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Abstract— Insects exhibit unparalleled and incredibly robust
flight dynamics in the face of uncertainties. A fundamental prin-
ciple contributing to this amazing behavior is rapid processing
and convergence of visual sensory information to flight motor
commands via spatial wide-field integration, accomplished by
motion pattern sensitive interneurons in the lobula plate portion
of the visual ganglia. Within a control-theoretic framework, a
model for wide-field integration of retinal image flow is devel-
oped, establishing the connection between image flow kernels
(retinal motion pattern sensitivities) and the feedback terms
they represent. It is demonstrated that the proposed output
feedback methodology is sufficient to give rise to experimentally
observed navigational heuristics as the centering and forward
speed regulation responses exhibited by honeybees.

I. INTRODUCTION

Prevalent in many natural sensory systems is the phe-
nomenon of sensorimotor convergence, wherein signals from
arrays of spatially distributed and differentially tuned sensors
converge in vast number onto motor neurons responsible for
controlling locomotive behavior. A prime example occurs
in the processing of retinal image pattern movement (optic
flow) by the visuomotor systems of insects. Insect visual
systems encode optic flow by combining motion estimates
from arrays of local motion detectors in a way that preserves
the spatial layout of the retina [1]. This sensory informa-
tion is parsed by wide-field motion sensitive interneurons
(tangential cells, or LPTCs) in the lobula plate section of
the visual ganglia, as shown in (Figure 3A). The output
of these neurons synapse in the motor control centers,
creating a sensory processing stage which spatially integrates
the optic flow [2]. This visuomotor convergence technique,
spatial wide-field integration, is used by insects to extract
behaviorally-relevant information from optic flow patterns to
modulate the kinematics of flight [3].

Since optic flow was first recognized as a critical source
of information [4], there has been considerable interest
in adapting this type of sensory system for bio-inspired
autonomous navigation. Efforts have focused on utilizing one
or more properties of optic flow to provide navigational cues
[5]. Examples include corridor navigation based on balancing
average lateral image velocities on wheeled robots, obstacle
avoidance via saccading away from regions with high image
velocities, and optic flow based estimates of depth [6]. In
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a more traditional approach, LPTC-based processing models
have been investigated as estimators for vehicle kinematic
states directly from observed optic flow [7], as tangential
cell sensitivity maps show similarities to flow fields that
correspond to egomotion [8].

In this paper we propose a more general functional role for
wide-field sensitive neurons in navigation and flight control
as well as a novel methodology for utilizing optic flow
sensory information in bio-inspired applications. We show
how the spatial harmonics of planar optic flow, extracted with
motion-pattern sensitive kernels representing LPTCs (Figure
3B), correspond to feedback terms which can be used to
stabilize the different navigational modes of flight. Section II
develops the equations that govern spherical motion parallax
fields of three dimensional environments. A model for wide-
field integration of planar retinal image flow is presented in
Section III, and the connection between image flow kernels
and the output feedback terms they represent is established.
In Section IV the concept of balancing or shaping the object
nearness function through feedback of wide-field integration
outputs is introduced, and stabilization of forward speed
regulation and obstacle avoidance behaviors is demonstrated
via simulations with planar wheeled robot dynamics.

II. A CONTINUOUS FIELD MODEL OF OPTIC FLOW

In the idealized case, the retinal image motion field is
a function of the motion of the vantage point along with
the spatial structure and distribution of objects (or fiducial
points) in the environment. The basic set of equations that
specify a general discrete optic flow field for an environment
composed of j = 1 . . . N rigid fiducial points (Figure 1) were
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developed in [9]:

Q̇j = −ω × Qj −
1
rj

[
v − 〈v,Qj〉Qj

]
. (1)

A fiducial point j is located with respect to the vantage
point (the origin of the body frame coordinate system b)
by a vector rj ∈ R

3 with magnitude rj = ‖rj‖ along
marker Qj = rj/rj . The motion parallax Q̇j induced by
body frame angular and linear velocities (ω,v) with respect
to fiducial point j is defined as the time derivative of the
marker Qj ∈ S2. Collectively, the set of markers and motion
parallax vectors {Qj , Q̇j , j = 1 . . . N} compose a general
spatially-discrete optic flow field.

Equation (1) is a composition of two critical pieces of
information: the vantage point motion, useful for the flight
stabilization task, and the spatial distribution of objects
in the environment, which is useful for navigation tasks
such as obstacle avoidance and terrain following. As noted
above, it is presumed that insect visual systems extract
these types of control-relevant information by parsing this
field via wide-field pattern sensitive neurons. Our analysis
of this process will will require the development of a
control-oriented version of the 3-D motion parallax field
(1), or more specifically a body-frame-relative spherical
coordinate representation Q̇ = Q̇r êr + Q̇γ êγ + Q̇β êβ

with a continuous formulation of the spatial distribution of
objects in the environment and kinematics ω,v expressed
in body frame coordinates (Figure 2A). For a continuous
representation of the spatial distribution (rigidity hyp?) of
the environment, the set of distances to the fiducial points
{ri, i = 1 . . . N} becomes a function of the azimuth and
elevation angles r(γ, β) : [0, 2π] × [0, π] �→ (0,∞). Implicit
to this definition, r(γ, β) also depends on the particular
environment as well as the vantage point configuration
(position and orientation) within that environment. We
expect this function to take on values from (0,∞) and
contain discontinuities, especially in a cluttered object field.
By explicitly restricting contact r(γ, β) = 0, we ensure that
the reciprocal μ(γ, β) = 1/r(γ, β), defined as the nearness,
is a bounded, piecewise continuous function with a finite
(countable) number of discontinuities and is restricted to the
space of square integrable functions L2 ([0, 2π] × [0, π]) =

{
f : [0, 2π] × [0, π] → R :

∫ 2π

0

∫ π

0
|f(γ, β)|2 dγdβ < ∞

}
.

If we express the vantage point kinematics and general unit
marker Q(γ, β) ∈ S2 in body frame rectangular coordinates

ω = ψ̇ êxb
+ φ̇ êyb

+ θ̇ êzb

v = ẋb êxb
+ ẏb êyb

+ żb êzb

Q = cos γ cos β êxb
+ sin γ cos β êyb

+ sinβ êzb
,

the motion parallax field (1) becomes

Q̇ = Q̂ω − μ
(
I − QQT

)
v (2)

where

Q̂ =

⎛
⎝ 0 − sin β sin γ cos β

sinβ 0 − cos γ cos β
− sin γ cos β cos γ cos β 0

⎞
⎠

is the matrix representation of the linear operator ω �→
−ω × Q. To put (2) into spherical coordinates, we apply
the transformation from rectangular coordinates

T =

⎛
⎝ cos γ cos β sin γ cos β sin β

− sin γ cos γ 0
− cos γ sinβ − sin γ sinβ cos β

⎞
⎠

to arrive at our goal of a control-oriented representation Q̇ =
Q̇r êr + Q̇γ êγ + Q̇β êβ of (1):

Q̇ = Aω + μBv. (3)

The matricies A = T Q̂ and B = −T
(
I − QQT

)
are given

by

A =

⎛
⎝ 0 0 0

sinβ cos γ sinβ sin γ − cos β
sin γ cos γ 0

⎞
⎠

B =

⎛
⎝ 0 0 0

− sin γ cos γ 0
− sin β cos γ − sin β sin γ cos β

⎞
⎠ .

A priori we expect Q̇r = 0 as the translational contribution
to (1) is a normal projection. It is further assumed that the
kinematics are bounded, piecewise-continuous functions of
time, hence the instantaneous motion parallax components
Q̇γ and Q̇β are restricted to L2 ([0, 2π] × [0, π]).
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Fig. 3. (A) Visuomotor system of insects. Wide-field retinal motion sensitive interneurons (tangential cells) parse spatially-preserved visual information
and transmit it to motor control centers. (B) WFI processing model. Spatial modes of optic flow are extracted by retinal motion sensitivity kernels.

For planar guidance and navigation applications where
rigid body motion is restricted to 3 DOF (planar translation
with yaw rotation) we will consider the special case of the
tangential optic flow component Q̇γ defined by the intersec-
tion of S2 and the plane β = 0, as shown in Figure 2B. Under
these conditions, the optic flow on a ring-shaped sensor be-
comes a 2π-periodic function of the vehicle-referred viewing
angle γ, that is Q̇γ = −θ̇ + μ(γ, 0) (ẋb sin γ − ẏb cos γ).
Clearly for fixed t, μ(γ, 0) ∈ L2[0, 2π] and therefore Q̇γ ∈
L2[0, 2π]. For notational convenience in the remainder of
the paper we will refer to the planar nearness function for
the environment of interest as μ(γ) or more appropriately as
μ(γ,x), noting the dependence on components of the state
of the insect (or vehicle), x(t), which without specifying the
coordinate frame is simply the inertial configuration (position
and orientation) and associated linear and angular velocities.
In addition we will drop the γ subscript and refer to the
planar motion parallax as Q̇, or Q̇(γ,x), also noting the
dependence on the vehicle’s state:

Q̇(γ,x) = −θ̇ + μ(γ,x) (ẋb sin γ − ẏb cos γ) . (4)

III. A MODEL FOR WIDE-FIELD INTEGRATION
PROCESSING OF IDEAL PLANAR OPTIC FLOW

For this treatment we will represent the lobula plate
tangential cells (or dorsal and ventral pairs as may be
appropriate) by a weight Fi(γ) ∈ L2[0, 2π], which models
their sensitivity to various motion patterns. Weights Fi(γ)
are essentially a spatially distributed set static gains which
are applied to the output at the corresponding local motion
detectors at retinal positions γ. Through appropriate choices
of Fi(γ), we are interested in characterizing the available
information relevant for use in closed loop feedback. We
expect these weighting functions to be piecewise continuous
and square-integrable, hence the restriction to the function
space L2[0, 2π]. For this initial analysis we will also assume
that optic flow estimation processing (photoreceptors and lo-
cal motion detectors) have negligible dynamics, that is wide-
field spatial integration (henceforth WFI) can be modeled
in entirety by a transformation W , representing a spatial
integration against the motion parallax kernel (4), which acts

on elements Fi(γ) to produce a sensor output signal zi, hence
W : Fi ∈ L2[0, 2π] �→ zi ∈ R. The transformation
W defined by zi = WFi can be represented as a linear
functional using the inner product structure available on
L2[0, 2π]:

zi(x) = 〈Q̇, Fi〉w =
1
π

∫ 2π

0

Q̇(γ,x) · Fi(γ) dβ. (5)

The inner product (5) has been defined with a factor of 1/π to
be compatible with the typical Fourier harmonic component
definition so that later notation is simplified.

A. Characterization of WFI Sensory Outputs for Planar
Optic Flow

We are interested in characterizing the set of all possi-
ble sensory outputs available within this model and their
dependency on vehicle motion and spatial distribution of
objects in the environment. Since L2[0, 2π] is a Hilbert space,
and more specifically a complete, separable inner prod-
uct space, a countably infinite orthonormal basis {φn(γ)}
exists. For fixed t, Q̇(γ,x) ∈ L2[0, 2π], therefore we
can expand it in a generalized Fourier series Q̇(γ,x) =∑∞

n 〈Q̇(γ,x), φn(γ)〉 φn(γ). If we use trigonometric Fourier
series (basis fcn expl), the orthonormal basis Φ = {φn(γ)}
under the inner product (5) is

Φ = {1/
√

2} ∪ {cos nγ : n = 1, 2, . . .}
∪{sin nγ : n = 1, 2, . . .},

and the expansion becomes

Q̇(γ,x) =
a0(x)

2
+

∞∑
n=1

an(x) cos nγ +
∞∑

n=1

bn(x) sin nγ,

where the state-dependent spatial harmonics of the motion
parallax field are defined as

a0(x) = 〈Q̇, 1/
√

2〉w = 1
π

∫ 2π

0
Q̇(γ,x)/

√
2 dγ

an(x) = 〈Q̇, cos nγ〉w = 1
π

∫ 2π

0
Q̇(γ,x) cos nγ dγ

bn(x) = 〈Q̇, sin nγ〉w = 1
π

∫ 2π

0
Q̇(γ,x) sin nγ dγ.

With some manipulations, we can re-write these expressions
in terms of the vehicle state x(t) and the spatial harmonics
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{A0(x), Ak(x), Bk(x) : k = 1, 2, . . .} of the nearness
function μ(β,x):

a0(x) = (−θ̇ + ẋbB1 − ẏbA1)/
√

2 (6)

an(x) =
ẋb

2
(−Bn−1 + Bn+1) − ẏb

2
(An−1 + An+1)

bn(x) =
ẋb

2
(An−1 − An+1) − ẏb

2
(Bn−1 + Bn+1) ,

where

μ(γ,x) =
A0(x)

2
+

∞∑
k=1

Ak(x) cos nγ +
∞∑

k=1

Bk(x) sin nγ.

Now, under the interpretation

WΦ = {a0(x)} ∪ {an(x) : n = 1, 2, . . .}
∪{bn(x) : n = 1, 2, . . .},

the equations (6) define the action of the linear transforma-
tion W : L2[0, 2π] �→ R on a basis Φ for the domain, and as
such uniquely characterize the set of all possible wide-field
integration sensory outputs.

B. Interpretation of WFI Outputs

The relationships in (6) define how WFI outputs depend on
vehicle motion (ẋb, ẏb, θ̇) and object nearness {A0, Ak, Bk :
k = 1, 2, . . .} with respect to the vantage point position
and orientation, however the intuition required to utilize
them in closed loop feedback is not readily apparent. As a
motivational example, we consider a planar tunnel geometry
(Figure 4A), which provides a reasonable approximation
to flight between two obstacles. In this case the nearness
function μ(γ,x) can be expressed in closed form as a

TABLE I
INTERPRETATION OF μ SPATIAL FOURIER HARMONICS Ak ,Bk

Mode Balanced General Tunnel Imbalance

A0
2

aπ
2a

π(a2−y2)
-

A1 0 y sin θ
(a2−y2)

Lateral + Rotary

B1 0 y cos θ
(a2−y2)

Lateral

A2,4,6,... − 4
aπ(k2−1)

− 4a cos kθ
π(a2−y2)(k2−1)

-

B2,4,6,... 0 − 4a sin kθ
π(a2−y2)(k2−1)

Rotary

A3,5,7,... 0 0 Lateral + Rotary

B3,5,7,... 0 0 Lateral

function of the lateral position y, body frame orientation θ,
and the tunnel half-width a:

μ(γ,x) =

⎧⎨
⎩

sin (γ+θ)
a−y 0 ≤ γ + θ < π

− sin (γ+θ)
a+y π ≤ γ + θ < 2π

. (7)

For a perfectly centered vehicle (y, θ) = (0, 0), (7) reduces
to |sin γ| /a, which has a Fourier series expansion

μ(γ,x)|y,θ=0 =
2
aπ

−
∞∑

k=2,4,6,...

4
aπ(k2 − 1)

cos kγ. (8)

Note that the expansion is composed of a DC component and
even cosine harmonics {Ak : k = 0, 2, 4, . . .} of decreasing
amplitude only. (8) represents the balanced or equilibrium
nearness shape (Figure 4A), as it corresponds to flight along
the centerline of the tunnel. For lateral and rotary dis-
placements, the spatial harmonics of the perturbed nearness



function are computed in Table I. From the linearizations
about the point (y, θ) = (0, 0) it is clear that the B1 harmonic
provides an estimate of the lateral displacement (Figure 4C)
while the B2 harmonic provides an estimate of the rotary
displacement (Figure 4D). These results can be generalized
to environments with more complicated spatial structure
(Figure 4B,E); nonzero B1,3,5,... correspond to a lateral
imbalance, B2,4,6,... to a rotary imbalance, and A1,3,5,... are
coupling terms for a lateral plus a rotary imbalance.

IV. μ-SHAPING VIA STATIC OUTPUT FEEDBACK

In this section we demonstrate the utility of WFI sensory
outputs (6) through coupling with planar flight dynamics via
static output feedback (Figure 5). The WFI operator is used
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Fig. 5. Closed loop WFI output feedback

to decompose the optic flow into spatial harmonics (6), and
force and torque control inputs u1, u2 are computed as static
combinations

ui = Ka
i0 a0 +

n∑
j=1

Ka
ij aj + Kb

ij bj , (9)

which correspond to motion sensitivity functions

Fui
= Ka

i0 +
n∑

j=1

Ka
ij cos jγ + Kb

ij sin jγ. (10)

For analysis and simulation purposes we will consider rolling
or wheeled vehicles of the unicycle type (Figure 4A), subject
to the nonholonomic constraint

ẋ sin θ − ẏ cos θ = 0, (11)

which enforces ẏb = 0. It is assumed that the two wheels
providing continuous contact with the ground are driven
independently, and the vehicle center of mass is located at
the midpoint along the axis between them. In the inertial
configuration (x, y, θ) the kinematic and dynamic equations
describing the motion are

ẋ = v cos θ

ẏ = v sin θ

mv̇ =
1
rw

(Ts + Tp) (12)

Jθ̈ =
r0

rw
(Ts − Tp) ,

where starboard and port wheel torques are denoted by Ts

and Tp, r0 and rw denote the vehicle width and wheel radius,
and the vehicle mass and rotational inertia are given by m
and J .

A. Linear Analysis

In the initial version of this work presented here, the
intent is to show feasibility of the proposed output feed-
back methodology, hence a linearized control design which
guarentees local asymptotic stability of speed regulation and
obstacle avoidance responses will be discussed. It will be
useful to introduce the following state and input definitions
v = ẋb, u1 = (Ts + Tp)/rw, and u2 = r0(Ts − Tp)/rw.
Assuming small states (other than v) and control inputs,
the linearized equations of motion for a centerline flight
trajectory become

mv̇ = u1

ẏ = v0θ (13)
Jθ̈ = u2

Equation 14 shows the resulting linearization z(x) =
z(x0) +

∑
i

∂z
∂xi

(x0) (xi −xi0), of outputs a0, a1, b1 and a2

for the planar tunnel with respect to the kinematic variables
x = [ v y ẏ θ θ̇ ]′ along a reference trajectory x0 =
[ v0 0 0 0 0 ]′, corresponding to a centerline flight path
at a constant velocity v0.⎛
⎜⎜⎝

zb1

za0

za1

za2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

8
3πa 0 0 0
0 v0√

2a2 0 −√
2

0 0 4v0
3πa 0

0 − v0
4a2 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

v
y
θ

θ̇

⎞
⎟⎟⎠ (14)

Notice in (13) that the v dynamics are decoupled from
the y, θ dynamics and in (14) the linearized b1 output is
a function of v only and the linearized a0, a1, a2 outputs
are functions of y, θ, θ̇. Hence, with the linearized system
we can effectively decouple the control problem into the
clutter (forward speed regulation) response and the centering
(obstacle avoidance) response.

For the forward speed regulation task, we define a refer-
ence forward velocity r and corresponding scaling factor N
and close the loop by setting the thrust input

u1 = Kb
11(Nr − b1), (15)

corresponding to the motion sensitivity function

Fu1(γ) = Kb
11 sin γ. (16)

With r = v0, choose N = 8/(3πa) for zero steady-state
error, and the linearized closed loop dynamics become

v̇ = −N

m
Kb

11(v − v0).

One can easily verify that with Kb
11 > 0 local stability is

achieved.
As for the centering and obstacle avoidance response, a

quick check of the controllability and observability matricies
shows that the linearized system is completely controllable
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and observable as long as v0 �= 0. Therefore, due to the
coupling of the lateral to the rotational dynamics through
the v0θ term in (13), it is possible to accomplish stabilization
of both modes via static output feedback through the torque
input, taken to be

u2 = Ka
20a0 + Ka

21a1 + Ka
22a2, (17)

corresponding to the motion sensitivity function

Fu2(γ) = Ka
20 + Ka

21 cos γ + Ka
22 cos 2γ. (18)

The natural dynamics contain only inertial and viscous
terms, therefore to achieve a stable centering/obstacle avoid-
ance response, we require Ka

21 < 0 for rotational stiffness
and Ka

22 > 0 for lateral stiffness. Additionally, rotational
damping can be added with Ka

20 > 0, however the lin-
earization of the DC component a0 of Q̇ also has a lateral
imbalance term (14), hence we further need the restriction
Ka

22 >
√

2Ka
20 to provide the lateral stiffness required

for a stable centering response. This can be verified by
the characteristic equation for the linearized closed loop
dynamics

s3 +
Ka

20

J
s2 − 8Ka

21v0

3Jπa
s +

v0(Ka
22 −

√
2Ka

20)
Ja2

= 0 (19)

B. Simulation Results

We have constructed simulations based on the full non-
linear planar flight dynamics (12) to qualitatively compare
the performance of the WFI control methodology to these
experimental assays. Environments were defined as bitmaps,
and the instantaneous optic flow was computed by estimating
the depth at the current location and orientation at 60
equally-spaced circumferential points and combining it with
the current kinematics according to (4). Force and torque
control inputs are generated by taking the discrete inner
product of the instantaneous optic flow with appropriately
sampled versions of the motion sensitivity functions (16)
and (18). Sensitivity gains Ka

ij and Kb
ij used in the sim-

ulation were chosen based on the the performance index

of maximizing the bandwidth of the slow (lateral) mode
in the linearized closed loop system (19). Figure 6A shows
the centering/clutter responses for the hovercraft navigating
a converging-diverging tunnel; the forward speed is indeed
proportional to tunnel width, as seen in [10].

The closed loop behavior of this output feedback method-
ology was also evaluated in more complicated environments.
Using the same feedback structure and gains, the vehicle was
directed to navigate a complicated corridor (Figure 6C) and
an obstacle field (Figure 6D). Body velocities are shown
for the corridor, and the response of the first two cosine
harmonics of the optic flow are shown for the obstacle field.

C. Navigation of General Environments

In this section we consider the interpretation of WFI static
feedback in the context of the output regulation problem; that
is, regulating or shaping the spatial harmonic content of the
nearness μ. Recall the balanced nearness function (8) for
the infinite tunnel, which was composed of DC and even
(negative) cosine harmonics {A0, Ak, k = 1, 2, . . .}. In the
case of a more general obstacle field, we can choose this as
our desired μ shape, and through feedback of WFI outputs
we can filter out unwanted spatial content. The fundamental
sine harmonic of the 1-D motion parallax field,

b1 =
ẋb

2
(A0 − A2),

is proportional to the desired spatial content, therefore pro-
vides an estimate of the forward speed v = ẋb, and can
be used to maintain a pre-determined reference value as
in (15). The speed setpoint is automatically reduced as the
magnitudes of A0 and A2 increase, i.e. the obstacle field
becomes increasingly cluttered.



The first two cosine harmonics of the motion parallax field,

a0 = −
√

2θ̇ +
ẋb√
2
B1

a1 =
ẋb

2
B2

a2 =
ẋb

2
(−B1 + B3),

are functions of even and odd sine harmonics Bk of the
nearness function. Therefore, balancing the a1 component
contributes rotary stiffness to the loop and balancing the a2

component contributes lateral stiffness (Figures 4B-4E) for a
control system that is regulating about a fixed forward speed
v = ẋb. In addition, balancing the DC component adds rotary
damping to the loop. The closed loop behavior of this output
feedback methodology was evaluated in more complicated
environments. The vehicle was directed to navigate a com-
plicated corridor (Figure 6C) and an obstacle field (Figure
6D). Body velocities are shown for the corridor, and the
response of the first two cosine harmonics of the optic flow
are shown for the obstacle field. The corrective torque for
the lateral imbalance is supplied by a2, and the dynamics
are stabilized with the opposing rotational stiffness from a1.

V. CONCLUSIONS

A control-oriented analytical model for spatial wide-field
integration (WFI) of retinal image flow was developed. The
model provides a unique characterization of information
available for feedback from WFI sensory systems, and estab-
lishes the connection between global structure of optic flow
(retinal motion sensitivity patterns) and the control-relevant
information available for feedback.

The analysis presented suggests a more general functional
role for wide-field sensitive neurons in navigation and flight
control as well as a novel methodology for utilizing optic
flow in bio-inspired applications. Rather than implementing
wide-field integrators as direct estimators of kinematics or
depth, it was shown how the spatial harmonics of planar
optic flow, extracted with motion-pattern sensitive kernels,
correspond to feedback terms which can be used to stabilize
various reflexive behaviors. The proposed WFI output feed-
back methodology is shown to be equivalent to stabilizing
the closed loop dynamics with respect to spatial perturbations
from a balanced nearness function, and has the advantage of
being computationally inexpensive as each required control
input can be computed with an inner product of vectors on
the order of 60 elements.

Planar flight stabilization and navigation in complicated
environments has been demonstrated in simulation, and it is
shown that the proposed methodology has sufficient com-
plexity to give rise to experimentally observed navigational
heuristics as the centering and forward speed regulation
responses exhibited by honeybees.
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