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Abstract—We consider the problem of purely visual pose
stabilization of a second-order rigid-body system: how to choose
forces and torques, based on the visual input alone, such that
the view converges to a memorized goal image. Emphasis has
been given to the bio-plausibility of the computation, in the sense
that the control laws could be in principle implemented on the
neural substrate of simple insects. We show that stabilizing laws
can be realized by bilinear/quadratic operations on the visual
input. Moreover, the control laws can be “bootstrapped” (learned
unsupervisedly) from experience, which further substantiate the
bio-plausibility of such computation.

I. INTRODUCTION

The question of how the brain utilizes millions of neurons,
presumably in a highly parallel fashion, to make timely
decisions from information-rich sensory inputs still remains
unanswered. This remains true even for one of the simplest
animals, the fruit fly, which has only about 300,000 neurons,
orders of magnitude fewer than the human brain. Engineers
marvel at the series of fast and robust behaviors implemented
on the poor computational support of slow and noisy neurons.
Particularly interesting is the processing of visual informa-
tion (Fig. 1), which biologists believe is a dominant sense
controlling flight in many species of insects. Examples of
classical studied behaviors include turning towards features
of interest [1] and altitude/velocity control [2]. In this paper,
we are especially interested in the visual behaviors that allow
insects to return to or to stay at a particular location in space
(hovering and homing). Leading theories posit that naviga-
tion is performed using a combination of panoramic retinal
snapshots from key locations taken during learning flights [3],
[4] and distance information relating such locations to each
other [5]–[8]. Such local representations are tied to prominent
local landmarks, and insects may navigate by traveling from
landmark to landmark using these local maps, dead reckoning,
or a compass cue such as the pattern of polarization in the
sky [9], [10]. Alternative views of bee navigation propose that
maps are formed [11] or that visual-motor control loops are
strengthened during learning [12].

The hovering and homing behaviors are instances of what in
robotics is called visual servoing. Our goal in this paper is to
solve this problem while respecting the constraints of a “bio-
plausible” computation. The motivation is twofold: on the one
hand, this might provide clues for realizing a computational
model of the insects behavior, useful to biologists; on the
other hand, it might inspire useful engineering principles to
realize similar robust systems. The question of what can be
considered bio-plausible, is, of course, loosely defined. In
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Figure 1. Example of simulated visual input for a fruit fly. The 1,398
ommatidia of the two compound eyes cover almost all the visual sphere.
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(a) Model for purely visual pose stabilization.
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Figure 2. (a) We control in force/torque a rigid body model based only on the
luminance profile. (b) We bootstrap the behavior by forcing the system with
random input and performing Hebbian learning. (c) Proportional-derivative
pose stabilization control laws are realized as one local nonlinearity and a
tensor product (wide-field integration). Refer to the text for notations.

brief, we consider something to be bio-plausible if it can be
realized on neural circuits [13]. The computation should be
implementable using parallel asynchronous units; in insects, a
model of computation that is well accepted as bio-plausible
is a local nonlinear operation followed by wide-field linear
integration.

An example of computation that could not be considered
bio-plausible would be feature-based visual servoing: not as
much for implementing a feature-extraction algorithm, but
because the logic of manipulating a “list of features” and
matching them does not appear to be implementable on
a neural substrate. The alternative is using the raw values
of pixel luminance, which, interestingly, is a new trend in
robotics [14]–[17]. The feasibility of this scheme for insects
has been considered, and an experimental assessment [18]
concluded that “view-based homing with panoramic images
is in principle feasible in natural environments and does not
require the identification of individual landmarks”.

In this paper, we present proportional-derivative control
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laws that can solve the visual servoing problem for a second-
order system controlled in force/torque. We do not rely on
velocity sensors; we only assume to know the current visual
observations (Fig. 2a). The computation essentially consists of
a tensor product of the goal image and the current observations
(Fig. 2c). Moreover, our control laws are bootstrappable from
experience: the control tensor can be learned unsupervisedly
using Hebbian learning during a calibration phase (Fig. 2b).
This is interesting in biology, because it allows us to pos-
tulate that the genotype only encodes a generic learning
algorithm rather than extensive pre-wired information. From
the engineering point of view, this allows one to work with
a completely uncalibrated camera, in which each pixel is
arbitrarily oriented on the visual sphere.

Related work: Visual servoing is a classical problem in
industrial robotics, with applications in controlling robot ma-
nipulators [19], [20] or visual navigation [21], [22]. The
classical approach normally consists of extracting and tracking
fiducial point/segments from the image [23]. However, in
the last few years, several methods have been proposed that
do not rely on features, but instead use the image intensity
directly [14]–[17]. These are formulated as computing gradient
flows of an image dissimilarity measure; the obvious but not
unique choice is the squared error over the field of view. An
issue that appears not to be completely solved at the moment
is formulating sufficient conditions for convergence, especially
because these gradient flows depend on the distance to the
objects, which is usually approximated.

In feature-based visual servoing, learning (“adaptive”) tech-
niques have been used for inferring the kinematics (image
Jacobian) [24], [25] and for action planning [26]. This learn-
ing, however, appears to be strongly structured and relies
on precomputations such as feature extraction. Actually, the
learning/bootstrapping part of this paper has been inspired
by the somewhat unrelated research of Kuipers on the spa-
tial semantic hierarchy [27], which provides a framework
for bootstrapping successive abstractions of the world, from
uninterpreted sensors to cognitive maps; the learning presented
in this paper corresponds to the lower levels of the hierarchy,
applied to the vision sensor.

Contribution: This paper is the ideal continuation of [28],
where we solved the same problem for purely rotational
motion, and proposed a supervised learning algorithm (back-
propagation) to learn the control tensor. We give two main
improvements over the previous results: 1) We solve the
problem for rotation + translation instead of pure rotation. This
is not a trivial extension, because when performing translation,
the visual observation will be affected by the distance to
objects, which is not instantaneously observable. 2) We show
that the control law can be bootstrapped via an unsupervised
Hebbian learning rule, which makes the computation more
likely to be implemented on a neural substrate.

With respect to related work in engineering on feature-free
visual servoing, we offer the following contributions:

• We consider a second-order system: the control inputs are
torque/force rather than velocities; this implies estimat-

ing velocity from variations in the luminance to create
suitable damping laws.

• We prove the stability of purely visual control laws
independent of (or robust to changes in) the distance pro-
file; previous work did propose laws assuming constant
distance, but did not prove convergence (e.g., [16]).

• The aforementioned learning part, from the engineering
point of view, allows us to obtain a controller that requires
completely zero configuration: it does not rely on the
geometry of the camera, because the pixels are considered
merely as an unordered numerical array.

The paper is organized as follows. Section II introduces the
notation used and preliminaries about the model. Section III
considers about the observability of the problem. Section IV–
VI show, in the order of complexity: 1) damping control
laws that stabilize the velocities to zero, 2) control laws
for the first order system, controlled in velocity, and 3)
proportional-derivative control for the second-order system.
Section VII shows how these control laws can be bootstrapped.
Section VIII shows simulations that validate the correctness of
the strategy using the simulated visual input of a fruit fly.

II. PRELIMINARIES

This paper uses a basic differential-geometric language
for describing motions; the reader not acquainted with such
notation can refer to, e.g., [29]. For example, Dxf(x)|x=x0 ·v
refers to the derivative of f with respect to x applied to the
tangent vector v at x = x0. This reduces to the directional
derivative when f is defined on a Euclidean space.

Let SO(3) (SE(3)) be the special orthogonal (Euclidean)
group of dimension 3. Let S2 ⊂ R3 be the unit sphere. In the
following, “s” always signifies an element of S2. For example,
we model visual input as a function y(s, t), where t is time,
and s spans the visual sphere S2. For such a function, we
assume the convention that ∇sy(s, t), or ∇y for short, is an
element of R3; i.e., we think of it as an “arrow attached to
the sphere S2”. Many computations involve integration over
the sphere: 〈f〉 ! ∫ f(s) dS, with S as the unique rotation-
invariant measure on S2.

We denote the algebraic dual of a vector space E as E∗.
In the finite-dimensional case, x∗ ∈ E∗ reduces to the vector
transpose: x∗(y) = xT y (∀y ∈ E). The tensor products on
E and E∗ are described using the Einstein convention: yi ∈ E,
yi =

(
yi

)∗ ∈ E∗, Mij ∈ L2(E; R) (bilinear forms). During
multiplication, the repeated indices are summed or integrated
over: yigi =

∑
i yigi (i = 1, · · · , n), ysgs = 〈yg〉 (s ∈ S2).

System dynamics: We consider the fully actuated rigid
body dynamics on SE(3). The state space consists of the body
attitude r ∈ SO(3), the body position p ∈ R3, the angular
velocity in the body frame ω ∈ R3, and the linear velocity in
the body frame v ∈ R3. The dynamics can be written as






ṙ = r (ω)∧ ,

Iω̇ = (Iω)× ω − εωω + τ ,

ṗ = rv,

mv̇ = mv × ω − εvv + f ,

(1)



where (·)∧ is the “hat map” [30] that maps a vector x to the
corresponding skew-symmetric matrix x∧ such that x∧y =
x× y, with “×” being the ordinary cross product in R3; I ∈
R3×3 is the momentum of inertia; m ∈ R is the body mass;
τ ∈ R3 is the control torque; f ∈ R3 is the control force. We
also include two damping terms (−εvv, −εωω) to make the
model more realistic. Occasionally, we will also refer to the
first-order system, assuming we can set ω and v directly.

Sensors: We assume to have available only the output
of a vision sensor. With good generality, a vision sensor is a
device that at each time t returns an array of n values yi(t),
each corresponding to the light intensity in a direction si ∈ S2,
convolved by a certain point-spread function. This formulation
is equally apt for modelling a normal camera, a catadioptric
camera, or the ommatidia of a fruit fly. Later on, it will be
clear that we do not even need to know each direction si; i.e.,
our sensor is completely uncalibrated.

In the pure rotation case, the value of y(s, t) can be written
as y(s, t) = m(r(t)s), where m(s) is the luminance profile in
the reference attitude. However, in the presence of translation,
it is not possible to give a closed-form expression of y(s, t)
as a function of r and p, because it depends, in a complicated
way, on the “nearness” µ(s, t), which is the inverse of the
distance to the object in direction s. We only need the relation
between ẏ(s, t) and µ(s, t), recalled in Lemma 1 in the
appendix.

In deriving the theory, we make a number of simplifying
assumptions on the vision sensor: 1) We assume that we can
sample the entire visual field and that we have “a continuum of
pixels”, i.e., we know y(s, t) for all s ∈ S2; 2) We assume that
we can observe both y(t) and ẏ(t); 3) We ignore the effect
of occlusions. Note, however, that in the simulations we do
incorporate blurring, sensor dynamics, and occlusions.

Control problem: We assume that the agent knows a
“goal” image, g(s), taken at the goal pose qg = (rg,pg).
Without loss of generality, we often assume that (rg,pg) =
(Id, 0). The problem we wish to solve can be stated as follows:

Problem 1 (Visual pose stabilization): Given the goal im-
age g, design a stabilizing control law for τ and f , depending
only on y, ẏ, g, such that q → qg .

III. OBSERVABILITY AND CONTRAST

The first issue is assessing whether knowing only y and g
is sufficient to drive the system to the goal. In other words,
we should check whether qg is observable from the observa-
tions y. One way is checking that q = qg is the only solution
of the equation y(s) = g(s). Equivalently, q = qg should be
an isolated minimum of the distance in image space:

J(q) =
1
2

〈
(y − g)2

〉
. (2)

J depends on q because y varies with q . A sufficient condition
for qg to be observable is that the Hessian of J is positive
definite at qg . Here we stumble on a technical difficulty: the
attitude r lives on the manifold SO(3); therefore the Hessian
is not simply a “square matrix” as in standard calculus. See the

text [31] for the subtleties involved in defining the Hessian of a
function on a manifold. To circumvent the difficulty, we make
a local change of coordinates from SO(3) to R3, for which
standard calculus can be applied. In particular, we choose the
exponential coordinates ϕ ∈ R3:

ϕ = Log(r)∨, r = Exp(ϕ∧),

where Log and Exp are the matrix logarithm and exponential,
and (·)∨ is the inverse of the hat map. Note in particular that
(r = Id) ⇔ (ϕ = 0).

Proposition 1: The Hessian of J(ϕ,p), also referred to as
the “contrast matrix”, is

C(y, µ) =
[

〈SySy∗〉 〈µSy∇y∗〉
〈µ∇ySy∗〉

〈
µ2∇y∇y∗

〉
]

, (3)

where y(s) is the image, µ(s) is the nearness profile, ∇ = ∇s,
and the operator S is defined as

Sy ! s×∇sy. (4)

Proof: The result is a direct consequence of Lemma 2
and 3 in the appendix.
From now on, we assume the following condition:

Condition 1 (Full contrast): The matrix C(g, µg) is posi-
tive definite.
If the condition is not satisfied, the environment possesses
some kind of spatial invariance that makes Problem 1 impos-
sible to solve with the visual input alone1. Analogously, we
define a global version of the contrast condition, as follows.

Condition 2 (Global full contrast): At all poses, the matrix
C(y, µ) is positive definite.

IV. VISUAL DAMPING CONTROL LAWS

Our ultimate goal is constructing a proportional-derivative
controller. In this section, we restrict the focus on how to
create a damping control law: choose force and torque as a
function of y, ẏ, such that the velocities ω, v are driven to 0,
even in the absence of the natural damping factors in (1).

A. Bilinear estimation/damping of angular velocity.

We have shown in [28] that a bilinear (BL) form of y, ẏ,
defined as ω̂BL ! 〈(Sy) ẏ〉 , suffices to estimate the rotational
velocity “up to 90 deg”: ω∗ω̂BL ≥ 0. This is a velocity
estimator that is arbitrarily inaccurate in scale, without more
constraints on the environment. In fact, suppose that ω̂BL = ω
in a certain environment y. For another environment that is
twice as bright: y′ = 2y, the resulting ω̂BL will be off by a
factor of 4. Nevertheless, we showed that ω̂BL is useful for
control purposes:

Proposition 2 (Pure rotation damping): Assume that Con-
dition 2 holds and v = 0. Then the torque command τ =
−kd 〈(Sy) ẏ〉 stabilizes the angular velocity ω to 0.

1Excluding degenerate cases in which the Hessian is singular but higher-
order derivatives are not.



B. Bilinear estimation/damping of linear velocity.

We consider the analogous results for the linear velocity,
assuming pure translational motion (ω = 0). Define the
bilinear estimator of v as v̂BL ! 〈(∇y) ẏ〉, and analogous
properties to the rotation case can be proved:

Proposition 3 (Pure translation damping): Assume Condi-
tion 2 holds and ω = 0. Then v∗v̂BL ≥ 0. Moreover, the force
command f = −kd 〈(∇y) ẏ〉 stabilizes the linear velocity v
to 0.

Proof: Condition 2 implies that
〈
µ2∇y∇y∗

〉
> 0, hence

〈µ∇y∇y∗〉 > 0 since µ ≥ 0. Thus, by Lemma 1 in the
appendix, v∗v̂BL = v∗ 〈ẏ (∇sy)〉 = v∗ 〈µ∇y∇y∗〉v > 0. The
dynamics of v, given by v̇ = m−1f = −kdm−1 〈(∇y) ẏ〉 =
−kdm−1 〈µ∇y∇y∗〉v, are asymptotically stable.

C. Joint velocity damping.

We have shown that a damping control law can be created
from bilinear functions of ẏ and y, in the cases of pure rotation
and pure translation. Does this mean that the joint damping
law works? This is not immediate, because the dynamics of
ω and v interact. We can prove this only in the presence of a
modified contrast condition, which will be important also for
the next sections.

For α > 0, define the matrix

C̃(y, µ, α) !
[

〈SySy∗〉
〈(

α
2 + µ

2

)
Sy∇y∗

〉
〈(

α
2 + µ

2

)
∇ySy∗

〉
α 〈µ∇y∇y∗〉

]
.

Condition 3 (Modified full contrast): There exists α > 0
such that C̃(g, µg, α) is positive definite.

Remark 1: The need for this condition stems from the fact
that C̃(y, µ, α) = 1

2 (A + A∗), where the matrix

A !
[

〈SySy∗〉 α 〈∇ySy∗〉
〈µ∇ySy∗〉 α 〈µ∇y∇y∗〉

]
(5)

will appear in many of the proofs. As of now, we do not have
an intuitive interpretation of the matrix C̃(y, µ, α), except in
one special case. Suppose the environment is spherical: µ(s) =
µ, and let α = µ. In this case, C̃(y, µ, α) = C(y, µ), thus
Condition 3 is equivalent to Condition 1. By continuity, we can
also argue that if C(y, µ) > 0, then C̃(y, µ, α) > 0 (and vice
versa) if the environment is of sufficiently small variation from
spherical. We conjecture this condition could be equivalent to
the full contrast condition, at least in the case of µ > 0 (no
objects at infinity).
With this condition, it is straightforward to show that the joint
damping law is stable.

Proposition 4 (Joint damping): Assume Condition 3 holds
uniformly at every point (C̃(y, µ, α) > 0). Then the control
law (kd > 0) {

τ = − kd 〈(Sy)ẏ〉 ,
f = − αkd 〈(∇y)ẏ〉

stabilizes v,ω to 0.

Proof: Take the energy V (ω,v) = 1
2mv∗v + 1

2ω∗Iω as
a Lyapunov candidate, and compute the derivative of V :

V̇ = v∗mv̇ + ω∗Iω̇
= v∗(mv × ω − εvv + f) + ω∗((Iω)× ω − εωω + τ )
= −εvv∗v + v∗f − εωω∗ω + ω∗τ

≤ v∗f + ω∗τ

= v∗(−αkd 〈(∇y)ẏ〉) + ω∗(−kd 〈(Sy)ẏ〉).

Now consider that from Lemma 1,

〈(∇y)ẏ〉 = 〈µ∇y∇y∗〉v + 〈∇ySy∗〉ω,

〈(Sy)ẏ〉 = 〈µSy∇y∗〉v + 〈SySy∗〉ω.

Thus V̇ is a quadratic function of (v,ω):

V̇ = −kd [αv∗ (〈µ∇y∇y∗〉v + 〈∇ySy∗〉ω)
+ ω∗ (〈µSy∇y∗〉v + 〈SySy∗〉ω)]

= −kd [ ω v ] A [ ω v ]∗ .

If Condition 3 holds, V̇ is negative definite by Remark 1, and
the system converges to v,ω = 0.

V. CONTROL IN VELOCITY

We now consider the problem of controlling the first-order
system, assuming that we can impose ω and v directly. A
natural way to define control laws is expressing them as
gradient flows of the quadratic cost function (2).

Proposition 5 (Exact gradient flow): The gradient flow that
minimizes (2) is

{
ω = 〈(Sy)(g − y)〉 ,
v = 〈µ(∇y)(g − y)〉 .

(6)

Proof: Compute J̇ as J̇ = 〈(y − g)ẏ〉 and substitute the
expression for ẏ in Lemma 1 (in the appendix).
Note that, similarly to the damping control law of the pre-
vious section, these gradient flows have a particularly simple
computational form, being bilinear in the error (g− y) and y.
Unfortunately, v depends on the nearness profile µ(s), which
is unknown.

One possible solution would be estimating µ, by solving a
structure from motion problem (e.g., [32]–[34]). Our approach,
instead, is to investigate whether it is possible to use a control
law that does not depend on µ. Serendipitously, we could just
drop µ and hope it would work. In fact, it does, as explained
by the following proposition:

Proposition 6 (Approximated gradient flow): Suppose
Condition 3 holds. Then the control law{

ω = 〈(Sy)(g − y)〉 ,
v = α 〈(∇y)(g − y)〉

(7)

locally stabilizes the first-order system.
Proof: Consider the first-order dynamical system as in (1)

and rewrite it using exponential coordinates as
{

ϕ̇ = ω,

ṗ = Exp(ϕ∧)v.



The linearization around the equilibrium (ϕ,p) = (0, 0) is
{

ϕ̇ = Dϕ(ω) · ϕ + Dp(ω) · p,

ṗ = Dϕ(v) · ϕ + Dp(v) · p.

Using Lemma 2 and 3, and recurring again to the definition
of A in (5), one obtains that the linearized system is of the
kind ẋ = −Ax, with the same A defined in (5). Since the
symmetric part of A is 1

2 (A + A∗) = C̃(g, µ, α) > 0, stability
is immediately concluded from the Lyapunov function V =
‖ϕ‖2 + ‖p‖2.

VI. PROPORTIONAL-DERIVATIVE CONTROL

Proposition 7 (Joint proportional-derivative control):
Assume that Condition 3 holds. Moreover, suppose that
I = ‖I‖ I . Then the control law

{
τ = ‖I‖ 〈(Sy)(g − y)〉 − kd ‖I‖ 〈(Sy) ẏ〉 ,
f = αm 〈(∇y) (g − y)〉 − αmkd 〈(∇y) ẏ〉 ,

(8)

for a large enough kd, guarantees local asymptotic stability of
the second-order system (1) near y = g.

Proof: The point (r,ω,p,v) = (Id, 0, 0, 0), i.e., y = g,
is an equilibrium of the system. Make the change of variable
r /→ ϕ, and consider the linearization around the equilibrium:





ϕ̇ = ω,

ω̇ = 0 + Dϕτ · ϕ + Dpτ · p + Dωτ · ω + Dvτ · v,

ṗ = v,

v̇ = 0 + Dϕf · ϕ + Dpf · p + Dωf · ω + Dvf · v.

(9)

All the derivatives are computed at the equilibrium point. We
already computed many of these derivatives as part of the
proofs of earlier propositions. Let w = [ ϕ p ]∗, z = [ ω v ]∗.
The linearized dynamics can be written as

{
ẇ = z,

ż = −Aw − kdAz.

We can prove stability of this system by considering a Lya-
punov candidate

V = w∗Aw +
1
2
z∗z + k−1

d w∗z

=
[

w
z

]∗ [
A + A∗ 1

2k−1
d I

1
2k−1

d I 1
2I

] [
w
z

]
.

By Condition 3, A+A∗ = 2C̃(g, µg, α) > 0; thus V is positive
definite for large enough kd. We also compute the derivative
of V as follows:

V̇ = w∗Aẇ + ẇ∗Aw + z∗ż + k−1
d w∗ż + k−1

d ẇ∗z

= w∗Az + z∗Aw + z∗(−Aw − kdAz)
+ k−1

d w∗(−Aw − kdAz) + k−1
d z∗z

= −z∗(kdA− k−1
d I)z − w∗k−1

d Aw

= −z∗(kdC̃(g, µg, α)− k−1
d I)z − w∗k−1

d C̃(g, µg, α)w.

If kd is large enough, then (kdC̃(g, µg, α) − k−1
d I) > 0,

and V̇ is negative definite. Thus the linearized system is
asymptotically stable, and the original system is asymptotically
stable as well.

VII. BOOTSTRAPPING THE CONTROL LAW

Proposition 7 says that visual pose stabilization can be
realized with the particularly simple control law (8). We note
the following characteristics of such computation:

• It is a simple feedforward combination of sensory data.
• It is a multilinear form of y, g, ẏ, thus can be realized

on a neural substrate [13].
• The nonlinearity is local (sparse/retinotopic), followed by

a wide-field linear integration.
Therefore, one could say that the control law is bio-plausible.
Moreover, in [28] we commented on the similarity of parts
of this computation to a Reichardt correlator; in synthesis,
the computation is equivalent to wide-field integration of
elementary motion detectors, which is an accepted model for
capturing many aspects of the visual computation in the fruit
fly brain [35].

In this section, we go one step further and argue that this
control law can be “bootstrapped” with Hebbian learning. This
proposes an even stronger argument for bio-plausibility: in
fact, instead of having to assume that the animal encodes a
large number of “weights” in its genotype, one may assume
that it has evolved the computational layout via a “pre-wired”
generic unsupervised learning algorithm.

To see what exactly should be learned, we rewrite once
again the control law (8) using a tensorial notation as follows:

{
τ k = Auk

v ((gv − yv)− kdẏv) yu,

fk = Buk
v ((gv − yv)− kdẏv) yu.

(10)

Recall that, following the Einstein summation convention, we
integrate over repeated indices. The index k, not repeated,
spans the three components of force and torque. This expres-
sion can be interpreted either on the continuous visual sphere
(ys = y(s)), or for discrete sensors (yi = y(si)). In the first
case, the indices u, v span S2 and we interpret A,B as generic
multilinear operators; in the second case, 1 ≤ u, v ≤ n, with
n being the number of “pixels”, and A,B can be thought as
n × n × 3 tensors: they act on two vectors in Rn and return
a vector in R3.

The bootstrapping procedure able to learn the control ten-
sors Auk

v , Buk
v is given as Algorithm 1 in the next page.

Proposition 8 (Bootstrapped control law): Assume Condi-
tion 3 holds for α = E{µ} and g̃ = Pg. Then the control
law (10), with the tensors learned by Algorithm 1, stabilizes
y → g and (ω,v) → 0.

We need some intermediate results before proving this.
Definition 1 (Right-invariant environment): Write the vi-

sual input as a function of the pose q as y(q). The environment
is right-invariant if, when averaging any function of y(q) over
all possible poses, the result is invariant to an arbitrary roto-
translation δ ∈ SE(3): Eq {f(y(q))} = Eq {f(y(qδ))} .

Proposition 9 (Bootstrapping results): Assume I = ‖I‖I ,
and let the environment be right-invariant. Then the bootstrap-
ping procedure converges, up to omitted constant factors, to

Muk
s → SkPu

s , Nuk
s → E{µ}∇kPu

s .



These are smoothed versions (using the spatial covariance as
smoothing operation) of the operators S and ∇.

Proof: We will prove the result for M and omit the
analogous proof for N. Firstly, we consider the dynamics
of ω(t) in each calibration episode, under the influence of
a randomly sampled constant torque τ (t) = τ . Since I
is diagonal, the dynamics of ω are linear and, from linear
systems theory [36], ω(t) = c(t)τ for some c(t) ≥ 0. We
can now compute Mu

s directly from (20), by summing over
all episodes, and integrating over the interval [0, T ]:

Mu
s ∝

∑
a

´ T
0 τ (a)ẏ(u, t)y∗(s, t) dt

=
∑

a

´ T
0 τ (a)ω(t)∗(Sy(u, t))y∗(s, t)dt (11)

=
∑

a

´ T
0 τ (a)c(t)τ (a)∗(Sy(u, t))y∗(s, t)dt (12)

= Er0,τ

{
τ τ ∗S

´ T
0 c(t)y(u, t)y∗(s, t)dt

}
(13)

= Er0,τ

{
τ τ ∗S

´ T
0 c(t)m(r(t)u)m∗(r(t)s)dt

}
(14)

= Eτ

{
τ τ ∗S

´ T
0 c(t)Er0 {m(r0δ(t)u))m∗(r0δ(t)s)}dt

}

(15)

= Eτ

{
τ τ ∗S

´ T
0 c(t)Er0 {y(u, 0)y∗(s, 0)} dt

}
(16)

∝ SEr0 {y(u, 0)y∗(s, 0)} (17)
= S

(
Pu

s + y211∗
)

= SPu
s . (18)

In (11), we used the expression for ẏ in Lemma 1. In (12), we
used ω(t) = c(t)τ . In (13), we substituted the sum over all
episodes by the expectation, assuming that we had an extensive
set of samples. The expectation is taken over the generated
torque τ and the initial attitude r0. In (14), we used the
definition y(s) = m(r(t)s). In (15), we decomposed r(t) as
r0δ(t), where δ(t) is the time-dependent rotation induced by
the applied torque. In (16), we used the definition of right-
invariance: we can get rid of the initial displacement when
taking the expectation with respect to all poses r0. In (17),
we computed and absorbed the constants E {τ τ ∗} = σ2I
and ∫T

0 c(t)dt. In (18), we used a property of the covariance,
which in 1D can be written as E{x2} = cov(x)+E{x}2. The
value y is the average of y(s) over all s, all configurations,
and 1 is the constant function on the sphere. Then we used the
fact that S as a differential operator annihilates the constant
11∗. Analogously, one can prove that N tends to E{µ}∇P.

Proof of Proposition 8: Substitute in (10) the tensors A,
B created by the bootstrapping procedure:

{
τ k = Ps

v

(
SkPu

s

)
((gv − yv)− kdẏv) yu,

fk = Ps
v

(
µ∇kPu

s

)
((gv − yv)− kdẏv) yu.

(19)

By defining ỹs = Ps
vyv , g̃s = Ps

vgv , and ỹs = (ỹs)∗,
{

τ k =
(
(g̃s − ỹs)− kd

˙̃ys
)
Skỹs,

fk = µ
(
(g̃s − ỹs)− kd

˙̃ys
)
∇kỹs.

Converted back to our old notation, this is equivalent to (8)
under the change g /→ g̃ and y /→ ỹ (up to a constant
factor, which can be incorporated in A or B). Thus we have
convergence on the same conditions of Proposition 7.

A. Speeding up the bootstrapping procedure

We mention two shortcuts that allow us to speed up the
boostrapping procedure.

Remark 2: If one can sense velocities directly, then the
learning rules (20) and (21) can be changed to

Ṁuk
s = ωkẏuys, Ṅuk

s = vkẏuys.

The learning converges to the same values, as can be seen from
adapting (actually shortening) the proof of Proposition 9.

Remark 3: If one knows the directions si of each pixel,
then it suffices to learn the tensor M, and recover N using
N = s×M, since s×M = s×(SP) = s×(s×∇P) = ∇P. This
method, however, while convenient for speeding up the simula-
tion, violates our bio-plausibility criterion because it requires
knowing each eye direction si, which is not bootstrappable
from sensory input.

B. What “learnable” means for an engineer

The significance of the existence of such a bootstrappable
control law is clear from the biological point of view. Is it
interesting also for an engineer? One interesting advantage is
that this bootstrapping algorithm can be run with a completely
uncalibrated camera. In fact, the bootstrapping procedure
works with the raw values of the pixel luminance: nowhere
do we need to compute anything regarding to the camera
calibration parameters. For example, we can use a camera
setup with a completely irregular mirror surface, without
worrying about a complex camera calibration procedure.

Algorithm 1 Bootstrapping procedure
Assumptions: The system has naturally damped dynamics
with εv, εω > 0; the environment is right-invariant.
Output: Control tensors Auk

v , Buk
v .

1) Initialize M and N: Muk
s = 0, Nuk

s = 0.
2) For learning M, repeat a large number of times:

• Start from rest (ω = 0, v = 0) with a random
attitude and position (r,p).

• Sample a test torque τ from some distribution such
that E{τ} = 0 and E{τ τ ∗} = σ2I .

• Apply τ for a duration of T ; evolve the tensor Muk
s

using
Ṁuk

s = τ kẏuys. (20)

(we omit a decaying term to keep M bounded)
3) Analogously, do the same for the tensor N: this time

sample the force f , and evolve using

Ṅuk
s = f

k
ẏuys. (21)

4) Using any known Hebbian algorithm, learn the covari-
ance Pu

s ! cov(yu, ys).
5) Let Auk

v = Ps
vMuk

s and Buk
v = Ps

vNuk
s .
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(f) Artificial environment (g) Start/end images
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(h) Rotation error and |ω|
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(i) Translation error and |v|
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(j) Convergence test

Figure 3. Simulation results. We visualize the rotation error using the geodesic distance on SO(3) [30]. In all simulations, we determined the length scale
to ensure that the features have reasonable realistic size (e.g. the height of a tree is 10–15 m), and the time scale to obtain physically achievable kinematics
(e.g. the fruit fly has a typical translational velocity of 0.2 m/s and maximum of 1.2 m/s)

VIII. SIMULATIONS

We used fsee [37] to simulate the visual input of the
fruit fly Drosophila with a biologically realistic model, which
includes the spatial disposition of the 1,398 “pixels” that form
the compound eye, the spatial blurring in the optics, and
temporal filtering of the underlying photoreceptors, according
to current knowledge in visual physiology [37]. Fig. 1, 3b, 3g
show typical simulations of the visual stimulus. The 1,398
ommatidia of a fly cover almost all the visual sphere; in the
images, they are arranged using a cylindrical projection. In the
simulations, we approximate ẏ(t) as 1

∆t [ y(t)− y(t−∆t)].
We used two environment models: a natural environment

(Fig. 3a) and an artificial one (Fig. 3f) [38]. 20,000 episodes
were used to learn the tensors according to the bootstrapping
procedure. We used the shortcuts mentioned in Remarks 2–3
to speed up the learning: the bootstrapping of N is intrinsically
difficult for our simulation setup, because providing exhaustive
sampling of the nearness profile µ(s) requires an elaborate col-
lection of 3D models; this seems very inconvenient unless the
simulation environment is equipped with automated generation
of such a collection.

A typical convergent example using the proportional-
derivative control law (8) is also shown for each environment
as in Fig. 3c, 3h (rotation component) and Fig. 3d, 3i (trans-
lation component). The rotation error settles to about 1 deg,
which is reasonable given the discretization of the sensor: each
“pixel” covers about 5 steradians. This nonzero rotation error
induces a corresponding small nonzero translation error. The
nonzero, in fact oscillating, final velocities are probably due
to either the temporal discretization of ẏ or the quantization
(8-bit) of the simulated luminance profile.

Since the control law is only guaranteed to be locally stable,
we also used the Monte Carlo method to perform numerical
tests of the region of attraction. The results are reported

in Fig. 3e and 3j for the two environments, for increasing,
randomly sampled initial rotation and translation error. In both
environments, the control law provides a reasonable region of
attraction. Despite the forest environment having less distinc-
tive features than the house environment, it shows a larger
region of attraction, presumably because the omnidirectional
nonzero µg(s) provides better localization. Another possible
reason is that the other facades of the house can be observed if
the initial pose deviates too much from the goal, which leads
to a violation of the non-occlusion assumption.

IX. CONCLUSIONS

We showed that the task of visual servoing can be solved
(at least locally) through purely visual control laws. The non-
obvious result is that, even though the Jacobian of the error
depends on the nearness, this can be ignored in the control
law while still attaining local stability. These control laws
respect the constraints of bio-plausible computation by using
a bilinear/quadratic operation on the raw luminance: in a
traditional implementation, the operation is only a tensor-
vector multiplication with the raw pixel array. Moreover, these
laws can be bootstrapped by a learning agent. In the biological
domain, this means that the genotype may encode only an
adaptive rule, while from the engineering viewpoint, it means
that, in principle, an adaptive zero-configuration system can
be realized.

We are in the process of extending our work in two
directions. From the engineering viewpoint, we want to as-
certain whether the approach can give solid advantages over
traditional methods (feature-based and not). This would imply
looking at issues such as change of lighting condition, occlu-
sions, locality, nonholonomic constraints, which we did not
consider yet. At a more abstract level, we want to investigate
whether the same bio-plausible/bootstrappable approach is



applicable for more complex tasks, such as structure from
motion and obstacle avoidance.
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APPENDIX

We group here some technical lemmas. These are not new
results and appear, often in a disguised form with different
notation, in many other papers. The formulas are valid with
the assumptions that: 1) y is differentiable; and 2) the nearness
profile µ(s) is continuous (i.e., there are no occlusions).

Lemma 1: ẏ(s, t) = µ(s)∇sy(s, t)∗v + (s×∇sy(s, t))∗ω,
or more compactly, ẏ = µ∇y∗v + Sy∗ω.

Proof: Use ṡ = µ(s)(I − ss∗)v + ω × s [39] and ∇sy ·
(I − ss∗) = ∇sy. The lemma follows from the chain rule.

Lemma 2: Dpy · v = µ(∇y)∗ and Dry · ω∧ = (Sy)∗ω.
Proof: Note ẏ = Dpy · ṗ + Dry · ṙ and use Lemma 1.

Lemma 3: Dϕy|ϕ=0 · u = (Sy)∗u.
Proof: For a generic function of r, we have that

Dϕ(f(r))|ϕ=0 · u = Dr(f(r))|r=Id ◦DϕExp(ϕ∧)|ϕ=0 · u =
Dr(f(r))|r=Id · u∧. In particular, for f = y, we have that
Dry(s, t)|r=Id ·Ω = Drm(r(t)s)|r=Id ·Ω = ∇sy(s)∗Ωs =
(s×∇sy(s)∗Ω∨. Thus Dϕy(s, t)|ϕ=0 · u = Dry|r=Id · u∧ =
(s×∇sy(s)∗u ! (Sy)∗u.
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