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A bio-plausible design for visual pose stabilization

Shuo Han, Andrea Censi, Andrew D. Straw, and Richard M. Murray

Abstract— We consider the problem of purely visual pose
stabilization (also known as servoing) of a second-order rigid-
body system with six degrees of freedom: how to choose forces
and torques, based on the current view and a memorized goal
image, to steer the pose towards a desired one. Emphasis has
been given to the bio-plausibility of the computation, in the
sense that the control laws could be in principle implemented
on the neural substrate of simple insects. We show that
stabilizing laws can be realized by bilinear/quadratic operations
on the visual input. This particular computational structure has
several numerically favorable characteristics (sparse, local, and
parallel), and thus permits an efficient engineering implemen-
tation. We show results of the control law tested on an indoor
helicopter platform.

I. INTRODUCTION

The question of how the brain utilizes millions of neurons,
presumably in a highly parallel fashion, to make timely
decisions from information-rich sensory inputs still remains
unanswered. This holds even for one of the simplest animals,
the fruit fly, which has only about 300,000 neurons, orders
of magnitude fewer than the human brain. Engineers marvel
at the series of fast and robust behaviors implemented on
the poor computational support of slow and noisy neurons.
Particularly interesting is the processing of visual informa-
tion (Fig. 1), which biologists believe is a dominant sense
controlling flight in many species of insects. Examples of
classical studied behaviors include turning towards features
of interest [1] and altitude/velocity control [2]. In this paper,
we are especially interested in the visual behaviors that allow
insects to return to or to stay at a particular location in space
(hovering and homing).

The hovering and homing behaviors are instances of what
in robotics is called visual servoing, which we will refer to
as pose stabilization. Our goal in this paper is to solve this
problem while respecting the constraints of a “bio-plausible”
computation. The motivation is twofold: on the one hand, this
might provide clues for realizing a computational model of
insects behavior, useful to biologists; on the other hand, it
might inspire useful engineering principles to realize similar
robust systems. The question of what can be considered bio-
plausible, is, of course, loosely defined. In brief, we consider
something to be bio-plausible if it can be realized on neu-
ral circuits [3]. The computation should be implementable
using parallel asynchronous units; in insects, a model of
computation that is well accepted as bio-plausible is a local
nonlinear operation followed by wide-field linear integration.
An example of computation that could not be considered
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Fig. 1. (a) The spatial disposition of ommatidia (“pixels”) and (b) an
example of simulated visual input (rendered using the Mercator projection)
for a fruit fly. The total 1,398 ommatidia of the two compound eyes cover
almost the entire visual sphere. Despite being noisy and low-resolution,
vision is known as a dominant sense for flight stabilization in fruit flies.
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Fig. 2. Purely visual pose stabilization. We control in force and torque
to stabilize a rigid body based only on the visual input y and g, and a
memorized goal image g taken at the desired pose. No inertial or velocity
sensors are used.
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Fig. 3. Proportional-derivative (PD) controller using (discrete) tensor
multiplications between the visual input y, ¥, and the goal image g. This
realization is equivalent to a wide-field integration of local nonlinearities,
which is an accepted bio-plausible model.

bio-plausible would be (point) feature-based visual servoing:
not as much for implementing a feature-extraction algorithm,
but because the logic of manipulating a “list of features” and
matching them does not appear to be easily implementable on
a neural substrate. An alternative is using the raw luminance,
which, interestingly, is a new trend in robotics [4]-[7]. The
feasibility of this scheme for insects has been considered,
and an experimental assessment concluded that “view-based
homing with panoramic images is in principle feasible in
natural environments and does not require the identification
of individual landmarks” [8].

Related work: Visual servoing is a classical problem in
industrial robotics, with applications in controlling robot
manipulators [9], [10] or visual navigation [11], [12]. The
classical approach normally consists of extracting and track-
ing fiducial point/segments from the image [13]. However, in
the last few years, several methods have been proposed that
do not rely on features, but instead use the raw luminance



directly [4]-[7]. These are formulated as computing the
gradient of an image dissimilarity measure; one obvious
choice is the squared error over the field of view. An issue
that appears not to be completely solved at the moment is
formulating sufficient conditions for convergence, especially
because the gradient directions depend on the unknown
distance to the objects.

Contribution: In this paper, we present proportional-
derivative control laws that solve the visual servoing problem
for a second-order system controlled in force/torque and
demonstrate the pose stabilization results on an indoor heli-
copter testbed. We do not rely on velocity or inertial sensors;
we only assume to know the current visual observations
and a goal image taken at the desired pose (Fig. 2). The
computation essentially consists of a tensor multiplication
that involves the goal image and the current observations
(Fig. 3). This paper is the ideal continuation of [14], where
we restricted ourselves to purely rotational motion.

With respect to related work in engineering on feature-free
visual servoing, we offer the following contributions:

o We consider a second-order system: the control inputs
are torque/force rather than velocities; this requires esti-
mating velocity from vision to create suitable damping
laws.

o« We prove the stability of purely visual control laws
independent of (or robust to changes in) the distance
profile, given that the environment satisfies certain con-
ditions; previous work did propose laws assuming con-
stant distance, but did not prove convergence (e.g., [6])
or proved it assuming the availability of point fea-
tures (e.g., [15]).

The paper is organized as follows. Section II introduces
some preliminaries about the model. Section III-V show, in
the order of complexity: 1) control laws for the first-order
system, controlled in velocity, 2) damping control laws that
stabilize the velocities to zero, and 3) proportional-derivative
control of the second-order system. Section VI discusses the
computational structure of the proportional-derivative control
law and several of its favorable numerical features that allow
an efficient implementation. Section VII shows numerical
tests using simulated visual input of a fruit fly and discusses
the bio-plausibility of the control law. Section VIII presents
experiments on an indoor helicopter testbed.

II. PRELIMINARIES

We consider the general 6-degree-of-freedom (6-DOF)
pose stabilization problem using the output from a gener-
alized vision sensor. In the section, we will introduce the
model of the system dynamics, describe the model of the
vision sensor, and formalize the visual control problem.

A. Dynamic model

We consider the fully actuated rigid body motion on
the special Euclidean group SE(3). A pose in SE(3) can
be described by the body position p € R? and the body
attitude r, represented as a 3 X 3 rotation matrix, or, more
formally, an element in the special orthogonal group SO(3).

For many traditional visual servoing applications where
the velocities can be controlled directly, it suffices to consider
the system kinematics (also referred to as the first-order

system):

b=rv,

where w € R? is the angular velocity and v € R? is the
linear velocity, both expressed in the body frame. The “hat
map” ()" maps a vector x € R3 to a skew-symmetric
matrix " € R3*3 such that (z")y = x x y, with “x” being
the ordinary cross product in R3 [16]. Control in velocity will
be discussed primarily in Section III only.

In other applications, such as stabilizing aerial vehicles,
where the control inputs are torques and forces, the full
dynamics (also referred to as the second-order system) need
to be considered:

Iw = (Iw) X w+ T, )

b =rTv,

mo=mv X w+ f,

where I € R3*3 is the moment of inertia; m € R is the
body mass; T € R? is the control torque; f € R? is the
control force. Most of this paper will address the issue of
controlling such systems. Although this model does not fully
capture the dynamics of some platforms such as a helicopter
(underactuated, as will be discussed in Section VIII), it
provides a good approximation at least near the equilibrium
(i.e., at hovering).

B. Sensor model

We assume to have available only the output of a vision
sensor. With good generality, we model the vision sensor as
a device that at each time ¢ returns a series of values y(s;, t),
each corresponding to the observed luminance from a pixel ¢
in the direction s; € S2. Here S? ¢ R? denotes the unit
sphere. There are two important aspects of such a model:

e Sensor output: The model gives raw luminance as the
output. As a comparison, traditional visual servoing
literature often assumes to know the positions of fiducial
points on the image plane (except in, e.g., [4]-[7]). The
formulation also works if an instantaneous point-wise
filter, such as contrast normalization, is applied to the
raw luminance.

o Sensor geometry: Using the directions s; € S? to model
the disposition of “pixels” on the sensor makes the
model equally apt for a normal perspective camera, a
catadioptric camera, or the compound eye of a fruit fly
(see Fig. 1).

In deriving the theory, we make a number of simplifying
assumptions: 1) We are able to sample the entire visual
field from “a continuum of pixels”, i.e., we know y(s,t)
for all s € S% 2) We can observe both y(t) and (t);
3) We ignore the effect of occlusions. Note that, however,
in the simulations we do incorporate non-ideal factors such



as blurring, sensor dynamics, and occlusions, some of which
appear in the experiments as well. We will also discuss how
to approximate/discretize the control law when the visual
field is discrete later in Section VI.

Given a certain environment, the visual observation y(s, t)
will change with the pose of the agent. In general, however, it
is not possible to give a closed-form expression of y(s,t) as
a function of the pose, because it depends, in a complicated
way, on the “nearness” (s, t), defined as the inverse of the
distance to the object in direction s. Fortunately, we will only
need the relation between y(s,t) and u(s,t), which is given
by the optic flow equation:

y(s,t) = p(s)Vsy(s, t) v + (s x Vey(s, t)'w, (3)

or more compactly, dropping s and t, and defining the
operator S as: Sy £ s x V,y,

g=pn(Vy) v+ (Sy)" w. )

The two terms in y describe the contributions to change in
luminance by translational velocity v and rotational veloc-
ity w, respectively. This is not a new result and has appeared,
often in a disguised form with different notation, in many
other papers. Here we have adopted the convention that Vy,
when evaluated at a specific s € S?, is an element of R?;
i.e., we think of it as an “arrow attached to the sphere S?”.

C. Control problem

We assume that the agent knows a “goal” image g(s) taken
at the goal pose g, = (rg,pg). The problem we wish to solve
can be stated as follows:

Problem 1 (Visual pose stabilization): Given the goal im-
age g, design a stabilizing control law for 7 and f, depending
only on y, 9, g, such that ¢ — q, and (w,v) — 0.
Without loss of generality, we will assume that (ry,p,) =
(Id, 0), the identity element of SE(3).

III. VISUAL CONTROL IN VELOCITY

We first consider the problem of controlling the first-
order system (1), assuming that we can impose w and
v directly. Motivated by a control law constructed from
gradient descent, we obtain a stabilizing control law that does
not rely on knowledge of the structure of the environment
(i.e., the nearness p(s)). Not only will the result be useful for
controlling the first-order system (1) per se, it will also be
important in constructing a stabilizing control law for the full
second-order system (2), as will be discussed in Section V.

A. Control with the knowledge of distance

A natural way to define a stabilizing control law is to use
the gradient of the quadratic cost function J defined in the
space of images:

Ha=5 [ ) -o(s)2as. ®

This integration is taken over the entire visual sphere S2,
with S as the unique rotation-invariant measure on S2. We

will use a shorthand notation to denote this integration:

(f) = f(s)dS.

s€S?
Using this notation, equation (5) can be written compactly
as

Jq) =3{y—9)?). (6)

Here, the cost function J is expressed as a function of q
because y varies with g. Again, note that J is computed
directly from the luminance, not from the error in the
positions of point features.

However, simply applying the (negative) gradient as the
control input may fail to drive the pose g to q,: as
an extreme case, an environment with uniform luminance
(y(s) = const.) will make g unobservable from the visual
input y alone. Therefore, some additional condition on the
environment is expected for the gradient control law to work,
which is stated formally in the following proposition.

Proposition 1 (Exact gradient): The gradient control law

w= ((Sy)g—v), 7
v = (u(Vy)(g —y))
locally stabilizes the first-order system (1) asymptotically if
the 6 x 6 “contrast matrix”

_ | (SySy*)  (uSyVy")
Cla) = [ (uVySy*)  (*VyVy*)

is strictly positive definite at ¢ = g,. Note again we have
used the convention that both Sy and Vy (evaluated at a
specific s) are vectors in R3.

Proof: (Sketch only, see [17] for detail) We first note
that we have to deal with quantities living on manifolds.
Therefore there is some additional difficulty with respect
to Euclidean spaces. For example, the gradient is not “a
vector in R™”, and the Hessian is not “a matrix in R™?*™”,
Our first step is a change of coordinates for the attitude.
There are many choices of Euclidean coordinates for SO(3),
including Euler angles, quaternions, etc. Here we choose the
exponential coordinates ¢ € R due to its compact written
form:

¢ =Log(r)’,  r=Exp(¢"),

where Log and Exp are the matrix logarithm and exponential,
and (-)" is the inverse of the hat map (-)". Note in particular
that (r = Id) < (¢ = 0). Under such a representation, the
kinematics (1) can be rewritten as

¢ =w,
. ®)
{p = Exp(¢”")v.
Note that both w and v depend on y, which is a function

of ¢ and p. To prove local stability, it suffices to investigate
the linearization of the system (8) around the equilibrium

(Sovp) = (an)



where C' is the “contrast matrix”. Therefore, the system is
locally asymptotically stable if C(q,) > 0. ]
The above condition on the contrast matrix imposes re-
quirements on the visual appearance (reflected in the visual
input y) and structure (reflected in the nearness profile p)
of the environment. If the condition fails to hold (i.e., the
matrix C' loses rank), there exists a certain “direction” in
SE(3) such that the visual observation will not change when
moving along this direction infinitesimally near the goal g,,.
In other words, the environment possesses some kind of
spatial invariance that makes Problem 1 impossible to solve
with visual input.

Alternatively, we note that the contrast matrix C' is in fact
the Hessian of J, expressed in the exponential coordinates ¢
and p. The Hessian of J being strictly positive definite at g,
ensures that g, is an isolated minimum of J(g). This means
that ¢ = g, is the only (local) solution of the equation
y(s) = g(s), which is equivalent to g, being observable
from the visual input y.

B. Control without the knowledge of distance

One drawback of the above control law (7) is that v
depends on the unknown nearness profile p(s). A possible
solution would be to estimate p by solving a structure from
motion problem (e.g., [18]-[20]). Our approach, instead, will
show that it is possible to use a control law that does not
depend on p, if we are only concerned with local stability
near g,,. Since this control law does not contain , it is only
an approximation of the exact gradient direction, and requires
a different condition other than that in Proposition 1 to hold
in order to guarantee local stability:

Proposition 2 (Approximate gradient): The approximate
gradient control law

w=((Sy)g—v),
v =a((Vy)(g—v))
locally stabilizes the first-order system asymptotically, if

there exists > 0 such that the 6 x 6 “modified contrast
matrix”

(10)

a) & (SySy*) (5 +5)SyVy)
Clq,a) = { (2 +8) Vysy*) a(uVyVy*)

is strictly positive definite at ¢ = q,,. Note that « is a constant
scalar and does not depend on the directions s as opposed
to p(s) in (7).

Proof: (Sketch only, see [17] for detail) The proof of
stability is similar to the previous one. The linearization of
the system (8) is: £ = —F&, where

(S¢Sg")  a(VgSg™) |
(uVgSg*) a({uVgVg®)

Note that, at ¢ = 4, the modified contrast matrix C is the
symmetric part of F': 5(qg,o¢) =1 (F+F". If C >0,
stability can be immediately concluded from the Lyapunov
function V = ||&||%.

(1)

Remark 1: Under at least some special cases, the positive
definiteness of C(q, «) is equivalent to the positive defi-
niteness of C(q). For example, when the environment is
spherical (u(s) = @ > 0), if we let a = 7 in C(q,®),
then C = C. This is expected because knowledge of the
nearness ;4 becomes unimportant for a spherical environment.

Remark 2: In the proof, although rotation and translation
became decoupled after linearizing the system kinematics
near the equilibrium, the problem of pose stabilization still
needs to take into account the coupling between the two,
since the current image y still depends on both r and p.

IV. VISUAL VELOCITY DAMPING

Our ultimate goal is to construct a proportional-derivative
controller, which is necessary to achieve asymptotic stability
of the second-order system (2). The result from the pre-
vious section can be viewed as the proportional part (i.e.
“proportional” to the error in pose). In this section, we
switch the focus to designing the derivative part in order
to introduce artificial damping to the rigid body dynamics.
Equivalently, this means choosing force and torque such that
the velocities are driven to 0. Traditionally, the derivative part
is constructed to be proportional to the velocities estimated
from sensory input, here being y and y. We will first briefly
recall the more traditional approach of estimating from the
optic flow via least-squares, but will soon switch to a simpler
solution using bilinear forms.

A. Velocity estimation using least squares

The sensory input that encodes information on the ve-
locities is the temporal change of luminance g. Recall the
relationship between ¢ and w, v in (4) and note that y is
linear in w, v, respectively. In the pure rotation (v = 0) or
pure translation (w = 0) case, a straightforward solution is
to estimate the velocities directly using least squares:

Lemma 1: The least-squares estimates of the velocities are

os = ((Sy)(Sy)") " (Sy)y) (v =0),

bis = (1Y) (Vy)") " {((1Vy)) (@ =0).
Although the above only holds for separate motions and
will not be our final solution, they provide intuition for the
bilinear velocity estimation introduced in the next.

B. Velocity estimation using bilinear forms

For control purposes, it is likely that we do not need
to estimate the velocities perfectly, since the feedback loop
can usually tolerate some uncertainties. We now attempt to
simplify the above velocity estimates, hoping to make the
computation more bio-plausible. First, we will remove the
matrix inverse from the least-squares estimates. Second, mo-
tivated by the previous section, we will drop the (unknown)
nearness £i(s). This gives the following velocity estimates
that are bilinear (denoted as “BL”) forms of y and ¢, namely,
linear in y and y separately:

weL = ((Sy) 9), opL = (V) g) - (12)



Surprisingly, as we will see, despite such significant simpli-
fication, they do not prevent us from obtaining a stabilizing
damping control law. One insight is that the resulting approx-
imate velocity estimates are “good enough” because they will
remain “close enough” (or more precisely, within 90 deg)
from the true velocities (in the case of separate motions):
Proposition 3: In the case of separate motions, the bilin-
ear velocity estimates are related to the true velocities as

w*G)BL > 0, ’U*’f)BL > 0.
Proof: For pure rotation, § = (Sy)* w, and w*Wp =
W ((Sy)9) = w™ {(Sy) (Sy) ) w > 0.

Similarly, for pure translation, ¥ = pu(Vy)" v, and
v'opL = v (Vy)y) = v* (uVyVy*)v = 0. u
Omitting the matrix inverse makes the velocity estimator
arbitrarily inaccurate in scale, without more constraints on
the environment. In fact, suppose that wg;, = w in a certain
environment y. For another environment that is twice as
bright: y' = 2y, the resulting wgp, will be off by a factor of
4. Nevertheless, we will show that wp;, and vp, are useful
for control purposes, since the unknown gain factor plays
less role in system stability.

C. Velocity damping using bilinear velocity estimates

We will now prove the main result of this section: the
control law constructed from the bilinear estimates will
regulate the velocities to 0. This is actually not immediate,
because the we have been treating rotational and translational
motions separately, whereas the dynamics of w and v interact
in practice. The condition for this to hold is again related
to the modified contrast matrix. This is not too surprising
because we have dropped the nearness u(s) from the least-
squares estimates like in the previous section.

Proposition 4 (Visual damping): Assume that C(q,a) >
0. Then the control law

T = —kawsL=—ka((Sy)y),
f=—akivp = — akq (Vy)y),

with kg > 0, globally stabilizes w, v to 0.

Proof: (Sketch only, see [17] for detail) The proof
follows from a standard Lyapunov argument by using the
kinetic energy as the Lyapunov function. [ ]
Note that the velocity control law in the previous section
also shares the same particularly simple computational form,
being bilinear in y and (g — y). We will further discuss its
consequences in later sections.

V. VISUAL CONTROL IN FORCE/TORQUE

By combining the results from the previous two sections,
we now state the main theoretical result of this paper, namely
the visual proportional-derivative (PD) control of the full
rigid-body dynamics, with force f and torque 7 as the con-
trol inputs. Aside from the condition on the modified contrast
matrix C, the only additional requirement to ensure stability
is that the damping factor (i.e., kg) is “large enough”.

Proposition 5 (Proportional-derivative control): Assume
that the modified contrast matrix C'(q, «) is positive definite
at ¢ = q,. Then the control law

T = 1{(Sy)(g —y)) — kal((Sy) ),
F=am((Vy) (g —y)) —amkqs((Vy)7),

guarantees local asymptotic stability of the second-order
system (2) near g = g, for large enough k.

Proof: (Sketch only, see [17] for detail) Linearize the
system (2) near ¢ = q,. The stability can be shown by a
standard Lyapunov argument using the following Lyapunov
function:

13)

~ 1
V=¢C¢+ iz*z +k;'¢ 2,

where & = [¢* p*]" and z = [w* v*]". |
Aside from various extra gain factors, the above control law
is a direct combination of the control laws in velocity (“pro-
portional” part) and the velocity damping laws (“derivative”
part) from Proposition 2 and 4, respectively.

VI. COMPUTATIONAL STRUCTURE

So far we have been assuming a spatially continuous
visual sensor to derive the theoretical results. However, since
physical visual sensors (cameras, fly’s compound eye) have
only a finite number of photodetectors, the PD control law
needs to be discretized before being implemented. This will
also give insights on the computational structure of the
control law, especially its localness (which implies sparsity)
in computation.

Recall that the directions of pixels are denoted as s; € S?,
and define the discretized visual input as g; £ g¢(s;) and
yi = y(s;). Now g and y are vectors in R™, where n is
the total number of pixels. We also need to discretize the
differential operators S and V to approximate the result of
differentiation at each pixel locations for an arbitrary input
image y. In an informal notation, we look for tensors A and
B that act on discretized images and satisfy:

Discretize [Sy] =~ Ay, Discretize [Vy] ~ By.

Arithmetically, both A and B can be thought as n x n x 3
arrays: in the above equations, they act on vectors in R™ and
return X 3 matrices. We will use the notation A;;;, to denote
the entries of a tensor A, and a missing subscript to imply the
collection of all the entries in the corresponding dimension
(like the operation “:” on array indices in MATLAB/Octave).
For example, A;; represents a vector in R3.

One choice of approximation is to apply spatial smoothing
before differentiation, akin to the Sobel operator used in
computer vision for edge detection. The difference is that
here the approximated differentiation does not assume a
uniformly sampled visual field, and can be applied to an
arbitrary disposition of pixels. Under this approximation, the
tensors A and B can be obtained as (up to normalization
factors, see [17] for detail):

Aij = —q' (i) - (si x s5)/ sin(av;),
Bij = —q'(ij) - (1= s;87)s;/ sin(j),

(14)

ij
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Fig. 4. Simulation results using a natural environment as in (a). The initial current image and the goal image are shown in (b) using Mercator projection.
We visualize the rotation error using the geodesic distance on SO(3) [16]. In all simulations, we determined the length scale to ensure that the features
have reasonable realistic size (e.g. the height of a tree is 1015 m), and the time scale to obtain physically achievable kinematics (e.g. the fruit fly has a

typical translational velocity of 0.2 m/s and maximum of 1.2 m/s).

where I is the 3 x 3 identity matrix, ¢ is a smooth kernel
function (e.g., Gaussian), ¢’ denotes its derivative, and «;; £
cos~!(s; - s;) is the angle formed by s; and s;. We adopt
the convention that A;; = B;; = 0. Note that, if chosen
appropriately, the kernel ¢ can be localized and endows a
sparse approximation for A and B. This important feature
makes the method numerically favorable during implemen-
tation, despite that the number of entries in A and B could
be large for a practical sensor. Moreover, the localness of
the kernel also implies that this method could have an
efficient implementation on existing parallel computational
architectures (e.g., GPU), where access to non-local data is
expensive. More discussions on the bio-plausibility of such
computation will be given later in Section VII.

Under the new (discrete) notation, the previous PD control
law (13) becomes:

Tr =, Yilijr (8 — i) — kay;]

Fr=22,;yiBijk (8 —¥j) — kay;l-
For conciseness, we have ignored some constant gain factors
such as I and m and collected the two parts in (13). The
index k spans the three components of force and torque; the
indices ¢ and j range from 1 to n: 1 < 4,7 < n. More
concretely, in MATLAB/Octave, synthesis of the discretized
control law (15) will look like the following:

15)

o°

n: total number of pixels
For perspective cameras,

o

n = width % height

g = reshape (goal_image, n, 1);
y = reshape (current_image, n, 1);
for k = 1:3
torque(k) =y' x A(:,:,k) * (g — y — kdxy_dot);
force(k) =vy' * B(:,:,k) » (g — y — kdxy_dot);
end

This shows that the computation is simple and robust, com-
pared with traditional point-feature-based methods that often
involve feature extraction, matching, and outlier removal.

VII. BIO-PLAUSIBLITY OF THE COMPUTATION

The control law introduced in Section V can be considered
bio-plausible because of its simple computational structure.
It is a multilinear form of y, g, ¥y, combined in a simple
and feedforward way, thus can be potentially realized on a
neural substrate [3]. In synthesis, the computation is a wide-
field integration of local nonlinear operations. In [14], we

showed that part of the computation is equivalent to a wide-
field integration of elementary motion detectors, which is
an accepted model for capturing many aspects of the visual
computation in the fruit fly brain [21]. More generally, the
visual inputs y and g do not need be the raw luminance as ob-
served directly. As an example, it has been widely accepted
that flies perform contrast normalization on the perceived
luminance during its early stage of visual processing [22].
Such operation is considered bio-plausible as long as they
still return some form of “dense” visual input. To corroborate
the bio-plausibility, we will show simulation results of the
control law for flight stabilization of a fruit fly.

We used fsee [23] to simulate the visual input y of the fruit
fly Drosophila. 1t takes a 3D CAD world model (Fig. 4a)
and renders the visual perception as per the compound-eye
optics of the fruit fly. The simulation incorporates the spatial
disposition of the 1,398 “pixels” (ommatidia) that form the
compound eye, spatial blurring, and temporal filtering of the
underlying photoreceptors, all based on current knowledge
in visual physiology. Fig. 4b shows a typical simulation of
the visual stimulus in Mercator projection. We have ignored
the detailed dynamics (wing, multi-body, etc.) and made a
simplified assumption that the dynamics of the fruit fly can
be treated as a rigid-body. During simulation, all the physical
quantities are scaled based on experimental data from fruit
flies: for example, the typical translational velocity of a fruit
fly is around 0.2 m/s.

A typical convergent example using the proportional-
derivative control law (13) is shown in Fig. 4c (rotation
component) and Fig. 4d (translation component). The sim-
ulation starts at a joint rotational error of 30 deg and
translational error of 3 m. Eventually, the rotation error
settles down to about 1 deg, which is reasonable given
the spatial discretization of the sensor: each “pixel” spans
about 5 steradians. This nonzero rotation error induces a
corresponding small nonzero translation error. The nonzero,
in fact oscillating, final velocities are probably due to nu-
merical discretization in the simulation. Since the control
law is only guaranteed to be locally stable, we also used
the Monte Carlo method to perform numerical tests of the
region of attraction by sampling from a large number of
initial conditions. The percentage of convergent cases is
shown in Fig. 4e for increasing, randomly sampled initial



(joint) rotation and translation error. Despite the fact that
the environment has few distinctive features, the control law
provides a reasonable region of attraction, since it does not
rely on feature extraction.

VIII. EXPERIMENTS

To demonstrate the engineering value of the bilinear
control law, we have also implemented the control law
on an indoor helicopter testbed. The helicopter is rebuilt
from the E-flite Blade CX2 coaxial indoor helicopter by
adding an onboard wireless camera as the vision sensor
(Fig. 5). All the control commands computed by the PC are
sent to the radio controller via its trainer port after being
converted to PPM format by a customized microcontroller.
The wireless camera placed on the helicopter is able to
provide 640x480 images at a maximum frame rate of 30 fps.
Due to computational constraints, we choose to subsample
the relayed camera images at 220x 166. To compensate for
lighting variations, the images are passed though a Sobel
edge-detection filter followed by thresholding and Gaussian
smoothing (¢ = 15 px) before being used to compute the
control law. The control laws are computed using the discrete
tensors (14). The majority of the computation is performed
on an Intel Core2 Duo 2.40 GHz machine. The total delay
of the entire control procedure is estimated to be 78 ms.

(b) Illustration of the control
inputs

(a) Customized helicopter
with wireless cameras

Fig. 5. (a) Helicopter used in the experiments, custom-built from E-
flite Blade CX2. One wireless camera in encased in the tail boom. (b)
Ilustration of the control inputs: throttle wp,, rudder uy,g, aileron w,;;, and
elevation ueje.

The helicopter has 4 control inputs: throttle, rudder,
aileron, and elevation. Since the pitch of the rotor blades
is fixed, the throttle command wy, controls the thrust by
changing the speeds of the upper and lower rotors collec-
tively. Yaw control is realized by tuning the differential speed
between the two counter-rotating rotors via the rudder com-
mand wung. Lateral movements are controlled by the aileron
and elevation commands u,; and e, Which determine the
cyclic pitch of the lower rotor blades by driving a 2-DOF
swashplate. One limitation of our helicopter system is that
it is underactuated, because it has 6 DOFs with only 4
control inputs. This is evident in that the helicopter must,
for example, pitch forward in order to initiate forward flight.
In principle, a different model rather than (2) needs to be
adopted to take into account the underactuated dynamics.
However, when the helicopter is near hover, a simplified
fully actuated model with 4 control inputs proves to give a
reasonable approximation in practice, since the uncontrolled
pitching and rolling are relatively small. By using Euler
angles (pitch 6, roll ¢, and yaw ¢) as the local coordinates

for rotation near r, = Id, the linearized simplified model
can be expressed as:

Hzé = Upud + brud,

Uail 0
mp = Uele + 0
Uthr binr + f, gravity

We have also included the hardware trim/bias in throttle
and rudder, namely by, and b.q. In practice, these can
often depend on various unknown factors such the remaining
battery capacity, battery placement, and motor temperature.
Moreover, the change in throttle trim will also affect other
channels (rudder, aileron, elevation) because the lateral thrust
is provided via the main rotors.

Compared to simulations, the testbed now introduces sev-
eral technical challenges due to various non-idealities: 1) lim-
ited field of view, 2) underactuated dynamics, 3) delay in the
control loop, 4) non-Gaussian sensor noise due to wireless
interference, and 5) time-varying hardware uncertainties.

Automatic bias compensation: The first problem in op-
erating such a helicopter is compensating the biases that
make the helicopter drift away when one applies nominal
inputs. Bias compensation is usually a long trial-and-error
manual operation that must be often repeated. However,
we discovered that the bilinear velocity estimates wpgp and
vpL defined in (12) were so reliable that they provided an
opportunity to perform simple and effective automatic bias
compensation. For example, if wgr . > 0, we know, even
if the magnitude is unknown, that the helicopter is rotating
to the left, and we can compensate by decreasing the rudder
command. In formulas, we set

Uthr(t) O(/O n(T)i}BL,z(T) d’T, umd(t) O(/O n(T)Lz’BL’Z(T) dr.

In these expressions, n(7) = e 77 is a decay factor used
to suppress undesirable oscillations due to noise. As can be
seen from Fig. 6b, the oscillations in rudder compensation
(shown in Fig. 6a) disappear after a decay factor is used.
Visual pose stabilization: An attached video' shows a
demo of visual pose stabilization. Currently, we keep the
throttle manually controlled for safety purpose, but leave the
remaining three channels automatically controlled. Fig. 7a
and 7b show the goal image and a typical current image;
both the unprocessed one as seen from the camera and
the processed one after Sobel edge detection and Gaussian
smoothing are shown. Because we do not know the ground
truth of the current pose, the only useful indicator is the
cost function J defined in (6), whose change over time is
plotted in Fig. 7c. The oscillations in J and the fact that J
is close to O during the first ~ 30 s of the trial indicate
that the helicopter is being stabilized around the goal. It
is worth noting that the stabilization is only proved to be
local. Several methods can be used to mitigate the problem of
limited region of attraction, such as using an omnidirectional

'A high-quality one is also available at: http:/purl.org/hanshuo/2010/pd_
pose_stabilization



camera and/or multiple goal images recorded at adjacent but
different poses.

I I I I I I I I
0.00 0.00
—0.05 —0.05
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—-0.20 —0.20
—0.25 —0.25 L1
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time (s) time (s)

(a) Without decay factor -y

Fig. 6. Automatic trim/bias compensation for rudder (rotation about the
z-axis) using visual input only, recorded from a number of repeated trials.
The compensation term is synthesized by integrating the bilinear velocity
estimates g and vpp over time. Using a decay factor suppresses the

oscillations and gives a stable compensation.
u

(a) The goal image (before and after (b) Image at time t ~ 26 s (before
processing). and after processing).

(b) With decay factor

Cost function J

outside region
of convergence

I

0 5 10 15 20 25 30 35 40 45
time (s)

(c) Evolution in time of the cost function J. The blue line indicates the
time when the image in (b) was taken.

Fig. 7.  Pose stabilization using the visual PD control law. (a) The
goal image and an example current image used during the test flight.
The processing includes Sobel edge detection and subsequent Gaussian
smoothing. (b) The change of the cost function J in time during the test
flight, as an indication of stabilization around the goal. At the end of the trial,
due to several non-idealities such camera noise and drifts in the hardware
trims, the helicopter went out of the region of attraction.

IX. CONCLUSIONS

We showed that the task of visual servoing can be solved
(at least locally) through purely visual control laws. The non-
obvious result is that, a locally stable control law can be ob-
tained without knowing the distance to the objects, given that
certain condition on the environment holds. These control
laws respect the constraints of bio-plausible computation by
using a bilinear/quadratic operation on the raw luminance: in
a traditional implementation, the operation is only a tensor-
vector multiplication with the raw pixel array. We are in
the process of extending our work in two directions. From
the engineering viewpoint, we want to ascertain whether the
approach can give solid advantages over traditional methods
(feature-based and not). This would imply looking at issues
such as change of lighting condition, occlusions, locality,
nonholonomic constraints, which we did not consider yet.
At a more abstract level, we want to investigate whether

the same bio-plausible design concept is applicable for more
complex tasks, such as structure from motion and obstacle
avoidance.
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