organisms outside of a very12

narrow controlled environment. These challenges arise because synthetic biomolecular systems

must compete with natural processes for survival and replication. Living cells contain layers14

of complex, dynamic processes that interfere with even the simplest genetic engineering. This

article describes basic concepts in synthetic biology, specific areas in which control theory could16

be applied, a general survey of the prior art, and the challenges with controlling and measuring

the performance of biological systems. No prior background in biology or synthetic biology is2

assumed, and commonly used terms are defined for the reader.
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