
A Real-Time Helicopter Testbed for Insect-Inspired Visual
Flight Control

Shuo Han, Andrew D. Straw, Michael H. Dickinson and Richard M. Murray

Abstract—The paper describes an indoor helicopter testbed
that allows implementing and testing of bio-inspired control
algorithms developed from scientific studies on insects. The
helicopter receives and is controlled by simulated sensory inputs
(e.g. visual stimuli) generated in a virtual 3D environment,
where the connection between the physical world and the virtual
world is provided by a video camera tracking system. The
virtual environment is specified by a 3D computer model and
is relatively simple to modify compared to realistic scenes. This
enables rapid examinations of whether a certain control law
is robust under various environments, an important feature
of insect behavior. As a first attempt, flight stabilization and
yaw rate control near hover are demonstrated, utilizing bio-
logically realistic visual stimuli as in the fruit fly Drosophila
melanogaster.

I. INTRODUCTION

Insects were the first organisms to achieve flight, and
are arguably the most sophisticated flying organisms. Al-
though their brain consists of only 500,000 neurons, they
are capable of controlling both high level behavior (e.g. food
localization) and low level behavior (e.g. leg coordination)
in apparently robust and successful ways. When compared to
autonomous machines performing multi-level control, it be-
comes apparent that the tiny brains of insects must implement
rather effective and efficient algorithms [1]. Among insects,
flies in general and the fruit fly Drosophila melanogaster in
particular, are especially well studied species. Various visuo-
motor responses, in addition to senses such as wind and
rotation detection, have been studied to gain an understand-
ing of how flies stabilize and guide flight [2]. The optics of
the compound eye provide spatial resolution far inferior to
modern electronic video cameras, with only 700 ommatidia
(roughly, pixels) per side. The importance of vision, despite
this limited spatial resolution, is suggested by the portion of
the brain dedicated to visual processing—roughly two thirds
of the fly brain is within the optic lobes, and this neglects
parts of the central brain also involved with vision.

This paper introduces a vision-based helicopter control
testbed (shown in Fig. 1), in which the control law takes
visual input from a biologically realistic simulation of the
visual system of Drosophila. Generation of the visual stimuli
is accomplished through graphical rendering of a 3D virtual
environment, rather than from onboard video cameras. The
testbed serves two functions. First, this testbed enables cer-
tain experiments that are otherwise difficult to control or even
not possible on real animals. Second, from an engineering

The authors are with the Division of Engineering and Applied Science,
California Institute of Technology, Pasadena, CA 91125, USA. {hanshuo,
astraw, flyman}@caltech.edu, murray@cds.caltech.edu

perspective, it is intriguing to examine possible ways of
adopting the mechanisms of insect flight control in practical
systems and/or whether there would be any limitations.

Fig. 1. The helicopter used in this work. It is based on E-flite Blade CX2,
a coaxial 4-channel indoor RC helicopter (gross weight: 224 g, rotor span:
345 mm). Modifications include: (1) removal of the original canopy and tail
boom to increase payload; (2) adding a metal frame with 5 LEDs as feature
points in video tracking.

II. RELATED WORK

The idea of exploiting visual information is not new in
the field of aerial robotics and has been implemented in
various unmanned aerial vehicle (UAV) projects [3], [4],
[5]. However, only until recently researchers have started
to study the possibility of developing control laws that make
use of biologically meaningful visual inputs. Much work has
been done at the simulation level. Early research usually
ignores the detailed configuration of the compound eyes,
and treats the two eyes as two single photodetectors [6], [7].
However, there are clues that insects use inputs from each
ommatidium via lobular plate tangential cells (LPTC) that
perform as “matched filters” [8]. Later work showed that sim-
ulated retinal velocities of each ommatidium can collectively
provide a full estimate of the system states (e.g. forward
speed, positions) under certain maneuver constraints using
such algorithm [9], [10], [11]. The idea of matched filter has
also been extended to insect flight control simulation with
a more biologically realistic visual model and Drosophila
body/wing dynamics [12], [13].

One of the early attempts on implementing insect flight
control laws in aerial robots is a microflyer developed
by Laboratory of Intelligent Systems at EPFL [14]. With
an onboard lightweight video camera, optic flow can be
calculated and used as a sensory input. The microflyer is
in turn able to fly indoor while avoiding obstacles through

2009 International Conference on Robotics and Automation (ICRA)
http://www.cds.caltech.edu/~murray/papers/hsdm09-icra.html

HelicopterCoaxial Radio Controller

image points
Coordinates of 2D

(< 0.1ms)
Pose Estimation

Ground
CMOS
Camera

IEEE 1394 Link

Visual Stimuli

Control Law

3D Environment Model

Eye Map
Video Processing

Visual Stimuli
Simulation

θ, ψ, φ
x, y, z

(fcontrol)

(fview)

uα, uβ

uthr, urud

(fsee, ∼ 70 fps)

Fig. 2. A schematic of the indoor helicopter testbed incorporating biological control laws. The control laws currently only use simulated Drosophila (fruit
fly) visual stimuli from fsee. The fsee program requires (1) a 3D environment model, (2) configuration of the compound eye optics (the eye map), and
(3) position and orientation (known as pose) of the helicopter. The environment model and eye map are coded in software, whereas the pose is computed
from 2D video images through a pose estimation algorithm. The designed control law, fcontrol, computes the control commands from the visual stimuli
and feeds the commands to the helicopter via a 4-channel (uthr, urud, uα, uβ) radio controller.

intermittent saccades (turning by ∼90 deg in yaw) triggered
by certain changes in optic flow.

None of the work above, however, examines the possibility
of incorporating a virtual environment in the control loop.
This can be beneficial when a large number of different
stimuli need to be tested because virtual environment allows
batch generation. Building the entire testbed leads to two
possible issues that need to be carefully addressed. First,
simulating equivalent visual stimuli requires the current
position and attitude of the helicopter, which can be obtained
by pose estimation. However, pose estimation algorithms
usually do not emphasize real-time performance, whereas
aerial vehicle control often imposes stringent requirement
on time delays (" 20 ms for our helicopter). To tune
the algorithm in order to meet our special need, our work
combines two different pose estimation algorithms, POSIT
and SoftPOSIT, together with a Kalman filter providing
necessary initial pose guesses and noise reduction. This gives
satisfactory performance (average delay < 0.1 ms) even on
an off-the-shelf PC, avoiding the use of much more expensive
professional motion capture systems (e.g. VICON). Second,
the aim of this paper is focused on stabilization and yaw
control during hovering. Yet flight control during hovering is
generally believed to be more challenging than forward flight
because the vehicle is normally more susceptible to noise. It
is uncertain that whether the noise will severely corrupt the
state estimates and/or destabilize the helicopter. The paper
shows that good yaw rate estimates can be obtained using
a “matched filter” approach and discusses some associated
limitations.

The paper is organized as follows. Sec. III gives an
overview of the testbed, which consists of three major parts:
(1) the helicopter itself, (2) the sensor subsystem, and (3)

the control/actuation subsystem. Each part is introduced in
sequence in Sec. IV–VI. Sec. VI also presents and discusses
several preliminary results on helicopter control using bio-
inspired algorithms. The paper concludes in Sec. VII with
directions on future work.

III. SYSTEM OVERVIEW

The entire system (Fig. 2) consists of three major parts: the
helicopter itself, a sensing subsystem that captures the status
(position and attitude) of the helicopter and generates the cor-
responding biological visual stimuli, and a control/actuation
subsystem that executes given control laws. There are mainly
two types of radio-controlled (RC) helicopter commercially
available, with different yaw control mechanisms. One type
features a single main rotor, with its yaw torque controlled
by a tail rotor; the other has a pair of counter-rotating
coaxial main rotors where the yaw is controlled through the
differential speed of the rotor pair. The latter is chosen in our
case due to its similar yaw control mechanism with the fly,
which achieves yaw motion by altering the beat frequencies
of the wing pair. Besides electronics, the helicopter is also
equipped with 5 IR light-emitting diodes (LED) with which
the sensing subsystem can estimate the current pose of the
helicopter.

The sensing subsystem is composed of two functions. A
ground video camera first records the image of the IR LEDs,
from which a pose estimation algorithm extracts out the 3D
position (x, y, z) as well as the attitude (three Euler angles—
θ, ψ, φ) of the helicopter with respect to the camera. To
avoid possible ambiguity and error during pose estimation, a
Kalman filter is also added in the estimation loop. With the
complete 6-degree-of-freedom (DOF) information available,
a program called fsee is able to simulate the instantaneous

biological visual input (see Fig. 2) for a given virtual
environment, which shares the same origin with the real
world. A control law will receive this input and compute
the control commands.

The actuation is achieved by having a PC communicate
with the radio controller shipped with the helicopter. To
keep the original radio controller intact, the communication
is done over the trainer port that accepts PPM signals. The
signals can be generated from a certain peripheral circuit
and several digital potentiometers controlled by the PC over
an SPI interface. A video showing the helicopter in motion
and the associated simulated Drosophila visual stimuli (a
sinusoidal pattern is shown for better visual illustration) can
be found in the supplementary materials [15].

IV. HELICOPTER CONFIGURATION

Our testbed uses an E-flite Blade CX2 coaxial indoor
helicopter. Its rotor blades are 345 mm in diameter and are
driven by two separate DC brushed motors. Powered by a
2-cell 800-mAh lithium-polymer battery, the helicopter is
able to fly for 10-15 minutes. The small size and excellent
flight time make this model particularly ideal for indoor
experiments. The pitch of the rotor blades is fixed. Therefore,
lift control is achieved by changing the speeds of the upper
and lower rotors collectively through the throttle command
(uthr). Yaw control is realized by tuning the differential
speed between the two counter-rotating rotors via the rudder
command (urud). Pitching and rolling are controlled by the
cyclic pitch of the lower rotor blades, which is controlled by a
2-DOF servo-driven swashplate that takes inputs uα and uβ ;
the upper rotor is passively controlled by gyroscopic forces
generated from the attached stabilizer bar. All commands
(uthr, urud, uα, uβ) are sent through a miniaturized 4-channel
2.4 GHz radio system. The rudder channel is also mixed with
the output from the onboard gyroscope, which is however
turned off in the following experiments for yaw control
testing purposes. The helicopter has been retrofitted to meet
several requirements. The outer plastic enclosure is removed
to gain more payload. The helicopter also carries 5 IR LEDs
(from NaturalPoint) that are arranged in a non-coplanar
fashion, as required by the pose estimation algorithm. The
algorithm requires that the positions of the LEDs should
be measured accurately. For this purpose, the LEDs are
soldered onto several designated spots located on a pre-
designed frame, which is in turn attached to the helicopter.

One limitation of our helicopter system is that it is under-
actuated, because it has 6 DOFs with yet only 4 command
inputs. This is evident in that the helicopter must, for exam-
ple, pitch forward in order to initiate forward flight. Due to
this limitation, this paper tests only two scenarios that do not
involve large lateral motion: hovering and yaw rotation. Yaw
rotation is selected because this is relevant to saccades, which
are rapid turns performed by flies intermittently. Yet this
issue of underactuatedness needs to be carefully considered
in the future if significant translational movement is present
(e.g. forward flight regulation).

V. SENSOR SUBSYSTEM

A. Video capture and processing
A video system provides the interface between the real

world and the PC. Because the present work is focused on
helicopter operated near hover, it suffices to use a single
camera system, which does not require any synchronization
as in the case of multiple cameras. Our platform uses a
PointGrey Firefly MV CMOS camera with a frame rate of
60 fps (wide VGA, 752 × 480). The camera is equipped
with a 6-mm microlens, providing a viewing angle of 42 deg
and 27 deg in the length and width directions, respectively.
Pointing upward, the camera can track a 76.6 × 48.9 cm2

area 1 m above it, with a spatial resolution of ∼1 mm.
This tracking range is enough for our present experiment
where the helicopter hovers in place. For future experiments
requiring a larger tracking range, the system can be up-
graded to a multi-camera configuration [16]. An IR-pass filter
(Schneider Optics, B+W 093, λc = 830 nm) is added in the
front to reduce the influence from ambient stray light. The
camera itself serves as the origin in the real world, which
also coincides with the origin of the virtual environment (see
Sec. V-C).

The camera is connected through IEEE 1394 to a PC,
where the video stream is processed by fview, part of
motmot [17], which is a collection of open source packages
for real-time collection and analysis of uncompressed digital
images. At each frame, a plugin in fview called trackem will
detect the feature points (LEDs in this case) by thresholding
and report their coordinates on the 2D image over a UDP
port.
B. Pose estimation

Simulation of biological visual stimuli requires the current
position and orientation (also known as pose) of the heli-
copter with respect to the camera. Given the 3D positions
of the feature points (in cm) on the helicopter and their
locations on the image (in pixels), the pose can be solved by
finding the best rotational and translational match between
the 3D coordinates and the 2D projections. Two types of pose
estimation algorithms are used in our testbed: POSIT (Pose
from Orthography and Scaling with ITerations) [18] and
SoftPOSIT (POSIT + SoftAssign). POSIT is relatively sim-
ple and fast (< 0.1 ms@2.4 GHz Core2 Duo), but requires
one-to-one mutual correspondence between the feature points
and their projected images; SoftPOSIT, on the other hand,
can handle unknown correspondence and missing points, yet
is less robust and much slower (2–4 ms).

To fully exploit the video camera bandwidth, the delay
caused by pose estimation is expected to be negligible com-
pared to the camera (17 ms). However, POSIT itself is not
suitable in our case because the image-object correspondence
can be unknown during the flight. All the 5 LEDs appear
identically on the 2D images and some of the LEDs might
be blocked by the fuselage occasionally and will be missing
in the camera image. To take advantage of both POSIT and
SoftPOSIT, our pose estimation process combines the two
through a Kalman filter:

1) Run SoftPOSIT to solve the initial correspondence;
2) Read the locations of feature points from the current

camera image;
3) Run the time-update (prediction) stage of the Kalman

filter to predict the current pose;
4) From the predicted pose, either (a) determine the cur-

rent correspondences using nearest neighborhood and
solve the current pose from POSIT or (b) when POSIT
fails, solve the pose from SoftPOSIT directly. Using
nearest neighborhood method can eliminate spurious
feature points on the 2D image.

5) Run the measurement-update stage of the Kalman filter
to smooth out the pose estimation result and reduce the
effect of occasional false estimation.

The dynamical model of our Kalman filter is a simple one
assuming constant velocities for all the 6 DOFs, yet performs
surprisingly well. Occasional occlusion of one LED has been
tested to have negligible influence on pose estimation results.
It is worth noting that a Kalman filter incorporating the
dynamical model of the helicopter is expected to gain more
accuracy, although this was not tested in this work. There is
also a possibility that the Kalman filter may filter out some
realistic noises from the helicopter. This artificial smoothing
issue can be a potential limiting factor when testing the high-
frequency performance of control laws such as disturbance
rejection. Future work will be conducted to characterize the
bandwidth of the video tracking system.

C. Visual stimuli simulation
To acquire visual information, a virtual 3D environment

model needs to be specified. In our study, the environment
was set to be a round arena with certain image patterns
painted on its inner wall. The model is built with Google
Sketchup and exported in COLLADA (.dae) format, which
can then be loaded and rendered by OpenSceneGraph, an
open source, cross-platform 3D graphics toolkit based on
OpenGL. At each sampling instant, according to the esti-
mated pose of the helicopter, the 3D environment model is
rendered as a cube map, which consists of 6 snapshots of the
surroundings. A fast algorithm can then transform the cube
map to the luminance profile, which is blurred by a Gaussian
kernel to emulate the optics of the compound eye. The
transformation uses a biologically realistic distribution of the
ommatidia, which is obtained by Buchner for Drosophila
[19]. The eye map includes 699 elements on each compound
eye, with each element spanning a solid angle of 4.5 to 6
deg. Fig. 3 shows the actual eye map and a typical simulation
of the visual stimuli. Details of the simulation are described
elsewhere [13].

VI. CONTROL/ACTUATION SUBSYSTEM

A. Hardware setup
A hardware interface is required for the PC to send

control commands to the helicopter, or essentially, the radio
controller. Like most advanced radio controllers, our radio
controller comes with a trainer port that receives pulse
position modulation (PPM) signals from a buddy box. We

Left Rightc)

b)a)

Fig. 3. a) Configuration of Drosophila compound eye optics (eye map)
represented in 3D, according to Buchner’s data [19]. Each cell on the
spherical surface indicates the solid angle spanned by a single ommatidium.
There is a missing wedge located in the aft portion, meaning the fly is not
able to observe immediate visual cues in the back; b) Naturalistic scene
used in the 3D arena model; c) Simulated visual stimuli from both two
compound eyes (shown in Mercator projection) when the helicopter is at
the center of the arena. The cloud and sky are from the background of the
3D world where the arena is placed, not the arena itself.

use the circuit taken from a second radio controller of the
same model to generate the PPM signal. All the 4 onboard
potentiometers that control the 4 channels are replaced by
digital ones. The PC can then communicate with the digital
potentiometers over an SPI bus. A GUI frontend called
fcontrol, written in Python, provides user interaction (e.g.
data recording) and data visualization. The fcontrol interface
allows the user to switch between manual and automatic
control mode, where the former mode takes joystick inputs
through pygame module and the latter one sends control
commands given by the control law detailed below.

B. Control law and results

The first goal in helicopter flight control is to stabilize
the vehicle in hover. The hovering condition requires that
6 velocities (3 translational, 3 angular) be zero: ẋ = ẏ =
ż = 0, θ̇ = ψ̇ = φ̇ = 0. However, controlling solely the
lateral velocities (ẋ and ẏ) will eventually lead to cumulative
errors in the lateral positions and cause the helicopter to
move beyond the visible range of the camera system. The
hovering condition is then restricted to be “hover in place”
(x = 0, y = 0) in order to circumvent this issue, forcing
the helicopter to stay near the origin. For safety purposes,
the altitude (z position) is controlled manually through the
throttle; it is used to initiate takeoff/landing and is simply
held constant once the helicopter reaches the desired height.
Pitch and roll motions are observed to be passively stable
and do not require additional control.

Our control law controls the rest 3 DOFs—x, y, and
yaw rate—via the collective pitch commands (uα and uβ)
and the rudder command (urud), respectively. For simplicity,
couplings between the three channels are ignored and three
independent control laws are applied. The yaw rate, which is
approximately φ̇ near hover, is controlled by a proportional-
integral (PI) controller, whereas x and y by proportional-
derivative (PD) controllers:

urud = kP
φ dot(φ̇ref − φ̇) + kI

φ dot

∫
(φ̇ref − φ̇) dt, (1)

uα = kP
x (xref − x) + kD

x

d

dt
(xref − x), (2)

uβ = kP
y (yref − y) + kD

y

d

dt
(yref − y). (3)

During hovering, all the reference set points, φ̇ref , xref ,
and yref , are set to zero. The above control laws require
estimation of x, y, and φ̇. φ̇ can be obtained from retinal
velocity, defined as the movement rate of the visual world
projected onto the retina. The retinal velocity represents the
fly’s visual perception of the surrounding scenery. Retinal
velocity near each ommatidium can be obtained from two
adjacent ommatidia through a nonlinear temporospatial cor-
relation. This correlation model, proposed by Hassenstein
and Reichardt from experiments on beetles, is often known
as the elementary motion detector (EMD) [20]. Fig. 4a
shows the original EMD configuration, which computes the
difference between two balanced branches that each performs
correlation:

EMDi(t) = IA(t − τ)IB(t) − IA(t)IB(t − τ). (4)

Actual
Estimated by fsee

180160140120100806040200−20
0

20
40
60
80

100
120
140
160
180

0 2 4 6 8 10 12 14 16 18 20
−400

−300

−200

−100

0

100

200

300

400

...

Matched Filter

State Estimate

...

EMD EMD1 2 EMDn

A B

EMD Output

a)

_+
Σ

b) c)

Time (s)

Y
aw

R
at

e
(d

eg
/s

)

w1 w2 wn

Σ

τ τ

× ×

∆φ

Azimuth φ (deg)

E
le

va
ti
on

θ
(d

eg
)

Fig. 4. a) Hassenstein-Reichardt EMD model and matched filter used for
state estimation. The EMD computes the temporospatial correlation between
inputs from two adjacent ommatidia A and B. ∆φ is the angle spacing
between the two ommatidia. τ is the time delay appeared in correlation.
All the EMD outputs are fed into a matched filter with weights wj (j =
1, 2, . . . , n) to obtain the corresponding state estimate. b) Matched filter
for yaw rate estimation plotted against elevation θ and azimuth φ. Each
point on the 2D quiver plot corresponds to a point on the eye map (φ = 0:
front, θ = 0: top), whereas the length and direction of arrows represent the
weights wj (2D vectors); c) Comparison of yaw rate estimate vs. actual
measurement. The estimated yaw rate is obtained from the matched filter
shown in b), whereas the actual one is from numerical differentiation of the
pose data.

Response of an EMD to a certain moving pattern is nonlin-
ear, nonmonotonic, and sensitive to brightness/contrast [21].
Although the EMD response can be obtained analytically
for sinusoidal patterns, no closed form is available for
naturalistic patterns. Therefore, the nonlinearity and bright-
ness/contrast dependency have been addressed by building an

empirical look-up table from simulation results. In addition,
the yaw rate is kept within the monotonic region of EMD
response, so that the retinal velocities from each EMD pair
can be determined without ambiguity. The retinal velocities
are known to give an estimate of the yaw rate through linear
weighted summation, using the method proposed in [10].
The weights used in summation correspond to certain spe-
cific motion patterns, hence are also called matched filters.
A number of different patterns have been identified by
electrophysiological recordings on the LPTCs in insects’
brain [8]. As opposed to finding the suitable matched filter
analytically, in this experiment the weights are obtained from
the outputs of the EMDs under given stereotyped motions—
yaw rotation in our case. Fig. 4b shows the matched filter
pattern, consisting mainly of yaw motion as expected. Pose
data from a realistic helicopter trajectory are used to compare
the estimation of yaw rate using numerical differentiation vs.
a matched filter. Because our helicopter is not equipped with
an IMU, numerical differentiation is considered as the ground
truth. From the comparison in Fig. 4c, it can be seen that
the matched filter approach gives a fairly accurate estimate
of the yaw rate.

Fig. 5 and 6 show the estimated pose (x, y, z, θ, ψ, φ) of
the helicopter near hover and step changes in yaw, respec-
tively. Yaw rate control is realized by simply changing the set
point, φ̇ref , from 0 deg/s to 20 deg/s. The current limitation of
state estimation using matched filters, though, is that it cannot
provide satisfactory estimate of lateral positions, which is
not claimed in previous studies on planar vehicles [22]. This
can be expected to happen in aerial vehicle control due to
more DOFs involved. The estimated lateral positions, which
are given by integrating the translational velocities (ẋ and
ẏ) from matched filter outputs, suffer from the cumulative
errors of ẋ and ẏ and will eventually move the helicopter
out of the tracking range. Instead, estimation of x and y
positions are given directly by pose estimation in the current
implementation.

0 2 4 6 8
−8

−4

0

4

Time (s)

x
(c

m
)

0 2 4 6 8
−5

0

5

Time (s)

y
(c

m
)

0 2 4 6 8
80

85

90

95

100

Time (s)

z
(c

m
)

0 2 4 6 8
−10

−5

0

5

Time (s)

θ
(d

eg
)

0 2 4 6 8

−10

−5

0

Time (s)

ψ
 (d

eg
)

0 2 4 6 8
45

50

55

60

65

Time (s)

φ
(d

eg
)

Fig. 5. Position and attitude measurements when the helicopter is in
stabilized hover. The oscillations around the equilibrium point are due to
air disturbances and/or communication errors of the radio system, and are
controlled within a satisfactory range. The non-zero offsets in pitch and roll
are caused by inaccuracy in mounting the LED frame.

0 10 20 30 40
−5

0

5

10

15

20

25

30

35

Time (s)

An
gu

la
r v

el
oc

ity
 (d

eg
/s

)

Fig. 6. Yaw rate control. The helicopter is switched from hover to a yaw
rate of φ̇ref = 20 deg/s and back to hover at t ≈ 4 s and t ≈ 37 s,
respectively, as shown by the red dashed line. The yaw rate computed from
pose estimation results is shown in blue.

VII. CONCLUSIONS AND FUTURE WORK

The paper describes a real-time helicopter platform that
allows implementation and testing of control algorithms—
especially bio-inspired ones, operating in different environ-
ments. As opposed to laying out realistic objects and scenes,
the environment is specified in a virtual world using a
3D computer model, allowing rapid examination of a large
number of environments. The connection between the real
world and the virtual environment is provided by a home-
made camera system that tracks the pose of the helicopter.
As a first step, we have demonstrated flight stabilization near
hover and yaw control. These promising results can motivate
further investment on this testbed.

The present work, nevertheless, only incorporates certain
preliminary features of a fly’s sensory system, in particu-
lar, visual feedback system. It is not surprising that flies
fuse information from multiple sensors to guide their flight
maneuvers. For example, halteres, the fly’s equivalent of
gyroscope, can potentially assist translational velocity esti-
mation by providing accurate yaw rate measurement [13].
Furthermore, this paper does not address the biological con-
trol law implemented by insects, which are more interesting
from an engineering point of view. Yet the helicopter testbed
“immersed” in a virtual environment presented in this paper
can be useful in studying more elaborate control algorithms
and shed light on the underlying mechanisms in the future.

VIII. ACKNOWLEDGMENTS

The authors would like to thank Sawyer Fuller and Fran-
cisco Zabala for helpful discussions on helicopter control
and hardware implementations. This work is supported in
part through the Institute for Collaborative Biotechnology
(ICB), the Boeing Corporation, and the California Institute
of Technology.

REFERENCES

[1] M. A. Frye and M. H. Dickinson, “Fly flight: A model for the neural
control of complex behavior,” Neuron, vol. 32, pp. 385–388, 2001.

[2] M. B. Reiser, J. S. Humbert, M. J. Dunlop, D. Del Vecchio, R. M.
Murray, and M. H. Dickinson, “Vision as a compensatory mechanism
for disturbance rejection in upwind flight,” in American Control
Conference (ACC), 2004.

[3] M. Ichikawa, H. Yamada, and J. Takeuchi, “A flying robot controlled
by a biologically inspired vision system,” in International Conference
on Neural Information Processing (ICONIP), 2001.

[4] T. Kanade, O. Amidi, and Q. Ke, “Real-time and 3D vision for
autonomous small and micro air vehicles,” in IEEE Conference on
Decision and Control (CDC), 2004.

[5] L. O. Mejias, S. Saripalli, P. Cervera, and G. S. Sukhatme, “Visual
servoing for tracking features in urban areas using an autonomous
helicopter,” in IEEE International Conference on Robotics and Au-
tomation (ICRA), 2006.

[6] L. Schenato, X. Deng, W. Wu, and S. Sastry, “Virtual insect flight
simulator (VIFS): a software testbed for insect flight,” in IEEE
International Conference on Robotics and Automation (ICRA), 2001.

[7] F. Ruffier and N. Franceschini, “Visually guided micro-aerial vehicle:
automatic take off, terrain following, landing and wind reaction,” in
IEEE International Conference on Robotics and Automation (ICRA),
2004.

[8] H. G. Krapp and R. Hengstenberg, “Estimation of self-motion by optic
flow processing in single visual interneurons,” Nature, vol. 384, pp.
463–466, 1996.

[9] M. B. Reiser and M. H. Dickinson, “A test bed for insect-inspired
robotic control,” Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, vol. 361, pp. 2267–
2285, 2003.

[10] J. S. Humbert, R. M. Murray, and M. H. Dickinson, “A control-
oriented analysis of bio-inspired visuomotor convergence,” in IEEE
Conference on Decision and Control and European Control Confer-
ence (CDC-ECC), 2005.

[11] J. S. Humbert and M. A. Frye, “Extracting behaviorally relevant retinal
image motion cues via wide-field integration,” in American Control
Conference (ACC), 2006.

[12] M. Epstein, S. Waydo, S. B. Fuller, W. B. Dickson, A. D. Straw, M. H.
Dickinson, and R. M. Murray, “Biologically inspired feedback design
for Drosophila flight,” in American Control Conference (ACC), 2007.

[13] W. B. Dickson, A. D. Straw, and M. H. Dickinson, “Integrative model
of Drosophila flight,” AIAA Journal, vol. 46, pp. 2150–2164, 2008.

[14] A. Beyeler, J.-C. Zufferey, and D. Floreano, “3D vision-based navi-
gation for indoor microflyers,” in IEEE International Conference on
Robotics and Automation (ICRA), 2007.

[15] Also available at: http://purl.org/hanshuo/2008/yaw control with fsee
(last visited on Feb 8, 2009).

[16] Y. Yoshihata, K. Watanabe, Y. Iwatani, and K. Hashimoto, “Multi-
camera visual servoing of a micro helicopter under occlusions,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2007.

[17] Available at: http://code.astraw.com/projects/motmot (last visited on
Feb 8, 2009).

[18] D. F. Dementhon and L. S. Davis, “Model-based object pose in 25
lines of code,” International Journal of Computer Vision, vol. 15, pp.
123–141, 1995.

[19] E. Buchner, “Dunkelanregung des stationaeren flugs der fruchtfliege
Drosophila. Dipl. thesis,” Ph.D. dissertation, Univ. Tuebingen, Tue-
bingen, Germany, 1971.

[20] B. Hassenstein and W. Reichardt, “Systemtheoretische analyse
der zeit-, reihenfolgen-, und vorzeichenauswertung bei der be-
wegungsperzeption des rüsselkäfers Chlorophanus,” Zeitschrift Fur
Naturforschung, vol. 11b, pp. 513–524, 1956, (“System theoretical
analysis of the time-, order-, and sign-evaluation in movement per-
ception by the weevil Chlorophanus,” Journal of Natural Research)
(English translation).

[21] R. O. Dror, D. C. O’Carroll, and S. B. Laughlin, “Accuracy of velocity
estimation by Reichardt correlators,” J. Opt. Soc. Am. A, vol. 18, pp.
241–252, 2001.

[22] S. B. Fuller, A. D. Straw, M. Epstein, S. Waydo, W. B. Dickson, M. H.
Dickinson, and R. M. Murray, “Geometric analysis of Hassenstein-
Reichardt elementary motion detectors and application to control in a
fruit fly simulator and a robot,” in International Symposium on Flying
Insect Robotics, Ascona, Switzerland, 2007.

