
Engineering Principles of Synthetic Biochemical Oscillators
with Negative Cyclic Feedback

Yutaka Hori and Richard M. Murray

Abstract— In this paper, we analyze the oscillatory dynamics
of a class of cyclic gene regulatory networks and provide
engineering principles for the robust synthesis of biochemical
oscillators. We first review the first author’s previous result that
the oscillatory parameter regime of the gene regulatory circuits
can be rigorously explored by the local stability analysis of a
unique equilibrium. The local stability analysis then leads to
the first engineering principle that the circuit components, or
genes, should be chosen so that the kinetic profiles of the circuit
components are similar to each other. Using a homogeneous
oscillator model, we further discuss how to reduce the cell-
to-cell variability of the oscillators that is caused by intrinsic
noise.

I. INTRODUCTION

Construction of synthetic biochemical oscillators requires
deep understanding of both nonlinearity and feedback in
biochemical process. The reliable engineering of oscillators
is an important milestone towards robust synthesis of more
complex dynamical circuits in synthetic biology. Starting
with Repressilator [1], a number of synthetic biochemical
oscillators were implemented in the last 15 years with the
help of mathematical model and intuition (see [2]–[4], for
example).

The first dynamical model of a genetic oscillator was
presented by Goodwin [5], where a negative autoregulation
of a single gene was modeled and analyzed, in 1965, shortly
after the discovery of lac operon [6]. This model was named
as Goodwin oscillator, and many versions of the Goodwin
oscillator were proposed and analyzed in later years using
local stability analysis and harmonic balancing technique
(see [7]–[11], for example). More recently, general analysis
frameworks were developed to study oscillations as well as
stability of a class of gene regulatory networks with multiple
genes, using the monotone property [12] and passivity [13],
[14] of the dynamics.

In another line of research, the first author and his col-
leagues [15], [16] proposed a multi-agent modeling frame-
work that allows us to analytically characterize the oscil-
lation parameter regime of cyclic gene regulatory networks
including Repressilator [1]. The analytic characterization was
useful to gain biological insights on how the combination
of genetic parts such as promoter, ribosome binding sites
(RBS) and coding sequence (CDS) affect the dynamics.
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Fig. 1. Schematic diagram of cyclic gene regulatory network

The previous work, however, had limitation from a practical
point of view due to technical assumptions such as that the
dynamics of gene expression are homogeneous for all genes
(homogeneous assumption).

Motivated by this situation, this paper extends the previous
analytic work [15] and provides more practical insight for the
design of biochemical oscillators with negative cyclic feed-
back. Specifically, we first explore the oscillation parameter
regime without the homogeneous assumption and show that
it is easier to produce oscillations when the dynamics of
expression are balanced, or homogeneous, between genes.
Then, using the homogeneous assumption, we analyze the
dependence of the equilibrium point on reaction parameters.
This analysis provides circuit design strategies to reduce
intrinsic noise, which comes from low-copy-number nature
of molecules in a cell. Moreover, we illustrate that the
design space of promoters and RBSs can be systematically
determined using a lower dimensional parameter space of
summarized parameters.

The organization of this paper is as follows. In Section II,
we first introduce a mathematical model of cyclic gene reg-
ulatory networks. Then, Section III analyzes the oscillation
parameter regime without the homogeneous assumption. In
Section IV, we analyze how the combinations of promoters
and RBSs affect the level of intrinsic noise. Finally, Section
V summarizes our findings and concludes the paper.

II. MATHEMATICAL MODEL OF BIOCHEMICAL
OSCILLATORS

We consider gene regulatory networks where n different
genes, G1,G2, · · · ,Gn interact in a cyclic way as illustrated
in Fig. 1. As the figure shows, a gene Gi transcribes the
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TABLE I
STOICHIOMETRY AND PROPENSITY FUNCTIONS

Reaction Stoichiometry Propensity

Transcription of Mi s1 = [1, 0]T βi

Kνi
i−1

Kνi
i−1 + pνii−1

Translation of Mi s2 = [0, 1]T ciri
Degradation of Mi s3 = [−1, 0]T airi
Degradation of Pi s4 = [0,−1]T bipi

messenger RNA (mRNA) molecule Mi and the mRNA
molecule is translated into the protein molecule Pi (i =
, 1, 2, · · · , n). The protein molecule Pi then represses the
transcription the subsequent mRNA Mi+1 by blocking the
promoter region of the gene Gi+1 for i = 1, 2, · · · , n − 1,
and the last protein in the chain Pn represses G1 to form a
cyclic feedback (see Fig. 1). This class of gene regulatory
network is called cyclic gene regulatory network [15] and
Repressilator [1] is an example of experimentally synthesized
cyclic gene regulatory network with n = 3 genes.

Let xi := [ri, pi]T ∈ R2
+ denote the concentrations of

mRNA and protein molecules produced from gene Gi (i =
1, 2, · · · , n). The stoichiometry and the propensity func-
tion of transcription, translation and degradation of the i-
th mRNA Mi and protein Pi are summarized in Table I,
where ai and bi represent the degradation rates of Mi and
Pi including the dilution due to cell division, respectively,
and ci and βi are the translation and transcription rates,
respectively. The constant Ki−1 and νi are the Michaelis-
Menten constant and the Hill coefficient associated with the
protein Pi−1 and the corresponding promoter on gene Gi.
Using these definitions, the dynamics of the mRNA and
protein concentrations, ri and pi, can be written as

ẋi = Swi(xi, pi−1) (i = 1, 2, · · · , n), (1)

where the stoichiometry matrix S and the propensity function
wi(xi, pi−1) are defined by

S := [s1, s2, s3, s4] =

[
1 0 −1 0
0 1 0 −1

]
, (2)

wi :=
[
βi

K
νi
i−1

K
νi
i−1+p

νi
i−1

ciri airi bipi
]T

. (3)

In order to avoid notational clutter, we use subscripts 0 and
n + 1 as substitution of n and 1, respectively, throughout
the paper. Note that the propensity function wi depends on
pi−1, which is the concentration of a protein produced by
the precedent gene Gi−1.

The entire cyclic gene regulatory network can then be
modeled by

ẋ = (In ⊗ S)w (4)

with the molecular concentrations x :=
[xT

1 ,x
T
2 , · · · ,xT

n ]
T = [r1, p1, r2, p2, · · · , rn, pn] ∈ R2n

+ and
the propensity function w := [wT

1 ,w
T
2 , · · · ,wT

n ]
T . The

symbol ⊗ stands for the Kronecker product of matrices.

The equation (4) can be more specifically written as

ṙi = −airi + βi
K

νi
i−1

K
νi
i−1+p

νi
i−1

,

ṗi = −bipi + ciri
(5)

for i = 1, 2, · · · , n.
In synthetic oscillator design, one of the goals of a circuit

designer is to find a combination of genetic parts such
as promoters, ribosome binding sites (RBS) and coding
sequences (CDS) from a parts library so that the parameters
of the circuit fall into oscillation regime. As illustrated in
Fig. 1, the choice of the promoter region mainly affects
transcription rates βi, Michaelis-Menten constant Ki and Hill
coefficient νi, and the choice of RBS affects the translation
rate ci. A well-characterized family of these genetic parts
has been recently available for the purpose of biocircuit
design [17], [18]. The degradation and dilution rates ai and
bi largely depends on cell division dynamics, and we here
assume that ai and bi are not tunable.

In what follows, we analyze the cyclic gene regulatory
network system (5) and provide guidelines on how one
should choose promoters and RBS to make robust oscillators,
along with theoretical insights. More specifically, in the next
section, we explore the question that whether the parameters
of each genetic part, ci,βi and Ki, should be similar or
different between genes or not to produce oscillations.

III. ANALYSIS OF GENE-TO-GENE HETEROGENEITY

A. Existence of oscillations

It is known that the dynamics of the cyclic gene regulatory
network has oscillations only if there are an odd number of
genes, n, in the network [19]. In other words, the loop gain
of the system needs to be negative for oscillations. Thus, we
assume that n is odd throughout the paper.

Assumption 1. We assume the number of genes in the
network, n, is odd.

In Hori et al. [15], it was shown that the existence
of oscillations in cyclic gene regulatory networks can be
rigorously verified by local stability analysis around a unique
equilibrium of the system based on the idea of Poincaré-
Bendixson type theorem for cyclic systems [20].

Proposition 1. [15] The gene regulatory network (5) has a
unique equilibrium point. Moreover, the system has periodic
oscillations if and only if the unique equilibrium point is
locally unstable.

This proposition recasts the question that how the effect
of gene-to-gene heterogeneity affects the existence of os-
cillations into the study of instability parameter regime of
an equilibrium point. For stability analysis, we linearize the
system (5) around a unique equilibrium point. Then, we have
the following lemma showing the characteristic polynomial
of the linearized system.

Lemma 1. Let x∗ := [r∗1 , p
∗
1, r

∗
2 , p

∗
2, · · · , r∗n, p∗n] ∈ R2n

+

denote the unique equilibrium point of the cyclic gene
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Fig. 2. Block diagram of the linearized cyclic gene regulatory network
system

regulatory network (5). The characteristic polynomial of the
linearized system is given by

n∏

i=1

(Tais+ 1)(Tbis+ 1)−
n∏

i=1

R2
i

Ki
f ′
i

(
p∗i−1

Ki−1

)
= 0, (6)

where

Tai :=
1

ai
, Tbi :=

1

bi
, R2

i :=
ciβi

aibi
, fi(p) :=

1

1 + pνi
, (7)

and f ′(·) stands for the derivative of f(·) with p. The
equilibrium point is locally unstable if and only if the
polynomial (6) has a root in the open right-half complex
plane C+.

Proof. Let ui := fi(pi−1/Ki−1). The model (5) can be
viewed as a linear time-invariant system with the input ui

and the output pi, since it is linear in terms of ui, ri and pi.
The transfer function from ui to pi is then obtained as

gi(s) :=
R2

i

(Tais+ 1)(Tbis+ 1)
. (8)

Linearizing ui around pi−1 = p∗i−1, we have

ui = f ′
i

(
p∗i−1

Ki−1

)(
p− p∗i−1

)
(9)

with

f ′
i

(
p∗i−1

Ki−1

)
= − 1

Ki−1

νi
p∗
i−1

Ki−1(
1 +

(
p∗
i−1

Ki−1

)νi
)2

=
1

Ki−1
f ′
i

(
p∗i−1

Ki−1

)
. (10)

As a result, the linearized system can be described by
the block diagram shown in Fig. 2, and the characteristic
equation of the closed loop system is obtained as

1−
n∏

i=1

gi(s)
1

Ki
f ′
i

(
p∗i−1

Ki−1

)
= 0, (11)

which leads to the equation (6). !
The first term of the characteristic polynomial (6) depends

only on the degradation rates of mRNAs and proteins. Thus,
the choice of promoters and RBSs affects only the second
term of the characteristic polynomial. In the second term, the
constant R2

i is the ratio of production rates and degradation
rates. In particular, R2

i can be interpreted as the gain of gene
Gi from the definition of gi(s), (8).

Since the system is a simple cyclic feedback without
branches as shown in Fig. 2, the second term

G :=
n∏

i=1

(
R2

i

Ki

)
f ′

(
p∗i−1

Ki−1

)
(12)

is an effective loop gain of the system. Thus, increasing the
loop gain G leads to instability of the equilibrium point.
From a biological viewpoint, it is intuitive that R2

i /Ki is
part of the loop gain as increasing R2

i implies sufficient
production of repressors and decreasing Ki allows for strong
binding of the repressor to the promoter. However, too
much production of repressors, or too large R2

i , causes the
saturation of the repressors and results in a non-oscillatory
steady state. This tradeoff is captured by the derivative of the
Michaelis-Menten kinetics f ′(·) around the operation point
p∗i−1, which depends on R2

i /Ki as shown below.
To calculate the equilibrium point, let ṙi = ṗi = 0 (i =

1, 2, · · · , n). It follows from the model (5) that the equilib-
rium point satisfies

p∗i = R2
i fi

(
p∗i−1

Ki−1

)
. (13)

This leads to the following equation that the equilibrium
point should satisfy.

p∗i
Ki

=

(
R2

i

Ki
fi

)
◦
(
R2

i−1

Ki−1
fi−1

)
◦ · · · ◦

(
R2

1

K1
f1

)

◦
(
R2

N

KN
fN

)
◦ · · · ◦

R2
i+1

Ki+1
fi+1

(
p∗i
Ki

)
, (14)

where ◦ stands for composition of functions.

Lemma 2. The loop gain G depends only on the ratios
R2

i /Ki (i = 1, 2, · · · , n).

The proof is straightforward from the equation (14) and the
characteristic polynomial (6). This lemma implies that one
needs to consider only the ratios R2

i /Ki but not individual
rates of transcription and translation. Therefore, the design
space of promoters and RBSs can be mapped into a lower
dimensional parameter space with R2

i /Ki (i = 1, 2, · · · , n)
as shown below.

B. Effect of heterogeneous expression kinetics between genes
The analysis of oscillatory parameter regime boils down

to the analysis of the relation between

v :=
n∏

i=1

R2
i

Ki
, (15)

which appears in the definition of the loop gain (12), and
the equilibrium point calculated by the equation (14). One
of the important questions is how the heterogeneity of the
parameters between genes affects the loop gain G. More
specifically, consider an oscillator design problem under the
constraint of v = v0, where v0 is a given constant. It is
clear that the combinations of R2

i /Ki (i = 1, 2, · · · , n), or
promoter and RBS pairs, that satisfy the constraint is not
unique. Then, the question is whether we should design a
circuit with genetic parts that have similar ratios of R2

i /Ki

or not, in order to produce oscillations.
We studied the effect of heterogeneity by solving the

characteristic equation (6) with varying R2
i /Ki for n = 3

gene oscillators. Figure 3 illustrates the largest real part of
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the roots of the characteristic equation for Hill coefficient
ν1 = ν2 = ν3 = 2.0. The left and the right figures
correspond to the case of v = 5.0 and v = 50.0, respectively.
It should be noted that the gene regulatory network has
oscillations when the largest real part of the roots is positive
(see Proposition 1 and Lemma 1).

Figure 3 shows that the system tends to be unstable as
the gains of genes, R2

i /Ki (i = 1, 2, 3), are close to each
other, which is shown by a black point in the figure. The
same conclusion holds for ν1 = ν2 = ν3 = 3.0 as illustrated
in Fig. 4. These results suggest that oscillator circuits should
be designed so that R2

i /Ki are similar to each other.
An interpretation of this conclusion is that repressors

are saturated when the expression kinetics of genes are
unbalanced, and consequently the oscillations are diminished
due to the low sensitivity of the promoter activity. Thus, it
is better to prioritize balancing R2

i /Ki (i = 1, 2, · · · , n)
rather than increasing a single value of R2

i /Ki to increase
the product v.

IV. INTRINSINC NOISE OF OSCILLATORS

We have shown in the previous section that it is important
to balance the kinetics of expression between genes to
produce oscillations. Motivated by this result, we further
analyze the dynamics of cyclic gene regulatory networks with
the following homogeneous assumption.

Assumption 2. We assume a1 = a2 = · · · = an(=: a), b1 =
b2 = · · · = bn(=: b), c1 = c2 = · · · cn(=: c),β1 = β2 =
· · · = βn(=: β),K1 = K2 · · · = Kn(=: K) and ν1 = ν2 =
· · · = νn(=: ν).

A. Existence of oscillations
Hori et al. [15] studied the relation between the parameters

and the equilibrium point with Assumption 2 and analytically
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Fig. 5. The largest real parts of the characteristic polynomial (6).

derived a closed form condition for local instability as
follows.

Proposition 2. [15] The characteristic polynomial (6) has at
least one root in the open right-half complex plane C+ if
and only if

ν > h(n,Q), (16)

R2

K
>

(
h(n,Q)

ν − h(n,Q)

) 1
ν

,

(
ν

ν − h(n,Q)

)
, (17)

where

Q :=

√
ab

(a+ b)/2
, R2 :=

cβ

ab

h(n,Q) :=
2
(
− cos

(
π
n

)
+
√
cos2

(
π
n

)
+Q2 sin2

(
π
n

))

Q2 sin2
(
π
n

) .

It should be noted that the right-hand side of the inequality
(17) does not depend on R2 and K. This leads to the
conclusion that it is better to simply make R2/K as large as
possible.

Example 1: Figure 5 illustrates the largest real part of the
roots of the characteristic polynomial (6) for cyclic gene
regulatory networks with n = 3 genes and Q = 1.0.
Proposition 1 states that the cyclic gene regulatory network
has oscillations when the largest real part is positive. As
implied by the condition (17), the largest real part depends
only on R2/K, thus it is invariant as long as R2/K is
constant, which is shown by the dotted line in Fig. 5.

Proposition 2 allows us to design oscillator circuits using
the parameter set A and B in Fig. 5. The circuit design A has
large R2, i.e., a relatively strong RBS and promoter, with a
large Michaelis-Menten constant K, and the circuit design B
has small R2, i.e., a relatively weak RBS and promoter, with
a small K. Note that the real part of the right-most unstable
poles are identical for the designs A and B, meaning that
the degree of local instability is the same. However, it is not
clear from the stability analysis that how the choice of the
transcription rate c, the translation rate β and the Michaelis-
Menten constant K affects the dynamics of the cyclic gene
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regulatory networks when the resulting constant R2/K is the
same between different designs.

In what follows, we address this problem from a viewpoint
of intrinsic noise of biochemical reactions.

B. Relation between protein copy numbers and Michaelis-
Menten constant

We here focus on the relation between the equilibrium
point and the parameter R2/K. The following lemma sim-
plifies the calculation of the equilibrium point.

Lemma 3. Suppose Assumption 2 holds. Then, the unique
equilibrium point satisfies p∗1 = p∗2 = · · · = p∗n(=: p∗) and
r∗1 = r∗2 = · · · = r∗n(=: r∗). Moreover, it holds that

p∗ = R2f

(
p∗

K

)
, (18)

r∗ =
β

a
f

(
p∗

K

)
, (19)

where f(·) := f1(·) = f2(·) = · · · = fn(·).

Proof. Since Assumption 2 holds, the right-hand side of
the equation (13) becomes exactly the same for all i =
1, 2, · · · , n. This symmetric property implies p∗1 = p∗2 =
· · · = p∗n(=: p∗). The rest of the proof is a direct calculation
of the equilibrium point based on the definition. !

Since f(·) is a decreasing function of p∗, the equilibrium
point p∗ is given by the intersection of the left-hand side
and the right-hand side of the equation (18). In particular,
the right-hand side is an increasing function of R2 and
K. This means that the equilibrium concentration of p∗

is increasing in terms of R2 and K. Since the orbit of a
limit cycle revolves around an equilibrium point in nonlinear
systems, oscillations are expected at higher concentrations,
or higher copy number of proteins, as R2 and K increase.
This suggests that one should choose the parameter set A
but not B to reduce the intrinsic noise, which comes from
the low-copy-number nature of the molecules in a cell.

Corollary 1. The equilibrium concentration of the proteins
p∗ increases with K and R2.
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Fig. 7. Dynamics of the copy number of protein P1.

Example 2: Figure 6 illustrates the equilibrium protein
concentration p∗ in terms of K and R2 using the same
parameters as Example 1. The equilibrium point p∗ mono-
tonically increases with K and R2 as discussed above. The
dotted line showing a constant R2/K in Fig. 5 is also plotted
in Fig. 6.

To compare the waveform of oscillations, the cyclic gene
regulatory network was simulated for the parameter sets A
and B using the stochastic simulation algorithm (SSA) [21].
The stoichiometry and propensity functions in Table I and
the following parameters were used for the simulations: the
number of genes n = 3, the degradation rate of mRNA a =
ln(2)/10, i.e., half-life time is 10 minutes, the degradation
rate of protein a = ln(2)/20, i.e., half-life time is 20 minutes,
Hill coefficient ν = 2. At t = 0, mRNA M1 and protein P1

were set as 10 copies each, and M2,M3,P2 and P3 were
zero.

We simulated with the parameter sets A and B in Figs.
5 and 6. Specifically, we used transcription rate β = 1.0,
translation rate c = 1.1 and Michaelis-Menten constant K =
100 for the set A, and β = 0.10, c = 0.11 and K = 1 for
the set B.

The simulation results are shown in Figs. 7 (top) and
(bottom) for the parameter set A and B, respectively. Each
figure shows three representative time courses of the copy
number of P1. Although R2/K is the same for both A and
B, the copy number of the protein molecule is significantly
large when the values of R2 and K are large, which is
consistent with the equilibrium point of the deterministic
model in Fig. 6. In particular, it is hard to see oscillatory
dynamics for the parameter set B, or Fig. 7 (bottom), due
to the fluctuations by intrinsic noise.

C. Tradeoff between mRNA and protein copy numbers
In the previous subsection, we have shown that larger R2

and the Michaelis-Menten constant K increases the copy
number of proteins, which results in the reduction of the
intrinsic noise of oscillations. Suppose we use the parameter
set A of Fig. 5, which is K = 100 and R2 = 457.9. We here
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consider another design parameter, the rate of transcrpition β
and translation c. More specifically, given R2 = cβ/ab, we
analyze how the strength of promoter, β, and RBS, c affects
the oscillations. Note that increasing β decreases c, and vice
versa, for a given R2.

We first show that the equilibrium point of mRNA con-
centrations is invariant as long as the value of R2/K is the
same.

Corollary. 2 The equilibrium concentration of mRNA r∗ is
invariant in terms of R2/K.

Proof. It follows from the equation (18) that p∗/K is
invariant with R2/K. The equation (19) then implies that
r∗ is invariant with R2/K. !

This corollary means that the equilibrium point is the same
for all combinations of R2 and K on the dotted straight of
Fig. 6, which is not the case for proteins as discussed in the
previous subsection (see Fig. 6). In particular, the equation
(19) implies that the ratio of transcription rate and mRNA
degradation rate β/a essentially determines the equilibrium
concentration of mRNA. Thus, we can independently tune r∗

and p∗ by first determining the ratio of R2 and the Michaelis-
Menten constant K for p∗ then transcription rate β.

Example 3. To elucidate the idea, we simulated the dynam-
ics of mRNA and protein copy numbers using the parameter
set A. Note that the deterministic model is locally unstable
from Fig. 5, and the equilibrium protein concentration is
determined from Fig. 6. To vary mRNA concentrations, we
varied transcription and translation rates β and c so that cβ
is constant. The other parameters and initial values were set
the same as Example 2.

Figure 8 (top) and (bottom) show the dynamics of mRNA
and protein copy numbers for three different combinations
of c and β. As the transcription rate β becomes larger and

the translation rate c becomes smaller, the time course of
the mRNA copy number shows clear oscillatory dynamics,
while the protein copy number oscillates around the same
equilibrium point. On the other hand, the amplitude of
protein oscillations decreases with the decrease of translation
rate c.

There seems to be a tradeoff relation between the ampli-
tude of protein oscillations and the regularity of the oscil-
lation period when cβ is constant. Specifically, increasing
transcription rate β results in smaller amplitude for protein
oscillation as shown in Fig. 8. On the other hand, the period
of oscillations seems more regular with the high transcription
rate 5.0 and the low translation rate 0.22 compared to other
parameter sets in Fig. 8. However, rigorous study of such
tradeoff relations is left for future work.

V. CONCLUSION

In this paper, we have explored engineering principles of
biochemical oscillators with negative cyclic feedback. We
have first studied local instability of the unique equilibrium
point using a combined analytic and numerical approach.
Then, the latter half of the paper has been devoted to the
analysis of intrinsic noise of the oscillator circuit using the
lower dimensional parameter space derived from the analytic
conditions. The analysis result can be summarized as follows.

• The parameters of gene expression c,β and K should
be similar to each other.

• The existence of oscillations is determined by the ratio
R2/K (Fig. 5).

• When R2/K is given, the larger Michaelis-Menten
constant K and R2 are, the larger p∗ is (Fig. 6). Thus,
the effect of intrinsic noise is less with larger K and
R2.

• When R2/K is given, the steady state mRNA level r∗
is linear in terms of transcription rate β, or the strength
of promoter. In particular, there seems to be a tradeoff
relation between the amplitude of protein oscillations
and the regularity of the oscillation period when cβ is
constant.
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