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Abstract

We study the dynamic and static input output behavior of several primitive genetic

interactions and their e↵ect on the performance of a genetic signal di↵erentiator. In a

simplified design, several requirements for the linearity and time-scales of processes like

transcription, translation and competitive promoter binding were introduced. By ex-

perimentally probing simple genetic constructs in a cell-free experimental environment

and fitting semi-mechanistic models to these data, we show that some of these require-

ments can be verified, while others are only met with reservations in certain operational

regimes. Analyzing the linearized model of the resulting genetic network we conclude

that it approximates a di↵erentiator with relative degree one. Taking also the discovered

non-linearities into account and using a describing function approach, we further deter-

mine the particular frequency and amplitude ranges where the genetic di↵erentiator can

be expected to behave as such.
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1 Introduction

The systematic design of functional genetic circuits is one of the key challenges in the field of

synthetic biology. Usually, the goal is to add a desired function to a cellular organism. As the

complexity of these functions has been increasing steadily [1], it becomes increasingly di�cult

to design the topology of the genetic network and decide what kind of genetic interactions

to use. One way to approach this synthesis problem is by adapting methods from the fields

of systems and control theory [2], e.g. by starting with a description of the desired part as a

linear transfer function, finding the necessary fundamental input/output functions which realize

this transfer function and then realizing the evolving network topology with primitive genetic

interactions. The key to this approach is to determine how fundamental linear I/O functions

like gain, integrator, sum and di↵erence can be realized using only primitive genetic interactions

such as transcription, translation, combinatorial promotors, post-transcriptional modification

or pairwise interactions of DNA, mRNA or protein molecules.

This design workflow follows the ideas of [3], where the authors showed that any arbitrary

linear input/output system can be realized exactly using only zeroth and first order biochemical

reactions. We adressed the question of replacing the zeroth and first order biochemical reac-

tions with general genetic interactions in [4]. Therein, several requirements were introduced

to conclude that the processes of transcription and translation can be interpreted as gain and

integration respectively and that combinatorial promoters may be used to realize the di↵erence

of two concentrations. In [4], and also in this work, we use these results to design a genetic

signal di↵erentiator, i.e. a genetic part whose output indicates the temporal derivative of its

input. Such a module would be of particular interest in context of a genetic PID controller that

could be used to regulate production processes within a cell. While for this purpose the genetic

realization of the more important integral feedback has been studied extensively [5, 6, 7, 8,

9, 10], di↵erential operators in a biological context have been investigated rather sporadically

[11, 12] and have only recently moved into the focus of synthetic biology [13]. In latter work,

the authors introduce a di↵erentiator module based on mechanisms borrowed from the E. coli

chemotaxis regulatory network. This mechanism is based on active enzyme-like degradation

and the assumption that this degradation operates at saturation of the enzyme. In contrast

to the results of [13], the topology presented in [4] is not based on a known biological exam-
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Figure 1: Ideal approximation of a di↵erentiator, from [4].

ple but is derived from scratch, using an adjusted version of the general design framework of

[3]. This leads to a di↵erentiator module of similar complexity but di↵erent assumptions and

requirements which need to be guaranteed.

In this work, we combine control theoretic concepts, mathematical models and observations

from experiments to verify and adapt the requirements introduced in [4]. We find that, in

cell-free extract, transcription can be considered as a PT1 element, i.e. a delayed gain, while

translation indeed can be seen as an integrator. Further, we show that combinatorial promoters

are not very well suited to realize the di↵erence of two signals and that the dynamics are

very much dependent on the operation conditions. Lastly, we study how not meeting the

requirements a↵ects the performance of the genetic signal di↵erentiator and reveal the operating

conditions under which the di↵erentiator behaves as expected and where this is not the case.

In the following, we first introduce the desired signal di↵erentiator, one possible topology

to realize this part and the necessary requirements for primitive genetic interactions by reca-

pitulating the results established in [4]. After, we introduce mathematical models of protein

synthesis as well as the cell-free experimental environment which is used to generate the ex-

perimental data. Subsequently, the requirements on time-scales and linear operation regimes

of the processes of transcription and translation are verified by fitting the model to a series

of experimental data and analyzing the resulting parameters, leading to transfer function rep-

resentations of these two processes. Using another series of experiments, we determine the

input-output steady-state map of a combinatorial promoter and discuss the limited capability

of such promoters to realize the di↵erence of two signals. Finally, the impact of the discov-

ered discrepancies on the performance of the genetic di↵erentiator is studied both in time and

frequency domain, using a describing function approach for the latter.
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2 Background

First, we briefly recapitulate the results from [4] before we analyze, verify and adjust the

requirements we introduced therein.

In the field of control theory, one can study linear systems in two di↵erent domains. First,

in the time domain, by looking at the states of a system and the temporal derivatives thereof

which define a system of ordinary di↵erential equations (ODEs). And second, in the frequency

domain, by looking at transfer functions which are complex valued functions and describe how

di↵erent frequency components of an input signal are modified by a system. These two domains

are connected via the Laplace transformation and particularly the frequency domain is very

useful for the design and analysis of linear systems. An ideal di↵erentiator would be given by

the transfer function G(s) = s with Laplace variable s. However, as is well known in the control

community, an exact realization of such an ideal di↵erentiator is not possible due to the lack

of causality. For a system to be causal, its output must not depend on future values of the

input signal. This is not the case for the di↵erentiator. In case the system is given in form of a

rational transfer function, i.e. G(s) = N(s)
D(s) , one can easily check for this property by examining

the degrees of the polynomials N(s) and D(s): causality is given if the degree of N(s) is not

bigger than the degree of D(s).

The desired function thus can only be approximated, e.g. by adding an additional low-pass

filter to the ideal di↵erentiator, leading to the desired transfer function

G(s) =
Ks

s+K
(1)

where K is the bandwidth of the filter. One possibility to realize this transfer function is by the

circuit depicted in Fig. 1, with a (preferably large) gain K in the forward path and a weighted

integrator in the feedback path. Ideally, one chooses � = 1 to recover (1). Thus, in order

to approximate the di↵erentiator, three basic functions are needed: a gain, an integrator and

the signal di↵erence between input and feedback. Finding genetic realizations of these basic

functions is the main challenge in designing the di↵erentiator. In particular, it is expected that

this cannot be achieved in an exact way, thus it is necessary to determine how inaccuracies in

the basic parts influence the behavior of the assembled circuit. For an initial guess for finding
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such functions, a semi-mechanistic model of transcription and translation [14] was used in [4]

to conclude that the processes of transcription and translation can approximately be seen as

a gain and integrator respectively and that a combinatorial promoter may be used to realize

the di↵erence of two signals. In the remainder of this section, we briefly recapitulate these

deductions.

In the process of protein synthesis, the genetic information is read from DNA (with con-

centration Di) and transcribed into mRNA (Mi), then, mRNA molecules are translated into

proteins (Pi). In the following, the subscript i stands for the i-th gene (Gi) in a network with

I distinct genes. With

P =


P1 . . . PI

�>

representing all proteins present in the genetic network, the dynamics of mRNA and protein

concentrations of gene i are described by

Ṁi = fi(P,⇥i,�)� pi(Mi,⇥i,�) (2a)

Ṗi = gi(Mi,⇥i,�)� qi(Pi,⇥i,�) (2b)

where fi(P,⇥i,�) and gi(Mi,⇥i,�) are the respective production and pi(Mi,⇥i,�) and

qi(Pi,⇥i,�) the respective degradation rates. These rates are possibly dependent on protein

and mRNA concentrations, certain gene specific parameters ⇥i 2 RN like DNA concentrations

(Di) or initiation and degradation rates, as well as several environmental parameters � 2 RL

which include, among others, the total amount of RNA polymerase (RNAP), ribosomes and

endonucleases, the transcription and translation elongation rates, and other host dependent

variables. For better readability the arguments ⇥i and � are omitted in the remainder.

In [4], we introduced the topology depicted in Fig. 2 as one approach to realize the transfer

function (1). Therein, the input is considered to be a transcription factor, i.e. u = Pu, which

activates gene G1 and inhibits another gene G2. Each of these genes produces a transcription

factor which suppresses its own production. While G1 has the purpose of capturing positive

gradients of the input signal, G2 is designed to capture negative ones. The output of the

part is then given as the di↵erence between the mRNA concentrations of the two genes, i.e.
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Figure 2: Genetic di↵erentiator: Genes G1 and G2 tracking positive and negative slopes of
u. Proteins produced by G1 and G2 neutralize each other. Di↵erence of associated mRNAs
indicate output y.

y = M1 � M2. Further, for the purpose of a minimal signal representation, the transcription

factors P1 and P2 undergo an annihilation reaction.

Several simplifications and requirements for the processes of transcription, translation and

degradation were introduced to finally arrive at the desired model equations

Ṁ1 = ↵D1 · (Pu � P1)� ⌫1M1 (3a)

Ṗ1 = �M1 � �1P1 � �12P1P2 (3b)

Ṁ2 = ↵D2 · (k0 � Pu � P2)� ⌫2M2 (3c)

Ṗ2 = �M2 � �2P2 � �12P1P2 (3d)

with the function

(x) =

8
>><

>>:

x x > 0

0 x  0

(4)

assuring strictly positive transcription rates. In the following, we focus on G1, the gene for

capturing positive gradients, and recapitulate the requirements for the biological processes

necessary to arrive at (3). Subsequently, the connection between (3) and (1) will be discussed.

We note that the focus on G1 is without any loss of generality as the following requirements

can be adjusted with minimal e↵ort to arrive at the equations for G2.

6



Requirement 1. M1 and P1 are subject to first order degradation, i.e.

p1(M1) = ⌫1M1 (5a)

q1(P1) = �1P1. (5b)

with degradation rate constants ⌫1, �1 2 ⇥1.

Although degradation rates pi and qi are usually dependent on protease and endonuclease

levels we require first order degradation dynamics to assure linearity with respect to mRNA

and protein levels.

Requirement 2. The operation regime is such that f1 and g1 are both approximately linear in

D1 and M1, respectively.

This requirement is rectified by results like the ones presented in [15], where particularly the

linearity of gi in Mi is shown. Alternatively, similar simplifications have been applied by follow-

ing a linearization approach as pursued in [16]. In general, however, although the transcription

rate fi increases monotonically with DNA concentration Di, it cannot grow arbitrarily large

but is subject to saturation e↵ects for large enough DNA or transcription factor concentrations,

see e.g. [14, 17].

Requirement 3. There exists a combinatorial promoter which is piecewise linear in two inputs,

such that

f1
�
[Pu, P1]

>� ⇠  (Pu � P1)

with (·) like in Eq. (4).

With this requirement, we demand that the combined e↵ect of the two transcription factors

is proportional to the di↵erence of their concentrations, as long as Pu > P1, and zero, otherwise.

In other words, f1 as a function of [Pu, P1]>, needs to fulfill the fundamental additivity property

of linear functions in the regime Pu > P1. This further means that, as we are considering a

combinatorial promoter, Pu has to act as an activator for G1 while P1 acts as an inhibitor.

Consequently, instead of forming the di↵erence between input Pu and integral feedback P1
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by using direct interactions between the two species, we move the di↵erence operation to the

promoter function.

Now if Requirements 2 and 3 hold, we find

f1([Pu, P1]
>) ⇡ ↵D1 · (Pu � P1) (6a)

g1(M1) ⇡ �M1, (6b)

where ↵ and � stand for lumped production rate parameters. Thus, with Requirements 1 to 3,

we arrive at the first part of Eq. (3). Note that, when considering both genes G1 and G2, this

means that the transcription and translation rate constants ↵ and � are assumed to be equal

for both genes. Also, it is required that Pu > P1 for the part to work properly. For this reason,

the annihilation reaction between P1 and P2 was introduced, see [4] for more details.

Finally, concerning an appropriate choice of parameters, another requirement can be de-

duced from typical degradation rates given e.g. in [18].

Requirement 4. The degradation of mRNA is much faster than the one of protein, i.e. ⌫1 �

�1.

With that in mind, one can apply a quasi steady state approximation of the mRNA dynamics

and further assume that �1 ⇡ 0 to arrive at

M̃1 ⇡
↵

⌫1
D1(Pu � P1)

Ṗ1 ⇡ �M̃1

where M̃i stands for the steady state mRNA concentration. Thus, we conclude that the pro-

cess of transcription can be interpreted as a gain while translation approximately realizes an

integrator. With the signal entering the transcription process chosen as the residual of input

Pu and integral feedback P1, the presented model thus realizes Eq. (1).

In [4], we verified this structure by simulating the system based on the much more detailed

model described in [14]. This detailed model mainly aims at taking the finite amounts of RNAP

and ribosomes as well as the time delay of transcription and translation into account, however,

chosen parameters only reflected average parameters from literature. Further, saturation e↵ects
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and nonlinearities of the promoter dynamics were neglected.

After recapitulating the results of [4] and realizing the limitations of the used models, we

now adjust our modeling approach and focus on analyzing and verifying the requirements by

conducting a series of experiments using a cell-free experimental system [19].

3 Materials and methods

In this section, a brief overview on the experimental technique as well as the subsequently used

models is provided.

3.1 TX-TL experimental platform

For the purpose of establishing a reliable, e�cient and fast prototyping environment for genetic

circuits, various cell-free TX-TL systems have been developed and optimized during the past

decade [19, 20, 21, 22, 23, 24]. The main advantages of cell-free over classical cell based in-vitro

systems are that cellular systems impose certain physical constraints on the gene circuits and

the incorporation of the desired genes is comparably time consuming. Cell-free extracts on the

other hand provide a well reproducible platform for rapid testing of arbitrary gene circuits.

Such an extract for instance can be produced from Escherichia coli (E. coli) bacteria by bead-

beating cell resuspensions, see [23] for more details on the production of E. coli extract. As

DNA formatting and transformation as well as cell growth are thus decoupled from the actual

testing of the circuit, testing cycles can be speed up significantly from several days for testing

in original cells to only a few hours for testing in cell-free extract.

However, regeneration of resources required for mRNA and protein synthesis is an issue in

cell-free environments, which is why the dynamics of mRNA and protein production are subject

to some overlayed degradation dynamics of the extract. Therefore, the experiments are only

meaningful for a limited experiment duration and we only consider observations within the

first 200 minutes after initiation of the experiment. However, even in this limited time frame,

degradation of resources will be visible in the experimental data. Since this mechanism is not

considered in the mathematical models, the identified parameters will be biased. Production

parameters tend to be underestimated while degradation parameters tend to be overestimated.

For every TX-TL experiment, the DNA subject to testing is suspended in water and mixed
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with cell extract and an energy bu↵er. This bu↵er contains amino acids, NTPs, tRNAs and

other small molecules necessary for mRNA and protein synthesis. The reaction volume was

chosen to 5µL. Usually, one or more genetic constructs encode a fluorescent reporter protein

such as GFP. After initialization of the experiment, the mixture is incubated at 29�C inside a

Biotek plate reader, which assesses the level of fluorescent protein every few minutes. While the

concentration of a fluorescent protein like GFP can be assessed directly, measuring the amount

of mRNA requires an additional mechanism. We therefore make use of the malachite green dye

(20µM) and a corresponding aptamer sequence (MGapt) which is added to the 30 untranslated

region (UTR) of the gene. The dye binds to a binding pocket of this sequence and changes

its emission properties upon binding, therefore again enabling us to monitor a fluorescence

signal which is proportional to the mRNA concentration [25]. However, measurements of the

mRNA signal due to binding of the malachite green dye revealed only a poor signal to noise

ratio, therefore an additional data pre-processing step was introduced by fitting a Gaussian

process to the experimental data. Details on the pre-processing procedure can be found in

Supplementary Data A.

In this work, we distinguish between gene and extract specific parameters. Gene specific

parameters include variables like the a�nity of the particular promoter sequence towards RNAP

and other proteins and by definition are considered to be independent of the environment the

experiment is conducted in, i.e. hold in di↵erent batches of cell-extract as well as inside living

cells. In contrast, remaining parameters like the concentration of RNAP or transcription and

translation elongation rates are denoted as extract or environment dependent, thus may vary

even between di↵erent batches of cell-free extract. The experiments presented in this work have

all been conducted using the same batch of TX-TL extract.

All genetic parts were originally given as plasmids. Using polymerase chain reactions and

appropriate primer sequences, only the relevant linear double-stranded gene sequence was ex-

tracted from these plasmids and used in the TX-TL experiments. By addition of protein gamS,

the degradation of linear DNA is prevented [26]. Information about the used genetic constructs

can be found in Supplementary Data B.
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3.2 Modeling protein synthesis

Throughout this work, di↵erent promoters are discussed and analyzed for various purposes.

Therefore, the di↵erent mechanisms and modeling framework used for simulating the temporal

evolution of mRNA and proteins are introduced. We therein build uppon the dynamics given

in Eq. (2), however avoid using as strict simplifications as the ones outlined in Section 2.

In the following, complexes of two chemical speciesA andB are denoted with A:B and conserved

quantities are indicated by a bar, e.g. R, the total amount of RNAP.

It is a well established result [18, 27], that the production rate of mRNA fi is proportional

to the concentration of promoter which is bound to a corresponding RNAP holoenzyme and

not blocked by any inhibitors, e.g.

fi(P) = ↵ ·Di:R:�70(P,⇥i,�) (7)

where the concentration of complex Di:R:�70 may be depending on other proteins P, gene

specific parameters ⇥i and extract specific parameters �.

In this example, sigma factor 70 (�70) first has to bind to RNAP to form the holoenzyme before

this complex then binds the promoter region. The sigma factor therein has a very high speci-

ficity towards certain promoters, enabling the cell to switch between di↵erent transcriptional

programs depending on which sigma factor is expressed. Note that compared to (6a), this is a

more realistic model for mRNA production but prohibits making the same deductions for the

genetic di↵erentiator.

The basic mechanisms of interest for us are binding and unbinding reactions happening at

the promoter sequence of DNA. Usually, as in [18, 28], the amount of Di:R:�70 is approximated

by Michaelis-Menten like equations, assuming that either DNA or RNAP holoenzyme is in

abundance. In contrast to that, we won’t make this assumption but particularly take the

binding and unbinding reactions into account in order to consider both competition for shared

cellular resources and saturation e↵ects at the promoter. For simple setups where only self-

competition occurs, we derive a closed form expression for the steady state concentration of

the respective biochemical complexes.
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3.2.1 Holoenzyme formation

When RNAP R is bound to a sigma factor �x, this complex is referred to as the RNAP

holoenzyme. As discussed briefly in the previous section, such a holoenzyme binds to the

promoter sequence of a gene and initiates the transcription process. Therefore, sigma factors are

a crucial component for this process and without the right sigma factor, transcription cannot

initiate. According to [29], RNAP alone is su�cient for transcription elongation, however,

initiation requires sigma factors. We therefore assume that the formation of holoenzyme is

independent of the holoenzyme binding to the promoter sequence, meaning that sigma factor

and RNAP can bind and unbind irrespective of the fact if RNAP is bound to DNA or not.

We therefore have to consider the reactions

R + �x

k+�x⌦
k��x

R:�x (8a)

Di:R + �x

k+�x⌦
k��x

Di:R:�x (8b)

for each sigma factor and DNA species present in the system in order to account for the

competition for RNAP. To simplify (8), we introduce

R:�x = R:�x +
X

i

Di:R:�x

X:R = R +
X

i

Di:R

the total amount of R bound to �x as well as the total amount of R which is not bound to its

respective sigma factor. Then, (8) can be combined to

X:R + �x

k+�x⌦
k��x

R:�x. (9)

In most cases, only dissociation constants

K�x =
k�
�x

k+
�x

are identifiable and it is assumed that binding reactions are fast compared to the transcription

elongation steps and thus in quasi steady state. Therefore, for notational simplicity, we will
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reduce the notation to using dissociation constants instead of on and o↵ rates in the remainder

of this work.

Note that in (9) X:R and �x denote both the unbound chemical species. If only one sigma

factor is present in the system, the amount of R:�x can be calculated analytically as a function

of the dissociation constant K�x and the total amounts of RNAP and sigma factor respectively,

viz. by application of the following proposition.

Proposition 1. Given the entities A, B and A:B and the reaction

A+B
K⌦ A:B.

If none of the entities participates in any other chemical reaction, the steady state of A:B can

be expressed in terms of the total amounts of A and B as

A:B =
1

2

✓
K + A+B �

q
(K + A+B)2 � 4AB

◆
(10)

with A = A+ A:B and B = B + A:B.

The proof can be found in Supplementary Data C. It is noted that usually, i.e. for the

deduction of Michaelis-Menten kinetics, it is assumed that either A � B or B � A holds

while Proposition 1 gives exact solutions for any values of A and B. In cases when only a

single sigma factor is present and its total concentration is constant over the time course of

the experiment, we will later on use the amount R:�x as a fitting parameter and omit the

binding reaction in order to reduce the complexity of the fitting problem. However, in cases

where the concentration of sigma factor varies over time, we either use the exact formula from

Proposition 1, or if there is more than one sigma factor, we directly implement the binding

reactions as fast reactions and accept the increased computational complexity.

3.2.2 Promoter binding

After formation of R:�x, the RNAP holoenzyme binds to the promoter sequence and starts

transcribing the information encoded as DNA. A promoter is called constitutive , if this binding
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of RNAP happens spontaneously and is not influenced by any activators or inhibitors, i.e.

Di +R:�x

KiH⌦ Di:R:�x. (11)

In such cases, given that the promoter does not interact with other holoenzymes, Proposition 1

can be applied again to simplify the modeling formalism.

In contrast to a constitutive promoter, binding of RNAP can also be inhibited by other

proteins, leading to a combinatorial promoter with competitive binding mechanism, i.e. by the

additional reaction

Di + Pj

Kij⌦ Di:Pj (12)

which now competes with (11).

3.2.3 Translation and degradation rates

Similarly to the transcription rate (7), the rate of translation is given by

gi(Mi) = � ·Mi:Q(Mi,⇥i,�), (13)

where Mi:Q stands for the concentration of ribosomes (Q) bound to the ribosome binding site

of mRNA Mi. We assume unregulated ribosomal binding and that the ribosome binding site

sequences used for the constructs are of equal strength. Thus, the reactions for forming the

complex Mi:Q are the same as for the formation of holoenzyme and consequently, in case of

only one mRNA species present, Proposition 1 can be applied again. Whenever more than

one mRNA species is considered, competition for ribosomes occurs and binding reactions are

implemented.

Degradation of mRNA and protein is mainly influenced by third party molecules such as

endonucleases (E) and proteases. It is known [30] that latter species is quasi non-existent in

TX-TL extract, thus we keep the first order degradation for proteins as in (5b). Endonucleases,

on the other hand, are present in limited quantities, thus loading e↵ects need to be considered.

We explicitly assume that the binding of ribosomes and endonucleases is independent of each

other, i.e. can be seen as two distinct processes where ribosomes and endonucleases do not
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Figure 3: Scheme of probing protein synthesis with step in DNA and expected responses.

compete for mRNA. Thus, once more we define

pi(Mi) = � ·Mi:E(Mi,⇥i,�) (14)

and apply Proposition 1 whenever only self-competition occurs.

4 Results

Given the foundational work summarized in Section 2, it is yet unclear to what extent Re-

quirements 1 to 4 can be verified. In particular, we are interested in answering the question

of whether the processes of transcription and translation indeed can be regarded as a gain

and integrator respectively (Requirements 1, 2 and 4) and further, whether one can find a

suitable combinatorial promotor which satisfies all linearity requirements in order to verify

Requirement 3.

4.1 I/O behavior of transcription and translation

First, we analyze the time-scales and linearity of transcription and translation. Therefore, the

input-/output (I/O) behavior of these processes are characterized by experimentally probing

a simple gene with di↵erent input steps as depicted schematically in Fig. 3. By observing

the response to di↵erent step sizes in the input, the non-linearity of the promoter dynamics

can be identified. The gene we study is equipped with a �70 dependent constitutive promoter

and expresses GFP. By fitting a suitable model to the experimental data and analyzing the

corresponding parameters, Requirements 1 and 4 will be verified.
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4.1.1 Experimental setup

There are two possibilities to realize a step-like input of varying height at the transcriptional

level using promoters like introduced in Section 3.2: either by varying the amount of sigma factor

(i.e. the transcription factor) while keeping the DNA concentration constant, or alternatively,

changing the DNA concentration itself. While varying DNA amounts is straightforward, the

sigma factor input additionally required purified protein which may be biologically unstable

and is more di�cult to obtain than DNA.
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Figure 4: Mean and 95% confidence interval of experimental step-responses (blue, dotted mean,
shaded confidence interval) and simulated step responses of the fitted nonlinear model (red,
solid).

Depending on the choice of input, i.e. sigma factor or DNA, di↵erent dynamical e↵ects

can be expected when probing the system with steps of di↵erent height. As discussed before

in Section 3.2, the mRNA production rate is proportional to the complex Di:R:�70, wherein

the concentration depends on the total amounts of DNA, RNAP and sigma factor. In case

the concentration of sigma factor is considered as input, the corresponding model needs to

incorporate both the formation of holoenzyme as well as the binding of holoenzyme to the

DNA. Thus both binding rates would need to be considered. In contrast, when varying the

DNA concentration, the binding reaction of holoenzyme can be neglected and the amount of

total holoenzyme R:�70 can be introduced instead.

This approach reduces the complexity of the fitting problem by focusing on the identifi-
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Table 1: Values of the parameters obtained by fitting the nonlinear model to step response
data.

parameter unit value description
↵ min�1 21.54 transcription rate const.
� min�1 2.35 translation rate const.
� min�1 0.18 mRNA deg. const.
� min�1 1.19e�8 protein deg. const.
K1H nM 0.82 dissoc. const. for D1 and R:�70

KMQ nM 72.26 dissoc. const. for M1 and Q
KME nM 102.20 dissoc. const. for M1 and E
R:�70 nM 4.26 total RNAP holoenzyme
Q nM 165.94 total ribosomes
E nM 650.30 total endonuclease

cation of promoter binding kinetics only. Thus, for the identification of the I/O behavior of

transcription and translation, we first limit ourselves to step inputs in form of varying DNA

concentrations and study the sigma factor dependent holoenzyme formation in a separate ex-

periment, discussed in Section 4.2.

We choose four di↵erent DNA concentrations for probing the system: 1nM, 3nM, 5nM and

10nM. Three technical replicates were conducted. The data obtained by this process is depicted

in Fig. 4. Therein, blue dashed lines stand for the mean of mRNA (upper column) and protein

(lower column) concentrations and the 95% confidence intervals are illustrated as shaded blue

regions respectively.

4.1.2 Corresponding model

We denote the index of the gene under study with i = 1 and accordingly the amount of GFP

with P1. According to Section 3.2 and particularly Eqs. (2), (5b), (7), (13) and (14), the

corresponding model is determined by the complexes

D1:R:�70 = D1:R:�70

�
D1, R:�70, K1H

�

M1:Q = M1:Q
�
M1, Q,KMQ

�

M1:E = M1:E
�
M1, E,KME

�

which are calculated using Proposition 1, depending on the total amounts of DNA, mRNA,

RNAP holoenzyme, ribosomes and endonucleases as well as the respective dissociation con-
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stants. We again note that the model can capture the dynamics only in a limited time frame

as the degradation of extract is not taken into account. For fitting the model to the given

data, we introduce a maximum likelihood objective function, see e.g. [31], and apply several

rounds of both patternsearch and fmincon optimization algorithms implemented in Matlab.

The resulting parameters given in Table 1 give rise to the red trajectories depicted in Fig. 4.

For the process of translation, we observe that the protein degradation rate � is evaluated

to be of magnitude 10�8 and therefore, compared to �, practically zero.

Conclusion 1. As required in Requirement 4, the degradation of mRNA is much faster than

the one of protein.

In order to check the linearity Requirements 1 and 2, we study the entities D1:R:�70, M1:E

and M1:Q as functions of the fitted parameters over the relevant range of DNA and mRNA

concentrations as depicted in Fig. 5. This way, one can visualize the non-linear nature of the

production reactions of mRNA and protein as well as the degradation of mRNA. Although

these results clearly indicate that the processes of transcription and translation do not behave

linearly in their inputs in general, they allow us to define operation regimes as those required

in Requirement 2, i.e. where the linearity requirement holds at least approximately.
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Figure 5: Amount of active complexes for transcription (A), mRNA degradation (B) and
translation (C) over relevant range of DNA and mRNA respectively.

In that sense, we now introduce a relative measure of nonlinearity and define the ✏-linear-

range of a function f : R ! R as the largest interval [0, ⇠?] for which this nonlinearity measure is

just ✏. For the nonlinearity measure we follow the methods introduced in [32]. Let kf(x)kL2[0,⇠]

be the truncated L2 norm of f(x), defined by

kf(x)kL2[0,⇠] =

s
1

⇠

Z ⇠

0

f(x)2dx.
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To approximate f , we use the linear function mx. Note that we forced the intercept of the

linear function to take the value 0 to assure strictly positive values of the linear function on the

interval [0, ⇠]. For a given f , the best linear approximation in the interval [0, ⇠] is then found

as the argument m = m? which minimizes

L(⇠,m) = k(f(x)�mx)kL2[0,⇠], (15)

the absolute L2 norm of the residual between function f(x) and the linear function mx. The

value of L(⇠,m?) now can be seen as an absolute measure for the nonlinearity of f on the

interval [0, ⇠], however, this measure depends on the magnitude of the function f . Thus, in

order to compare this measure across di↵erent functions, we normalize (15) by the L2 norm of

f , i.e.

Lrel(⇠,m) =
k(f(x)�mx)kL2[0,⇠]

kf(x)kL2[0,⇠]

to find our relative measure of nonlinearity.

Consequently, ⇠? is found as the solution of

max ⇠

s.t. min
m

Lrel(⇠,m)  ✏.
(16)

In the given case, when one allows for a 5% error, i.e. ✏ = 0.05, one obtains the linear ranges

indicated as black points in Fig. 5.

Conclusion 2. Linearity of production and degradation terms, as requested in Requirements 1

and 2, can be verified with 95% accuracy with

D1:R:�70 ⇡ Atx ·D1 for D1 2 [0, 3.805]

M1:E ⇡ Adeg ·M1 for M1 2 [0, 593.1]

M1:Q ⇡ Atl ·M1 for M1 2 [0, 141.7]

and Atx = 0.726, Adeg = 0.752 , Atl = 0.602.
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4.1.3 Linearized model and transfer functions

Given the linear operation regimes indicated in Conclusion 2, one can now derive linear models

for transcription and translation which are then valid in the respective regimes. In the control

community, the standard approach to approximate a nonlinear model with a linear one is to

locally linearize the nonlinear function at on specific value. In case of the nonlinear mRNA

degradation rate p1 for example, a linearization around some fixed value M0
1 would yield

p1(M1) ⇡ p1(M
0
1) +

dp1
dM1

����
M0

1

· (M1 �M0
1).

This approach assures that the linear function evaluated atM0
1 has the same value as the original

nonlinear one, and that the di↵erence between the two functions is small in a neighborhood

around M0
1. Thus, the quality of the linear model on a certain interval strongly depends on

the chosen value M0
1. In our case, particularly the values of M1 may vary across a wide range.

Further, it should be made sure that in the case when neither DNA nor mRNA or protein is

present, the temporal derivatives of these species also is equal to zero, i.e. that

Ṁ1(D1 = 0,M1 = 0) = Ṗ 1(M1 = 0, P 1 = 0) = 0

holds. This will only be achieved if all linear functions go through the origin. To assure this,

one would consequently have to perform the linearization at D1 = M1 = P 1 = 0, leading to

potentially large deviations between the linear and nonlinear models at larger values of the

independent variables. Therefore, instead of using this standard approach, we directly use the

approximations of Conclusion 2 where we already made sure that the linear approximation is

as good as possible over a given interval of the independent variable.

We thus obtain the linear model

Ṁ1 ⇡ ↵AtxD1 � �AdegM1

Ṗ 1 ⇡ �AtlM1 � �P 1
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and when defining D1 and M1 as input and output of the transcription module, M1 and P 1 as

input and output of the translation module, the corresponding transfer functions

Gtx(s) =
↵Atx

s+ �Adeg
(17)

Gtl(s) =
�Atl

s+ �
(18)

are obtained. We conclude that due to the fact that � is very small, translation can indeed be

seen as integration as long as DNA and mRNA concentrations are in the appropriate operation

regime. However, the initial assumption that transcription can be seen as a gain needs to be

adjusted as mRNA degradation cannot be neglected, leading to a PT1 element instead of a

gain.

So far, we studied and characterized time-scales and linearity of the processes of transcrip-

tion and translation in context of an E. coli cell-free extract and mainly focused on possible

limitations caused by the promoter and mRNA binding kinetics. We therefore bypassed nonlin-

ear e↵ects of RNAP holoenzyme formation by changing DNA concentrations instead of using

�70 as input and found that at least during the first 200 minutes of a TX-TL experiment, re-

source limitations do have an e↵ect on transcription, translation and mRNA degradation. By

studying di↵erent step responses, the linear operation regimes were identified. We now turn

towards inhibitor binding dynamics and in particular towards the problem of how to realize a

signal di↵erence using combinatorial promoters.

4.2 Signal di↵erence and combinatorial promoters

In order to approximate the derivative of a signal by implementing the scheme depicted in

Fig. 1, we remember that the input into the gain (i.e. transcription) has to be the residual

between the reference and feedback signal.

There are various ways to realize a signal di↵erence in biology, a widely used one being

sequestration-based mechanisms between the signaling molecules, e.g. binding and degradation

of the complex like elaborated in [7, 8]. When dealing with RNA or DNA, such a mechanism

can be realized in a straight-forward way by e.g. the use of antisense strands. When it comes

to proteins or metabolites, engineering a sequestration mechanism for an arbitrary protein or
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Figure 6: Level sets of promoter activity Di:R:�x over varying levels of sigma factor and
inhibitor. A Desired behavior for non-negative signal di↵erence. B1-B4 Simulated values for
varying DNA concentrations under a weak repressor. C1-C4 Simulated values for varying DNA
concentrations under a strong repressor.

metabolite may be possible but in general is more challenging. Thus, one is rather restricted

to the use of existing pairs of proteins which undergo binding reactions, e.g. sigma factors

and anti sigma factors. Combinatorial promoters as an alternative mechanism may o↵er a

higher flexibility during the prototyping process as various inhibitor operator sequences are

already known for transcriptional regulation. Therefore, it is in principle possible to compare

the concentrations of any two transcription factors by combination of these operator sequences

with di↵erent promoters. It is one of the goals of this work to investigate whether this approach

can actually be used for the purpose of subtraction in a biological context.

Following such an approach, the desired behavior of the steady state of promoter dynamics

is depicted in Fig. 6A where the steady state of Di:R:�x is color-coded over varying concen-

trations of (�x) and inhibitor (P j). Due to non-negativity of concentrations, no activity is

desired whenever the concentration of inhibitor exceeds the one of activator (upper left triangle

resembling zero). Otherwise, it is aspired that Di:R:�x is proportional to the di↵erence �x�P j,

illustrated by the parallel and equidistant level sets in Fig. 6A.

Applying Proposition 1 and assuming that the total amount of RNAP holoenzyme is fixed,

the amount of Di:R:�x depends on the chosen DNA concentration as well as on dissociation

constants KiH and Kij of the RNAP holoenzyme and inhibitor respectively. If for instance we

assume that KiH = Kij = 1 and look at the relative amount of activated DNA Di:R:�x/Di,

varying holoenzyme and inhibitor in the same range results in qualitatively di↵erent steady-
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Table 2: Values of the parameters obtained by fitting the nonlinear model to the time-series
responses of the combinatorial promoter.

parameter unit value description
K�70 nM 1.8e�6 dissoc. const. for R and �70

K�28 nM 5.3e�3 dissoc. const. for R and �28

KtetR nM 8.1e�3 dissoc. const. for D2 and tetR
KaTc nM 2.74 dissoc. const. for tetR and aTc
K2H nM 1.084e4 dissoc. const. for D2 and R:�28

Ks28H nM 33.86 dissoc. const. for Ds28 and R:�70

KtetRH nM 2.97e3 dissoc. const. for DtetR and R:�70

R̄ nM 283.14 total RNAP
�̄70 nM 3.36 total sigma factor 70

state maps depending on how much Di is chosen, as depicted in Fig. 6 B1-B4. For high DNA,

sigma factor acts quasi linearly on the promoter while the inhibitor does not play a role at all.

On the other hand, for small amounts of DNA, the inhibitor has a large e↵ect and distorts the

steady-state map such that the level sets converge to each other at the origin. Also, suppression

due to the repressor does not seem strong enough as in all cases, Di:R:�x � 0 for �x < Pj.

In contrast to that, Fig. 6 C1-C4 show the same conditions, except that now KiH = 10·Kij,

i.e. the inhibitor binds 10 times stronger to the promoter than RNAP holoenzyme does. In

that case, only minimal transcriptional activity is expected when there is less sigma factor than

repressor. Further, although level sets are curved, for medium amounts of DNA, e.g. 20nM,

they are comparably equidistant and the steady-state map is almost symmetric.

This means that, while we have to acknowledge that exact realization of the di↵erence

of two signals is not possible with combinatorial promoters, some crucial properties can be

approximated by choosing dissociation constants and DNA amounts carefully.

For that purpose and also for detangling the RNAP holoenzyme binding reaction, we study a

a gene with a pTar intitiation sequence combined with a tetO inhibitor operator which expresses

GFP. The pTar promoter is sensitive towards an RNAP holoenzyme consisting of RNAP bound

to �28, while the operator sequence tetO enables binding and inhibition through Tet repressor

proteins (tetR). We denote the concentration of this gene as D2 and GFP concentration as P2.

To avoid usage of purified protein, both �28 and tetR are produced in the TX-TL system from

respective constitutive (i.e. �70 dependent) DNAs Ds28 and DtetR. While the amount of Ds28 is

varied to achieve di↵erent activation levels, inhibition is influenced by adding di↵erent amounts

of anhydrotetracycline (aTc) which binds to tetR and thus alleviates its association with the
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promoter. The concentration of DtetR is kept at a constant level of 1nM. The combinatorial

promoter then produces GFP, dependent on the concentrations of �28 and unblocked tetR. The

time-series of this experiment can be found in Supplementary Data D.

According to the experimental setup, several chemical species compete for the same re-

sources, thus Proposition 1 cannot be applied anymore and the binding reactions themselves

had to be implemented as fast reactions. For brevity reasons, the binding reactions are not

listed here. We focus on mRNA and protein dynamics, i.e. the ODEs

Ṁ s28 = ↵ ·Ds28:R:�70 � � ·Ms28:E

�̇s28 = � ·Ms28:Q� � · �s28

Ṁ tetR = ↵ ·DtetR:R:�70 � � ·MtetR:E

˙tetR = � ·MtetR:Q� � · tetR

Ṁ2 = ↵ ·D2:R:�28 � � ·M2:E

Ṗ2 = � ·M2:Q� � · P2.

Fitting these equations to the data, we obtain the parameters listed in Table 2 and the

trajectories depicted in Supplementary Data D. In the fitting process, the optimization is

constrained such that the amount of complex R:�70 is similar to the value fitted in the first

experiment where binding of sigma factor has been neglected, see Table 1.
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Figure 7: Promoter activity of pTar-tetO, obtained from fitted model.
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Figure 8: Amount of active transcription complex over relevant range of sigma factor concen-
tration for pTar promoter.

The values given in Table 2 indicate that the total amount of RNAP is much bigger than

the one of �70 and further, that binding between these two species is very strong. Although

�28 also binds strongly to RNAP, its a�nity is still smaller than the one of �70. The excessive

amount of RNAP and the much higher binding a�nity of �70 thus leads to a decoupling of the

two binding reactions.

We also note that the binding of R:�28 to the pTar promoter apparently has a very low a�nity

which leads to low GFP levels compared to the input step experiments. Together with the fact

that the repressor tetR binds the pTar promoter very strongly, this leads to the steady-state

promoter map depicted in Fig. 7, where the amount of active promoter for 20nM of DNA

and varying activator and inhibitor concentrations is determined based on the reactions from

Section 3.2 and parameters from Table 2.

Although there is leakage for medium amounts of inhibitor and activator and the level sets

are not completely linear, the determined promoter dynamics are comparable to the desired

behavior of Fig. 6 A.

Conclusion 3. Using combinatorial promoters, the di↵erence between two signals can only be

realized to a limited extent.

Given these results the transcription dynamics of Section 4.1 can now be extended with the

appropriate promoter dynamics and �28 as input. As pointed out before, the strong binding

a�nities of the sigma factors lead to a quite linear but bi-modal input-output behavior, as

depicted in Fig. 8, compared to the one depicted in Fig. 5 A. Therein, the active D2:R:�28

complex linearly follows the amount of �28 until the concentration of RNAP is matched. Con-

sequently, the transcriptional gain Atx changes due to the change of input and using the same
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linear approximation as defined in (16), one now finds

D2:R:�28 ⇡ Ãtx · �28

with Ãtx = 0.0018. (19)

4.3 Implications for the closed loop

Initially, with Requirements 1 to 4, we expected the process of transcription to behave like

a gain, translation to behave like an integrator and combinatorial promoters to provide the

di↵erence of two signals. Now, several observations were made which di↵er from our initial

view.

First, although mRNA degradation is indeed much faster than protein degradation, the

simplification to a simple gain is not justified and the temporal dynamics of mRNA production

should be taken into account instead, leading to a PT1 behavior instead of a gain.

Second, both production and degradation rates are subject to saturations due to finite

amounts of resources of the transcriptional and translational machinery in the cell-free extract.

For small inputs however, these rates can be seen as linear functions of their inputs and the

linear operation regimes have been determined explicitly.

Third, when realizing the di↵erence of two signals by using combinatorial promoters, one

only obtains an approximation of the di↵erence and the quality of the estimate depends on the

magnitudes of the inputs.

Now that these deviations from our initial requirements have been identified and charac-

terized, their e↵ect on functionality and performance of the synthetic genetic di↵erentiator

postulated in [4] can be studied. For that purpose, two di↵erent models are compared with the

ideal realizable di↵erentiator from Eq. (1) in both time and frequency domain.

The first model is given by the closed loop of the models Gtx and Gtl given in (17) and

(18) respectively and adapted with the new transcriptional gain (19). This results in a linear

model like depicted in Fig. 9 where no saturation e↵ects are taken into account and perfect

signal di↵erence is assumed. However, the slow mRNA production and resulting PT1 behavior

is taken into account and parameters of Gtx and Gtl resemble realistic values as they were

obtained from experimental data. With the simplification � = 0, the transfer function of the
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Figure 9: Topology of the linearized model given as the closed loop of Gtx and Gtl.

closed loop system thus is given by

Gcl(s) =
↵Ãtxs

s2 + �Adegs+ ↵�ÃtxAtl

. (20)

The second model is considered as the detailed nonlinear model and is based on the reactions

introduced in Section 3.2, thus taking all saturation e↵ects, non-linearities and time-delays

into account. It consists of a gene G1 with a combinatorial promoter like the one studied in

Section 4.2, i.e. sensitive to a �28 holoenzyme and tetR inhibitor, producing this very same

inhibitor, therefore realizing the circuit from Fig. 1. The concentration of �28 is considered as

input signal. In order to capture both positive and negative gradients, the same approach as

introduced in [4] is used, leading to a network topology like in Fig. 2 where G2 is of similar

structure as G1 but with negative influence of the input on the transcription rate. The following

additional mechanisms are necessary to realize this topology:

a) Additionally to �28, a second sigma factor �xx is introduced to be present at a constant

level. While R:�28 activates transcription of G1 and R:�xx activates the one of G2, both

holoenzymes bind to both genes, leading to a competition and negative influence of one

to the other.

b) Self inhibition of the two genes is achieved by two di↵erent inhibitors, e.g. tetR and tetR?.

c) The two inhibitors tetR and tetR? undergo an annihilation reaction at rate

µ = 0.1/(nM ·min) which was chosen arbitrarily.

As these modifications have been discussed in [4] already, we omit the details at this point. The

mRNA and protein dynamics of the core species as well as the output of the system is given
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Table 3: Summary of the models and comparison of the core features.

Desired circuit Model 1 Model 2
Topology Fig. 1 Fig. 9 Fig. 2
Dynamics Eq. (1) Eq. (20) Eq. (21)
Features linear linear nonlinear

perfect gain delayed gain delayed gain
no saturation no saturation saturation

perfect di↵erence perfect di↵erence approximated di↵erence

by

Ṁ tetR = ↵ ·DtetR:R:�28 � � ·MtetR:E (21a)

˙tetR = � ·MtetR:Q� � · tetR� µ · tetR · tetR? (21b)

Ṁ tetR? = ↵ ·DtetR? :R:�xx � � ·MtetR? :E (21c)

˙tetR? = � ·MtetR? :Q� � · tetR? � µ · tetR · tetR? (21d)

y = M tetR �M tetR? . (21e)

We summarized the core features of these two models and the desired circuit in Table 3. Note

that Model 1 can be seen as the linearized version of Model 2.

4.3.1 Frequency domain analysis

In a first step, we compare the two models and desired behavior in the frequency domain, i.e.

in terms of the Bode plot depicted in Fig. 10. This again is a classical tool from the control

community and graphically shows how sinusoid input signals are modified by a certain transfer

function. In the upper part, the magnitude amplification ⇤(!) indicates how the amplitude of

the input signal is amplified for di↵erent input frequencies. In the lower part, the phase shift

⌦(!) for these frequencies is shown. Magnitude and phase of the desired behavior (solid black)

and linearized model (solid blue) are obtained trivially using Matlab.

For the nonlinear model however, we use a describing function approach as described in [33]

to compare the input-output behavior of the nonlinear Model 2 with the linear ones. Therefore,

the nonlinear Model 2 is excited with input

u(t) = A0 + A · sin(!t) (22)
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Figure 10: Bode plot of desired model (solid black) and linear Model 1 (solid cyan). In dashed
lines magnitude and phase of output of nonlinear Model 2 subject to u(t) = A0 + A · sin(!t).
Di↵erent colors indicate di↵erent values of A0. Several values for A are plotted (lying on top
of each other).

and the corresponding output y(t) analyzed in terms of its Fourier coe�cients. Assume that

after time t? = k? 2⇡
! , the output oscillates in a steady-state fashion, i.e. no transient dynamics

occur anymore, and let

cn(!) :=
1

T

Z t?+T

t?
y(t)e�in!tdt with period

T :=
2⇡

!

be the n-th Fourier coe�cient of signal y(t) which corresponds to frequency !. Then, the

magnitude amplification ⇤ will be given as the ratio of the magnitudes of the first Fourier

coe�cients of output and input signal. With the input defined like in (22), the first Fourier

coe�cient of this signal is simply A
2i . Therefore we have

⇤(!) =
|c1(!)|
|A2i |

=
2|c1(!)|

A
.
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Further, the phase shift ⌦ for this frequency and particular input signal is given by

⌦(!) = atan

✓
�Re c1(!)

Im c1(!)

◆
.

The constant part A0 of input signal (22) is necessary to produce non-negative sinusoid

functions. Due to the non-linearity of Model 2, the output y(t) does not only depend on the

frequency ! but the shape of the input function in general, i.e. also the variables A0 and A.

We therefore probed the system for several frequencies and values for A0 and A.

For linear systems, an input signals with a single frequency component, like the one of (22),

leads to an output with also only one frequency component, namely the same as the one of

the input. In other words, higher harmonics are not existent and |cn(!)| = 0 for n > 1. This

is not the case for general non-linear systems where higher harmonics can also appear and in

principle more than just the first Fourier coe�cient should be analyzed. Thus, the way we use

the describing function approach in this work relies on the assumption that higher harmonics

of the output signal can be neglected. We thus analyzed the power spectrum of the output

signals for di↵erent values of A, A0 and ! and found that for most combinations, the higher

harmonics contributed less than 5% to the overall power spectrum. However, in the case when

A approaches A0 and ! is close to the pole of the transfer function, it seems that the assumption

does not hold, see Supplementary Data E for further details. We will see in Section 4.3.2 and

Fig. 11 what this means for the output signal.

In Fig. 10, magnitudes and phases of the respective response signal are plotted as dashed

lines where di↵erent colors indicate di↵erent values for A0. The values for A are chosen as

A = kA0 with k 2 [0.1, 0.5, , 0.75] and respective responses plotted in the same color. As seen

in Fig. 10, the output response does not change with varying A, however, the choice of the

o↵set A0 significantly influences the I/O behavior of the nonlinear signal di↵erentiator. Very

low values of A0 (dashed red, orange and purple) lead to a very sensitive response, i.e. too

high gain of the resulting closed loop and a smaller range of frequencies for which the output

approximates the derivative of the input.

A value of A0 = 10 (dashed green) results in the best response of the nonlinear system,

matching the gain of an ideal di↵erentiator quite well while providing almost the same frequency

range as the one predicted by the linearized system (!max ⇡ 0.03 rad/min). For too large values
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Figure 11: Normalized output ỹ(t) of the nonlinear closed model with input u(t) = A0 + A ·
sin(0.01t) for varying values of A0 and A.

of A0 (dashed cyan and dark red) Model 2 breaks down as expected due to the previously

characterized saturation e↵ects and the resulting loss of sensitivity towards the input signal.

4.3.2 Time domain analysis

From the previous analysis, we summarize that for the detailed Model 2, the phase of the

output signal is o↵ for too small values of A0, the gain is very small for values of A0 � 10 and

only in case of A0 ⇡ 10 both magnitude and phase are as desired. We now focus on the shape

of the output signal of Model 2 and therefore stick to sinusoid input signals, fixing ! = 0.01

but varying A0 and amplitude A of the input signal. The normalized output

ỹ(t) =
1

!A
y(t) (23)

as response to the just described input is depicted in Fig. 11.
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For a small value of A0, as expected, the phase is o↵, however, the output signal still has a

sinusoid shape for all amplitudes A. In contrast, for higher values of A0, the phase is correct

but with amplitude A approaching the o↵set A0, the output signal becomes more and more

distorted. This e↵ect is amplified for higher o↵set values and is caused by a dilution of the

power spectrum as discussed in the previous section.

5 Discussion

For the synthesis of genetic networks that realize arbitrary linear transfer functions, we follow

a similar approach as in [3]. Therefore, it is crucial to find suitable genetic counterparts to

primitive I/O functions such as gain, integration and di↵erence. In a first attempt discussed

in [4] and recapitulated in Section 2, several requirements were introduced to associate the

processes of transcription and translation and combinatorial promoters with these respective

I/O primitives. Now, a series of experiments and analyses was presented to verify and adapt

these requirements.

By observing mRNA and protein levels as response to step inputs of varying height, it

was verified in Conclusion 1 that protein degradation is almost non-existent while mRNA

degradation is comparably fast. However, degradation dynamics are not as fast as desired and

a quasi steady state assumption for the process of transcription would be oversimplifying. Thus,

transcription should be considered as a PT1-element rather than a gain.

By fitting an ODE model to the experimental data and analyzing the corresponding param-

eters, it was also shown that all processes are subject to saturation due to limited amounts of

resources. Using the same model and the fitted parameters, the linear operation regimes of the

I/O primitives can be characterized as shown in Conclusion 2, leading to more insight into the

capabilities and limitations of respective genetic circuits.

In a second series of experiments, the dependence of the performance of a combinatorial

promoter on the operation regime was emphasized, realizing in Conclusion 3 that the di↵erence

of two signals can only be obtained approximately. Based on these insights, DNA concentrations

for a simulation study were chosen such that the I/O behavior of the combinatorial promoter

is as close as possible to the desired one. In conclusion, the use of combinatorial promoters

for comparing the concentrations of two transcription factors is only possible within a limited
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range of magnitudes and we suggest to use sequestration based mechanisms in future.

For the realization of a genetic signal di↵erentiator using the studied parts, the initial goal

was to realize a di↵erentiator with high-pass filter. The corresponding transfer function is given

in Eq. (1). It has a zero at the origin and one pole determined by the filter to make it a causal

system. However, slow mRNA degradation leads to a behavior which, when linearized, is of

relative degree one, i.e. Eq. (20) which has one zero at the origin and two poles in the left half

plane. This reveals an additional delay of the transient dynamics.

If protein degradation were significantly larger than zero, this would lead to a transfer

function of the form

Gcl,protdeg =
K1s+K1�2

s2 + (�1 + �2)s+ �1�2 +K1K2
, (24)

thus, shifting the zero from the origin to the right half plane and therefore leading to an addi-

tional lower frequency bound and a sign change in the output. In comparison, the di↵erentiator

introduced in [13] leads to a very similar transfer function as (24), given that all necessary as-

sumptions introduced there hold. The main di↵erence is that in [13], the zero of the transfer

function always lies in the left half plane. On one hand, this means that a sign change is avoided.

On the other hand, there inherently exists a lower bound for admissible input frequencies while

for the design presented in this work, this only is be the case if protein degradation is large.

In order to conduct studies beyond the linearized model, a describing function approach

is used to evaluate the response of the nonlinear model to sinusoid inputs like in Eq. (22).

Therein, it can be seen that the performance of the di↵erentiator critically depends on the

constant part of the input signal, revealing again the limitations due to resource competition

but also unexpectedly towards some supersensitivity at low values of A0. With an appropriate

choice of A0, the presented network approximates the temporal derivative of an input signal

for frequencies up to ! ⇡ 0.02 rad/min. Additionally to the dependence on the absolute value

of A0, simulations in the time domain revealed a dependence on the relative amplitude A
A0

in

sense of a distortion of the output signal. When this relative amplitude approaches the value

1, the output signal looses its similarity to the sinusoid input, although phase and gain may be

correct. In other words, the nonlinearities of the model lead to a dilution of the power spectrum

of the output and higher harmonics are amplified.
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Supplementary Data

Supplementary Data can be found after the References.
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Supplementary Data

A Data pre-processing

In this section we denote the data obtained in the experiments discussed in Sections 4.1 and 4.2

with y 2 R. There are mainly three issues with these data, exemplarily depicted in Fig. 12 A

and B as grey crosses.
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Figure 12: Data pre-processing of I/O experiments. Example: processing malachite green
signal with 5nM of DNA.

First, the measurements are corrupted with noise, i.e.

y = f(t) + ⇢, ⇢ ⇠ N (0, ✏)

where f(t) is some deterministic process generating the noise-free data and ⇢ the gaussian

noise. This is particularly the case for the malachite green fluorescence measurements. Second,

the time points at which the measurements are obtained are not uniformly spaced due to

inconsistent preparation times of the experiments. This leads to a heterogeneous distribution

of the measurements along the time axis. And last, for malachite green, a substantial part of

the measured signal stems from some background signal caused by unbound malachite green,

leading to the need of correcting the signals by subtracting the background part. However,

due to the non-uniform temporal spacing of the measurements, a correction of the background

requires some kind of model or interpolation scheme of the data.

We therefore assume that the measurement noise ⇢ is i.i.d. and model the timeseries for each

38



experimental condition as a gaussian process, i.e.

y ⇠ GP
�
µ, k(t, t0, ✓) + ✏2�tt0

�

where µ 2 R is a constant mean, k is chosen as a squared exponential kernel parametrized with

✓ and �tt0 being the Kronecker delta.

Now let y(ctrl) and y(e) be the fitted gaussian processes of a control experiment without any

DNA and some other experimental condition with predicted mean µ(ctrl)
? , µ(e)

? and predicted

standard deviations �(ctrl)
? , �(e)

? as derived in [34] and depicted in Fig. 12 as dashed blue lines

(mean) and light blue shaded area (standard deviation). The background corrected signal ỹ(e)

is then determined by

µ̃(e)
? = µ(e)

? � µ(ctrl)
?

�
�̃(e)
?

�2
=

�
�(e)
?

�2
+
�
�(ctrl)
?

�2
,

like depicted in Fig. 12 C.

Finally, the fluorescence signals are converted from the arbitrary intensity unit into a concen-

tration unit, using the previously obtained calibration relations

1723 a.u. = 1µM GFP

775 a.u. = 1µM mRNA.
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B Genetic constructs

Gene functional contents sequence information

D1 pBest-deGFP-MGapt addgene.org/67734/

D2 pTar-tetO-deGFP see * for sequence

Ds28 pBest-�28 addgene.org/45779/

DtetR pBest-tetR addgene.org/45778/

*GGCATGCCAAGCTTCAATAAAGTTTCCCCCCTCCTTGCCGATAATCCCTATC

AGTGATAGAGAGCTAGCAATAATTTTGTTTAACTTTAAGAAGGAGATATACCA

TGGAGCTTTTCACTGGCGTTGTTCCCATCCTGGTCGAGCTGGACGGCGACGTA

AACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGG

CAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGC

CCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCC

GACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGT

CCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCG

AGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATC

GACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAA

CAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGA

ACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCAC

TACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCA

CTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATC

ACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCAGAAGGGAAGAAAGA

GCAAAGAAGGTAGCATAA
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C Models

This section extends the results presented in Section 3.2.

Proof of Proposition 1. By setting d
dtA = 0, one arrives at the quadratic equation

(A:B)2 � A:B(K + A+B) + AB = 0

which in general can have either none, exactly one or two real solutions, determined by the

discriminant

� = (K + A+B)2 � 4AB.

Taking into account that only K > 0, A > 0 and B > 0 are biologically meaningful, one finds

� = K2 +KA+KB + (A� B)2 � 0

thus at least one real solution exists. For the existence of exactly one solution, one would need

K = 0 which was excluded previously. Otherwise, the quadratic formula yields

A:B1,2 =

1

2

✓
K + A+B ±

q
(K + A+B)2 � 4AB

◆

where we assign A:B1 to the solution with the negative and A:B2 to the one with the positive

sign. Due to mass conservation, we are interested in the solution for which

0  A:Bi  min({A,B}) (25)

holds. Now, 0  A:Bi for both i = [1, 2] follows directly from

�
K + A+B

�2 �
�
K + A+B

�2 � 4AB.
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and with

1

2

�
K + A+B

�
� 1

2

�
K + 2min({A,B})

�

> min({A,B})

it can be seen that A:B2 violates (25). It remains to realize that

K + A+B � 2min({A,B}) 
q
(K + A+B)2 � 4AB

to conclude that A:B1 is the only biologically meaningful solution.
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D pTar promoter characterization

The time series data of the pTar characterization experiment is depicted in Fig. 13.
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Figure 13: Concentration of GFP over time. pTar concentration at 5 nM, varying sigma factor
DNA D3(increasing from left to right) and inhibitor concentrations (increasing from top to
bottom).

E Limitations of the Describing Function approach

The way the Describing Function approach has been used in Section 4.3.1, we assume that

higher harmonics can be neglected in the output signal. This, however, may not the be case for

every combination of parameters A, A0 and ! of the input signal given in (22). Therefore, we

analyzed the output signal of the nonlinear Model 2 in terms of its 10 first Fourier coe�cients
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Figure 14: Proportion of basis frequency in the power spectrum of the output signal generated
by the nonlinear system subject to input (22) over di↵erent parameters of the input signal.

and calculated the proportion of the basis frequency in the power spectrum, i.e.

prel =
|c1(!)|2P10
n=1 |cn(!)|2

. (26)

If prel ⇡ 1, this indicates that higher harmonics can be neglected. As shown in Fig. 14, this is not

always the case. For large values of A
A0

and input frequencies in the range ! 2 [10�2, 100], the

value of prel drops below 0.8, suggesting that the output signal will significantly be influenced

by frequency components other than the basis frequency !. This means that the output signal

will have a distorted shape.
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