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Abstract— The paper studies the problem which we refer to
as geometric trajectory filtering, where only trajectories that
satisfy the local safety constraints are selected from a library
of trajectories. The goal is to speed up primitive-based motion
planning while still maintaining a relatively a large collection
of motion primitives. One way to solve this problem is to
obtain a proper (preferably smooth) function, referred to as
the containment indicator function, that describes the shape of
the free space. To construct the containment indicator function
for an arbitrary shape, the paper uses conformal mapping to
transform the original shape of interest to a simpler target
shape (e.g. disk, rectangle), which can then be characterized by
elementary functions. Computational methods for finding the
desired conformal maps are studied. It is shown that they can
be formulated as convex optimization problems, whose solution
can be obtained efficiently.

I. INTRODUCTION

Motion planning is a field that has been studied extensively
in robotics for over a couple decades. In its simplest form,
the objective is to generate a trajectory (path) from a given
initial state to a goal state (or a set of goal states), while satis-
fying (1) control input constraints and (2) safety constraints
(e.g. avoiding obstacles). In general, there could be more
than one feasible trajectory that satisfies these requirements.
Therefore, in practice, one may be interested in finding the
best trajectory under some cost metric, which gives rise to
the problem of optimal motion planning. There are many
methods for solving this problem, and can be classified
mainly into the following categories.

The first class of methods is to formulate the problem
as a constrained optimal control problem and solve for the
optimal trajectory. Usually, some parametrization is adopted
for the trajectory being optimized. In this way, the original
optimal control problem can be converted into a nonlinear
optimization problem over the parameters. This is known
as the direct method in optimal control literature. There are
also indirect methods that solve for both the trajectory and
the associated Lagrange multipliers (also referred to as the
“costates”or “adjoints”), but we do not review them here due
to space constraints. The resulting nonlinear optimization
problem can sometimes be computationally expensive to
solve, unless special structure of the dynamics (e.g. differ-
ential flatness) is exploited [1], [2]. The other drawback is
that the safety constraints need to be expressed in the form
of a set of nonlinear inequalities, which can be difficult to
handle. One way around this, for instance, is to use splines
(e.g. non-uniform rational B-splines, or NURBS) and the
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(a) Possible motion primitives of a kine-
matic car.

(b) Local shape of the free space.

(c) Filtered trajectories according to local environment. Blue lines
correspond to admissible trajectories (the ones that lie in the free
space).

Fig. 1. Illustration of geometric trajectory filtering.

convex hull property therein to remove the safety constraint,
although the control points for splines still need to be chosen
carefully [3].

The second class of methods is mainly based on subdivid-
ing the free space and solving the problem by constructing
some discrete data structures such as trees or graphs over
the subdivided space to represent the set of reachable states
from the initial state. Each edge in the tree/graph normally
corresponds to a certain “atomic motion” that happens within
a short time step. By expanding the reachable set incremen-
tally, the trajectory may be eventually obtained as soon as the
goal state can be included in the set. Examples include the
probabilistic roadmap (PRM) [4] and the rapidly-exploring
random tree (RRT) [5], [6] or graph (RRG) [7]. The ad-
vantage of this is that it naturally handles the shape of the
task space by using a discrete representation. However, most
methods fail to handle optimality, since the data structure is
primarily concerned with connectedness and/or reachability,
although there are a few variants that cope with this issue
(e.g. RRT∗) [8].

The third class of methods can be seen as a mixture of the
previous two, and often falls under the name primitive-based
motion planning [9], [10]. The basic idea is to first adopt
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optimal control methods to generate trajectory segments
between some pairs of initial and goal states, while ignoring
all the safety constraints. This is usually an offline process,
and all the generated trajectory segments are stored as a
library. After this, for a given specific environment and a
goal state, the trajectory segments are retrieved from the
library and pieced together, often by some graph search
techniques, to form a feasible trajectory that satisfy the
remaining constraints. Although there is no guarantee that
the final formed trajectory will still be optimal, the trajec-
tory is often acceptable, as long as each segment spans
a considerable portion of the whole trajectory, since all
the segments are optimal by themselves. In one extreme,
where the entire trajectory consists of only one segment, the
trajectory becomes optimal, recovering the optimal control
method, but we would need to store a myriad of optimal
segments in order to achieve this. In the other extreme, we
can choose to store only the simplest motions that happen
within short time durations and build a concise library; this
will result in a trajectory consisting of a large number of
small segments, thus recovering the discrete graph-search
method.

During planning, one must only select that motion prim-
itives that satisfy the local safety constraints, i.e., they are
contained in the local free space. One prerequisite for doing
this is to obtain a mathematical characterization of the local
free space, usually by an indicator function that distinguishes
the interior of the free space from the exterior. Since the
shape of the free space can be arbitrary, the paper aims to
find a universal method for obtaining the indicator function
in an efficient way. Currently, our work is focused mainly on
2-dimensional free space, and uses tools in complex analysis
for computing the indicator function. The specific method
studied is numerical conformal mapping, which can be cast
as convex optimization problems and solved efficiently.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notation and definitions

Since the paper relies heavily on results from complex
analysis, we now introduce the notation used in this paper
and familiarize the reader with some basic definitions. We
use C to denote the entire complex plane. For any z ∈
C, let Re(z) and Im(z) denote the real and imaginary
part of z, respectively. The modulus of z is denoted as
|z| = [Re2(z) + Im2(z)]1/2; the argument of z is denoted as
arg(z) = {Arg(z) + 2kπ : k ∈ Z}, where Arg(z) ∈ [0, 2π)
is the principal value of argument1. Unless stated otherwise,
every function (map) is a complex-valued function, defined
from C → C. A function f is called analytic (also referred
to as holomorphic or regular in some references) in an open
domain Ω if its complex derivative f ′ exists everywhere in
Ω. Sometimes, the informal statement that “f is analytic at
a point z0 ∈ C” is used to denote that f is analytic in an
open neighborhood of z0.

1Some references use Arg(z) to denote the argument and arg(z) the
principal value.

An important class of analytical functions is conformal
maps. In its original definition, an analytical map is called
conformal if it preserves angles at every point z in its domain
Ω. A straightforward application of the chain rule can show
that an analytical map f is conformal if and only if f ′(z) 6= 0
at every z ∈ Ω. Also, all bijective maps are conformal.

B. Geometric trajectory filtering

Suppose we are given a discrete, time-indexed motion
primitive s = {si}Ni=0 in the configuration space C, where
C is a subset of Rn, and each si ∈ C. For motion planning,
it is useful to select only the primitives that do not intersect
with the obstacles present in the environment, namely the
admissible primitives. Mathematically, we need to find an
oracle that indicates whether a given point lies in the free
space. One way of doing this is to construct a containment
indicator function g : C → R that remains negative inside
the free space and positive otherwise. If there is no smooth-
ness requirement for the containment indicator function,
one possible choice is to subdivide the free space into a
disjoint union of convex polygons, similar to the occupancy
grid, and construct g from the set of linear inequalities that
characterize the interior of the polygons. This method will
give an indicator function g that is piecewise linear.

However, under certain circumstances, a smooth indicator
function is preferred. In primitive-based motion planning,
for example, we do not solely want to select the motion
primitives s that satisfy g(si) ≤ 0 for all si ∈ s, which is too
restrictive. For most mechanical systems in practice, even if a
motion primitive does not satisfy the local safety constraint,
we may still be able to apply rotation and translation to the
trajectory and “fit” it inside the free space. More formally,
this means there exists some group Q = SE(n) whose action
relates one feasible trajectory to another: if s is a feasible
trajectory, then Φq(s) is also a feasible trajectory for any
q ∈ Q, where Φ : Q × C → C denotes the group action
of a group element q on s. We name this procedure of
selecting the admissible motion primitives while allowing
group actions as the geometric trajectory filtering problem,
since the filtering (selection) depends on the local geometric
configuration of the obstacles:

Problem 1 (Geometric trajectory filtering): Given a tra-
jectory s = {si}Ni=0 and a containment indicator function
g, find a rigid-body transformation q ∈ SE(n) such that
g(Φq(si)) ≤ 0 for all si ∈ s, if such q exists.

When solving the geometric trajectory filtering problem,
it is preferred that the indicator function g is smooth, since
otherwise it can prohibit the use of gradient methods in
nonlinear optimization and/or root finding. Therefore, we are
mainly interested in finding a smooth containment indicator
function g to characterize any arbitrary free space. If we
restrict ourselves to 2-dimensional free space, i.e. C ⊂ R2,
then it turns out one powerful method for obtaining g is
to view R2 as the complex plane C, and use numerical
conformal mapping described in the following section.



Ωr ⊂ R2 oo //
OO

��

Ω ⊂ C
f //

OO

��

DOO

��
g(x, y) ≤ 0 oo // gc(z) ≤ 0 ĝc(z) ≤ 0oo

Fig. 2. The procedure of obtaining the indicator function g via conformal
mapping f in the complex plane C. The target domain Dnormally has a
simple shape that can be characterized by an elementary function ĝc(z),
which is then used to obtain the (complex) indicator function gc = ĝc ◦ f .
The real containment indicator function g is related to gc by the natural
isomorphism from R2 to C.

C. Computing the containment indicator function by numer-
ical conformal mapping

In the 2D case, a free space of arbitrary shape, Ωr ⊂ R2,
can be viewed alternatively as a domain Ω ⊂ C by applying
the natural isomorphism: (x, y) 7→ x+ iy. Therefore, finding
an indicator function g that characterizes Ωr is equivalent
to finding gc that characterizes Ω: gc(z) ≤ 0 if and only if
z ∈ Ω. The basis idea in this paper for obtaining gc is as
follows: since gc is generally difficult to obtain directly for
an arbitrarily shaped domain Ω, we choose to first use a map
f that transforms the original domain Ω = {z : gc(z) ≤ 0}
to a simpler target domain (e.g. unit disk, rectangle) D =
{z : ĝc(z) ≤ 0}, where the containment indicator function
ĝc(·) can be expressed in a simple form. From there, the
original containment indicator function can then be expressed
as gc = ĝc ◦ f , if f is also bijective (one-to-one and onto).

This approach may seem unproductive at first glance, since
it is still unclear how to find the bijective map f that maps
the original domain Ω to a simpler domain D. However,
if we allow ourselves to extend the class of bijective maps
to conformal ones (recall that bijectivity implies confor-
mality), we can make use of some powerful computational
tools to numerically obtain the map f (and hope that it is
also bijective). These tools have traditionally been used for
solving partial differential equations (e.g. Laplace equations)
in two dimensions. Unfortunately, many existing results in
computational conformal mapping do not directly apply in
this case. For example, the Schwarz–Christoffel mapping
can only transform a simple domain (the upper half-plane)
to a more complex one (a simple polygon), but not vice
versa. In the following, we will explore other numerical
approaches that use existing theorems in complex analysis
to obtain the desired conformal map f by exploiting the
computational aspect of the theorems. It turns out that
the required computation is solving a convex optimization
problem, which can be carried out efficiently.

III. CONTAINMENT INDICATOR FUNCTION FROM
NUMERICAL CONFORMAL MAPPING

A. A motivating example

As a motivating example, consider the bent rectangular
region as shown in Fig. 3, which is defined as

Ωr = {p = (x, y) : ∃t, ‖p− c(t)‖ ≤ w/2},

D

w = f(z)

Ω

Fig. 3. An example of conformal mapping from a bent rectangle to a
(regular) rectangle using logarithm.

where w is the width of the bent rectangle and

c(t) = (x0 + r cos tθmax, y0 + r sin tθmax), t ∈ [−1, 1],

for some x0, y0, r, θmax ∈ R, forms its center line.
This kind of region may appear locally, for example, for

car race tracks. Although this region may seem complicated
to characterize using some simple function g, we can try to
first transform the region to some simpler region that is easier
to describe. By viewing Ωr as the equivalent subset in C,
namely Ω, we can use the following (complex) logarithmic
map2

f(z) = log(z − z0), z0 = x0 + iy0

to convert Ω into a rectangle D shown in Fig. 3:

D = {z : Re(z) ∈ [log(r − w/2), log(r + w/2)],
Im(z) ∈ [−θmax, θmax]}.

In this case, it is not difficult to write out the indicator
function ĝc for D:

ĝc(z) ≤ 0 iff
Re(z) ∈ [log(r − w/2), log(r + w/2)],
Im(z) ∈ [−θmax, θmax]

or more concisely,

ĝc(z) = max


Re(z)− log(r + w/2)
−Re(z) + log(r − w/2)

Im(z)− θmax

−Im(z) + θmax

 ,
where the maximum is taken over all the entries in the vector.
After this, we can combine the above to get the containment
indicator function gc for Ω:

gc(z) = max


Re(log(z − z0))− log(r + w/2)
−Re(log(z − z0)) + log(r − w/2)

Im(log(z − z0))− θmax

−Im(log(z − z0)) + θmax

 .
In addition, it is not difficult to verify that f(z) is a
bijective conformal map. Note that the key ingredient of the
above procedure is to find the proper conformal map f that
transforms Ω to a simple domain D. Of course, the region

2The complex logarithm is defined as: log z , log |z|+ i arg(z).



of interest in this particular example is a special shape that
renders the use of logarithmic map possible. In the following,
more general approaches will be introduced for transforming
arbitrary (but simply connected) regions to simpler shapes.

B. Numerical conformal mapping by derivative maximiza-
tion

We start by considering the unit disk as the target domain:
D1 = {z ∈ C : |z| ≤ 1}. The Riemann mapping theorem
in complex analysis ensures the existence of a bijective
conformal map from any simply connected region (other than
C itself) to a unit disk:

Theorem 1 (Riemann mapping theorem): For any simply
connected domain Ω ⊂ C, there exists a bijective analytic
(therefore conformal) function f that maps Ω to the unit disk.

Proof: The proof of this theorem involves quite some
technical details (cf. [11]). However, some excerpts of the
proof form the computational foundation of the algorithm
that will be described in this section, so we will briefly sketch
the proof below:

Consider the set of all the one-to-one (injective) functions
that map Ω to D1. It can be shown that this set is non-
empty and uniformly bounded. The proof then shows that
there exists f in this set that maximizes |f ′(z0)|, where z0 ∈
Ω\∂Ω is an arbitrary (but fixed) point inside the domain of
interest. It turns out that this particular f actually maps Ω
onto D1 (i.e. f is surjective), and therefore is bijective.
The above proof gives a way to compute this desired f by
casting an optimization problem to maximize the derivative
at a given point strictly inside Ω, while restricting |f(z)| ≤ 1
(inside the unit disk) for every z ∈ Ω:

maximize
f

|f ′(z0)| , z0 ∈ Ω\∂Ω

subject to max
z∈Ω
|f(z)| ≤ 1.

Unfortunately, there are a couple of technical difficulties in
solving the above problem in practice:

• First, the maximum in the constraint is taken over the
entire region Ω; naively, this implies that we need to
enumerate every points in Ω, which is impossible.

• Second, the optimization is performed over a function
space that is infinite-dimensional.

Therefore, we need to make a few approximations to the
original problem. For the first one, we can choose to sample
a number of points zi ∈ Ω, and hope to obtain a good
approximation by choosing the number to be large enough. In
fact, there exists a more efficient solution than this. Recall
that the maximum modulus principle (cf. [12]) guarantees
that the modulus |f(z)| can only attain its maximum on ∂Ω,
the boundary of Ω, unless f is constant in Ω:

Theorem 2 (Maximum modulus): If f is analytic in a do-
main Ω and |f(z0)| = maxz∈Ω |f(z)| for some z0 ∈ Ω\∂Ω,
then f(z) ≡ c (∀z ∈ Ω) for some constant c.

Therefore, we can ignore all the points that lie in the
interior of Ω and only sample on ∂Ω. For the second one,

we choose to restrict the form of f to a linear combination
of basis functions:

f(z) =
n∑

i=1

wiφi(z) = ΦT (z)w,

where each φi(z) is analytical. A possible choice for the
basis function is monomials in z, which makes f(z) a poly-
nomial. This not only allows us to cast the original infinite-
dimensional optimization problem into a finite-dimensional
one, but also makes the optimization problem convex, as will
be seen later. We now rewrite the approximate optimization
problem below:

maximize
w

∣∣∣Φ′
(z0)Tw

∣∣∣ , z0 ∈ Ω\∂Ω

subject to
∣∣ΦT (zi)w

∣∣ ≤ 1 (i = 1, 2, · · · , N).

In its natural form, the above optimization problem is non-
convex, because the objective function being maximized is
not concave (in fact, it is convex). However, note that for
any w∗ that attains maximum, γw∗ (|γ| = 1, γ ∈ C) also
gives the same optimal value, since:∣∣∣Φ′

(z0)T (γw∗)
∣∣∣ =

∣∣∣Φ′
(z0)Tw∗

∣∣∣ |γ| = ∣∣∣Φ′
(z0)Tw∗

∣∣∣ .
Therefore, it is without loss of generality to require that
Φ

′
(z0)Tw be real and recast the optimization problem as

maximize
w

Re{Φ′
(z0)Tw}, z0 ∈ Ω\∂Ω

subject to
∣∣ΦT (zi)w

∣∣ ≤ 1 (i = 1, 2, · · · , N),

where now the problem becomes convex3, since Re(·) is
linear and thus the objective function is linear.

C. Numerical conformal mapping by mimimax modulus

Another seemingly different way of computing the con-
formal map f is to minimize the radius (instead of unity) of
the target disk region that f maps to [13]. Without loss of
generality, the approach assumes that the region of interest Ω
contains z = 0, which can always be achieved by translation.
The existence and uniqueness of the conformal map to be
computed in given by the following theorem:

Theorem 3: (cf. [14]) Let Ω ⊂ C be a simply connected
region that includes z = 0. Denote H1 as the following set:

H1 = {f : f(0) = 0, f ′(0) = 1, f is analytic in Ω}.

Then there exists a unique bijective fmin that minimizes the
quantity M(f) = maxz∈Ω |f(z)|:

fmin = arg min
f∈H1

max
z∈Ω
|f(z)| .

Furthermore, the function fmin maps Ω to a disk D = {z :
|z| ≤ r∗}, where r∗ = M(fmin).

Remark 1: The function fmin is conformal, since
f ′min(0) = 1 by the definition of H1.

3In fact, a quadratic program.



The above theorem also gives us a numerical way to solve
for the conformal map by formulating the following infinite-
dimensional optimization problem:

minimize
f∈H1

max
z∈Ω
|f(z)|

subject to f(0) = 0, f ′(0) = 1.

To make the optimization computationally tractable, we
follow the approach similar to the previous one and ap-
proximate f as a linear combination of basis functions:
f(z) =

∑
i wiφi(z) = ΦT (z)w. By invoking the maximum

modulus principle again, we only sample ∂Ω at a finite
number of locations {zi}Ni=1. The point z0 ∈ Ω\∂Ω can be
chosen arbitrarily:

minimize
w

max
i

∣∣ΦT (zi)w
∣∣ (i = 1, 2, · · · , N)

subject to ΦT (0)w = 0, Φ′(0)w = 1.

The objective function is the maximum of norms, and is
therefore convex; the constraints are linear equalities in w.
Therefore, the above optimization problem is convex. It can
be shown that this computed conformal map f only differs
possibly by a (complex) scaling factor and a displacement
from the one computed in the previous section, by the
uniqueness of the conformal map as stated in Theorem 3,
since both algorithms will produce a conformal map that
transform the same domain (up to a displacement) to a disk.
Moreover, it has been shown that by replacing the modulus |·|
in the objective function with other admissible functions v(·),
the above method can also map a given region to other simply
connected domains (e.g., infinite stripes). The requirement on
v is that its needs to be a subnorm (see [13] for definitions).
For any subnorm v and radius r > 0, we can define its
associated disk as:

Dv(r) = {z : v(z) ≤ r}.
For example, v(z) = |Re(z)| is a subnorm, and the corre-
sponding Dv(r) is an infinite stripe. The maximum principle
still holds for subnorms, which avoids the need of sampling
inside the region of interests and allows us to form a more
generalized optimization problem similar to the previous one:

minimize
w

max
i
v(ΦT (zi)w)

subject to ΦT (0)w = 0, Φ′(0)w = 1,

where zi are points sampled on ∂Ω. The only caveat is that
not all subnorms v are convex, so the generalized problem
may not remain convex. However, there are some convex
subnorms, such as v(z) = |Re(z)|, under which we can still
solve the optimization problem efficiently.

IV. NUMERICAL EXAMPLES AND DISCUSSIONS

We now give a few numerical examples with different
simply connected shapes for Ω (both convex and non-
convex). Although the various theorems in the previous
section dictates the existence of such a bijective map f
from Ω to a certain target domain (disk, or some other
simply connected domain defined by the subnorm v), both

computational approaches by themselves do not guarantee
that the result will give a bijective map. The reason is that
they do not optimize over the set of all admissible functions
on C and have instead made the approximation to restrict
f within a special class of functions. Therefore, we should
check if the generated map f is bijective. Unfortunately, there
is no known efficient method to check whether a given map
f is bijective other than to naively check against every point
z ∈ Ω and their image f(z). However, it can be proved that
it suffices to check the points on ∂Ω to test whether a map
f is injective, as stated in the following theorem.

Theorem 4: (cf. [15]) If the map f : Ω→ D is analytic in
Ω\∂Ω and on ∂Ω. Suppose f(z) is one-to-one on ∂Ω, and
Ω is simply connected, then (1) f(z) maps ∂Ω to ∂D, and
(2) f(z) is also one-to-one from Ω to D.
Informally, this means we can check if f is injective by
checking if the image of ∂Ω self-intersects.

In the following, we will test a few combinations of
original domains Ω and target domains D listed in Table I.
For the last two examples, we also compare the effect of
using different target domains. All the examples search over
polynomials up to degree n:

f(z) =
n∑

k=0

akz
k,

except for the last one, where additional basis functions
consisting of logarithms are also considered:

f(z) =
n∑

k=0

akz
k +

m∑
k=1

bm logm z.

# Original domain Ω Target domain D
1 Deformed disk Disk
2 Square Disk
3 Nonconvex polygon Disk
4 Elongated rectangle Disk and ∞-normed disk
5 Bent rectangle Disk and ∞-normed disk

TABLE I
EXAMPLES OF ORIGINAL AND TARGET DOMAINS UNDER TEST.

It can be seen, from Fig 4, that the computed conformal
maps transform the original domain to the target domain
perfectly for Example 1 and 2, and almost perfectly for
Example 3 (the boundary loops itself over a bit) in Table I,
possibly due to the non-convexity of Ω and the polynomial
basis functions being used (since |z|k is strictly increasing).
Two issues have been found critical for this method of
numerical conformal mapping. First, the target domain (i.e.
the subnorm v(z)) needs to be chosen properly based on the
shape of the original domain. This can be seen in Example
4, where the computed conformal map fails to transform it
to a disk properly (Fig. 5b), because the original region has
a high aspect ratio. Instead, a different subnorm v(z) is used,
which is a weighted ∞-norm:

v(z) = max(|Re(z)| , µ |Im(z)|) (µ > 0),



under which the “normed disk” becomes a rectangle again.
Not surprisingly, it transforms the original region properly
(Fig. 5c), due to the fact that the normed disk resembles the
original domain itself. Second, choice of the basis functions
plays a key role in transforming more irregular shapes. In
Example 5, the polynomial basis performs poorly and is not
able to generate a bijective conformal map (Fig. 6b), whereas
adding logarithmic basis functions helps greatly (Fig. 6c).

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

(a) #1 (original)
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) #2 (original)
−2 −1.5 −1 −0.5 0 0.5 1

−2

−1.5

−1

−0.5

0

0.5

1

(c) #3 (original)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

(d) #1 (target)
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(e) #2 (target)
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(f) #3 (target)

Fig. 4. Original and target domains for Example 1–3. Only the boundaries
of the domains are shown for clarity. The computed conformal maps have
successfully transformed the original domains of interest to the target
domains (disks for all the examples).
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Fig. 5. Original and target domains for Example 4. Only the boundaries
of the domains are shown for clarity.
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Fig. 6. Original and target domains for Example 5. Only the boundaries
of the domains are shown for clarity.

Using the computed conformal map, we solve the geo-
metric trajectory filtering problem for the original domain
Ω in Example 5 listed in Table I. Fig. 7a shows the
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Fig. 7. An example of geometric trajectory filtering. (a) Motion primitives
under consideration. (b) Filtered motion primitives according to the shape
of the free space, using the containment indicator function as in Fig. 6c.

synthetic library of motion primitives of a kinematic car,
L = {s(k)}Mk=1, which consists of a total M arcs with
different curvature. Formally, we need to obtain feasible
solutions s̄ = {s̄i}Ni=0 that satisfy:

1) s̄i = Φq(s(k)
i+j) (0 ≤ i ≤ N) for some j,N ∈ Z, s(k) ∈

L, and q ∈ SE(2). This implies that s̄ is generated
by applying rigid-body transformation on part of some
trajectory in the library.

2) g(s̄i) ≤ 0 for all si ∈ s, where g is the conformal map
computed previously.

The filtered trajectories are computed by solving a nonlinear
optimization problem (with constant objective function, for
feasibility only) using fmincon in MATLAB. A number of
trajectories are plotted in Fig. 7b, which indicates that they
all lie in the domain of interest. These trajectories can then
be viewed as admissible motion primitives during the later
motion planning stage.

V. CONCLUSIONS

The paper has described methods for numerically com-
puting the containment indicator function, which is used to
describe the local shape of the free space for geometric
trajectory filtering. The key ingredient is to transform the
original shape of interest to a simpler target shape via
numerical conformal mapping, which can be cast as con-
vex optimization problems, at least approximately. Several
different shapes have been tested for being converted into
simpler shapes, e.g., disks and rectangles. Two issues have
been found critical for the algorithms described: (1) target
region needs to be chosen properly according to the original
shape of interest; (2) the basis functions can affect the quality
of the conformal map greatly (e.g., sometimes polynomials
are not good enough to provide a useful conformal map). The
computed conformal map has also been used in trajectory
filtering. Some preliminary results have been shown, using
a synthetic trajectory library consisting of motion primitives
of a kinematic car (i.e. arcs). Future issues to be addressed
include investigating a richer class of basis functions, and
testing the algorithm under more realistic environment con-
figurations.
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