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Abstract— This paper proposes a method of improving per-

formance of scalar discrete-time systems with substantial delay

by adding additional delayed feedback channels (i.e. imposing a

distributed delay feedback). The optimal weights for the added

feedback channels are found using optimization techniques. In

particular, we reduce the H1 norm of the closed loop transfer

function with multiple delayed feedback using techniques from

static output feedback design. We impose constraints on the

feedback gain in order to highlight the effectiveness of the

distribution. In this manner, improvement on performance is

a result of the distribution and not a change in the overall

effective gain. The concept of applying a multiple delayed

feedback channel is inspired by biological systems, where

substantial delays can be present in feedback control. To show

the effectiveness of this idea we apply our method to an example

of a scalar genetic autoregulatory network. The constraint on

the gain allows one to implement the feedback in a genetic

regulatory network without having to change the reaction rates.

A possible method of synthesizing such a system in a wet lab is

explained in more detail. Finally, stability results indicate the

possibility of stabilizing an unstable system with added delayed

feedbacks (by adding larger delays). This approach may also

be applicable to systems with large delays in which simple

controllers are needed due to limitations in computational

power. This paper motivates and provides preliminary results

towards direct design of purely delay based controllers for

network systems with large delays.

I. INTRODUCTION

Time delay in systems is an important uncertainty to
consider and should be treated carefully. Much work has
been done to deal with the existence of time delay in systems,
from stability analysis to controller synthesis; see [1] and [2]
for an excellent survey and references therein.

Although many tools exists for feedback controller design,
such as PID, LQR, and H1 [3], implementing such con-
trollers in a synthetic biological network is not trivial, due
to a lack of computational components in synthetic biology
[4]. In addition, controller design for systems with inherently
large delays is a relatively new problem brought about by
synthetic biology and large network systems. Although, some
processes in biology operate on fast time scales, some protein
regulated networks can have substantial delays. For example,
protein folding can impart significant delays, depending on
its size [5].

We look to existing biological systems for a possible
answer. Despite having delays and inherent stochastic pro-
cesses, biological systems remain robust in the presence
of noise. In particular, this paper is motivated by recent
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findings highlighting the positive impact of delays on system
dynamics in biological systems. Authors Longo et al in [6]
and Bhartiya et al in [7] demonstrate robust behavior of
genetic regulatory networks with multiple delayed feedbacks.

In some biological systems, feedback loops exhibit a
time delay through the involved chemical reactions that
take time to synthesize the proteins that regulate or activate
gene expression. Furthermore, additional delays can be arti-
ficially implemented in transcription and translation through
placement of the gene with respect to the promotor region
and secondary structure design respectively. Therefore, in
order to avoid building complex synthetic networks, this
paper aims to explore the possibility of implementing simple
proportional feedback where the time delayed output signal
is the only component used in the controller design. Multiple
delayed feedback channels are added to improve performance
of the system.

Previous work [8,9] shows that multiple delayed feedback
channels can stabilize a system and [10] concentrates on the
analysis of systems with stochastic delays whose mean dy-
namics resemble a distributed delay system. To some extent,
we now address a synthesis problem for these biological
systems with mean dynamics, where we design a optimal
distribution function for stochastic delays.

As an example, a scalar genetic regulatory network is
considered, which is described by a nonlinear dynamical
system. Ideally, feedback controller design should be done
in the continuous-time domain with the nonlinear dynamics.
However even stability analysis of a linear system with
time delays in the continuous-time domain remains a hard
problem. Therefore we consider a multiple delayed feedback
design for a discrete-time linear scalar system. To apply
our method to a nonlinear dynamical system, we first lin-
earize the system, and convert the continuous-time system
to a discrete-time system by periodic sampling. We then
implement this controller in the continuous-time domain with
nonlinear dynamics to check the closed loop stability and
performance.

This paper is organized as follows. Section II presents the
multiple delayed feedback design problem for a discrete-
time scalar linear system. Section III introduces a cone
complementarity linearization algorithm to get a suboptimal
solution of the design problem. Section IV describes the
method to convert a continuous-time system to a discrete
time system, Section V contains an application to a scalar
genetic regulatory network, and Section VI concludes the
paper.
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II. PROBLEM FORMULATION

Consider a scalar discrete-time linear system with inherent
delay ⌧ � 1,

x
k+1 = a x

k

+ b x
k�⌧

. (1)

We would like to improve performance and robustness of the
system by adding additional delayed feedbacks. The system
becomes

x
k+1 = a x

k

+ b

NX

i=⌧

w
i

x
k�i

, (2)

where ⌧ and N � ⌧ are positive integers. In addition, we
require

P
N

i=⌧

w
i

= 1, and w
i

� 0. Although, one can also
consider negative gains, we only consider positive gains in
order to demonstrate the effect of the delay distribution alone.
Constraining the sum of the weights to be unity ensures
no change in the overall effective feedback gain. Later,
we demonstrate the implementation of such a controller in
a genetic regulatory network. Although, negative weights
can also be considered in the synthesis of these networks,
they require a different set up since it involves a different
nonlinearity.

Consider an input disturbance ⌘
k

such that

x
k+1 = a x

k

+ b

NX

i=⌧

w
i

x
k�i

+ ⌘
k

.

Suppose we want to minimize the effect from the input
disturbance to the state. The transfer function from the input
disturbance to the state is given by

H
⌘!x

(z) =
P

1 + PC
, (3)

where P and C are the z-transforms of the plant and
controller:

P =
1

z � a

C = �b

NX

i=⌧

w
i

z�i.

This results in the following transfer function,

H
⌘!x

(z) =
1

z � a� b
P

N

i=⌧

w
i

z�i

. (4)

Assuming unwanted disturbances reside in the higher fre-
quency regime, we apply a weighting function [11], namely,
a pre-determined filter F to ensure signals at higher frequen-
cies are more greatly penalized. This is achieved with a first
order high-pass filer

F (z) =
(1 + ↵)z

z � ↵
,

where 0  ↵ < 1, resulting in the following problem:

minimize
w

⌧

,··· ,w
N

||FH
⌘!x

||1

subject to
NX

i=⌧

w
i

= 1, w
i

� 0.
(5)

The objective function is the H1 norm of the transfer
function,

||FH
⌘!x

||1 = sup
||⌘||21

||x||2
||⌘||2

,

which is the worst-case 2 norm of the state induced by
the input disturbance with unit 2 norm. Since F is a high
pass filter, the high frequency gain in the transfer function
is attenuated by solving the optimization (5). Using the
generalized plant model, we can convert the optimization
(5) to a static output feedback H1 problem with additional
affine constraints on the gain. The state dynamics can be
re-written as

x

k+1 = A0 xk

+B1 ⌘k +B2 uk

z
k

= C1 xk

+D11 ⌘k +D12 uk

y

k

= C2 xk

u
k

= wy

k

, (6)

where
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...

...
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...
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,

B1 =
⇥
1 0 · · · 0 0

⇤
T

,

B2 =
⇥
b 0 · · · 0 0

⇤
T

,

C1 =
⇥
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⇤
,

D11 = 0, D12 = 0,
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⇥
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I
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⇤
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⇥
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⇤
,

and d = N � ⌧ + 1. In addition, the state vector x

k+1 =⇥
x
k+1 x

k

· · · x
k�N+1

⇤
T 2 RN+1, u 2 R and y 2

RN�⌧+1. The optimization problem is reformulated as

minimize
w

⌧

,··· ,w
N

sup
||⌘||21

||x||2
||⌘||2

subject to 1

T

w = 1,w
i

� 0.

(7)

We refer to the gain w as the delay distribution. The static
output feedback H1 design is well studied in the literature,
see [12, 13]. This problem is known to be non-convex, and
hard in some cases [14], however, in practice there exists a
good solver which gives a reasonable solution in many cases.

The discrete-time KYP lemma [15] converts the H1 norm
minimization problem (7) into the following optimization
problem with Linear Matrix Inequalities (LMI):

minimize
w,X,Y,�

�

subject to 1

T

w = 1,w ⌫ 0,

XY = I,X � 0,

T � 0,

(8)



where
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2
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For a review of LMI and convex optimization, see [16].
Notice that this problem is non-convex because of the non-
affine equality XY = I. In some cases, one can convert
the non-convex problem (8) to a convex one through a
change of variables [17]. However, (8) does not satisfy the
necessary assumptions in [17]. Therefore, we use a cone
complementarity linearization algorithm [18] to handle the
bilinear matrix equality.

III. A CONE COMPLEMENTARITY LINEARIZATION
ALGORITHM

Since the optimization (8) is not convex, we present an
approximate semidefinite program which gives us a subopti-
mal solution of the problem (8). Let us start with following
observation.

Proposition 1: The optimal solution of following prob-
lem, (X?,Y?), satisfies X

?

Y

? = I.

minimize
X,Y

Tr(XY)

subject to


X I

I Y

�
⌫ 0

X � 0

Y � 0.

(9)

Proof: By taking Schur complement to the first LMI,
we have, Y�X

�1 ⌫ 0. This is equivalent to X

1/2
YX

1/2 ⌫
I. Since Tr(X1/2

YX

1/2) = Tr(XY), the minimum is
achieved when X

1/2
YX

1/2 = I. This implies XY = I.

Now for a given �, consider the following optimization
problem:

minimize
w,X,Y

Tr(XY)

subject to 1

T
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X,Y ⌫ 0,


X I

I Y

�
⌫ 0 T � 0,
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If there exists a triplet (w,X,Y) that satisfies all the
constraints and XY = I, then the above optimization
problem recovers this triplet. Therefore, we can successfully
construct a w such that the H1 norm of the transfer function
is less than �. However, since the objective function is

not convex, we use a linearization technique to solve this
problem, namely:

minimize
w,X,Y

Tr(X
k

Y +XY

k

)

subject to 1

T

w = 1,w ⌫ 0,

X,Y ⌫ 0,


X I

I Y

�
⌫ 0

T � 0.

(10)

Cone complementary solver:

1) Set k = 0, and X0 = Y0 = I .
2) Solve the optimization problem (10) to generate X

k+1,
Y

k+1.
3) Set k = k + 1, and do step 2 until X

k

converges.
Note that if iterative procedure above finds (w,X,Y) where
XY = I, then this weight w guarantees the stability of
the closed loop system and the H1 norm is less than �.
However, since the above procedure uses a linearized version
of the true objective function, the procedure may fail to
recover the solution (w,X,X�1) in some cases. In this
sense, this procedure is only an approximate solver for the
original problem. In practice, this approach works well.

Finally, since we can approximately solve the problem
given �, we now apply a bisection search to obtain the
minimum �.

Bisection search:

1) Set l = 0, and � = 1.
2) Solve the optimization problem (10) for �.
3) If (10) recovers XY = I, then set u = �, otherwise

l = �.
4) Set � = 1

2 (l + u). Repeat step 2 until � converges.
Again, since (10) is an approximate solver, the above bi-
section search can converge to a point which is not a true
minimum.

IV. CONTINUOUS TIME CONVERSION

We briefly summarize a method used to convert a
continuous-time linear system to a discrete-time linear sys-
tem.

Suppose we have a continuous-time linear dynamical
system,

dx

dt
= Ax+B u.

Consider we sample x(t) with sampling period T , then, this
system generates sequence x

k

= x(kT ). The zero order hold
(ZOH) method [19] assumes u(t) remains constant during
the each sampling period [kT, (k + 1)T ]. Assuming u

k

=
u(kT ), we can convert the above continuous-time system to
the following discrete time system,

x

k+1 = eAT

x

k

+A�1(eAT � I)Bu

k

.

However, biological systems, which are a main target
application, are usually described by nonlinear dynamical
systems. Henceforth, we linearize the nonlinear dynamics



and then apply the ZOH method to the linearized system.
From the obtained delay distribution vector w, we appropri-
ately incorporate the distributed delayed feedback into the
original nonlinear dynamics. The full nonlinear dynamics are
simulated to check performance and stability.

To draw a bode plot in s-domain from the data in the
z-domain, we use the following method. Suppose one has
a transfer function in the z-domain, H(z), then substitute
z = ejwT to obtain a complex valued function H(ejwT ). Plot
|H(ejwT )| as a Bode magnitude plot by varying w 2 [0, ⇡

T

].
For details, see [20].

V. APPLICATION TO A SCALAR GENETIC REGULATORY
NETWORK

A. Basic Model

Fig. 1. Self regulating protein production.

In this section we apply the numerical method to the
design of a scalar auto-regulatory genetic system. We take a
scalar example from [21],

ẋ = �
p
tot

x/K
d

+ 1
�� x+

s
� p

tot

A
e

/K
d

+ 1
n1�

p
� xn2, (11)

where x represents the concentration of a self regulating
protein. The rates � and � are the production and degradation
rates respectively. In addition, n1 and n2 represent the noises
on production and decay respectively. An example of the
system is shown in Fig. 1, where protein x inhibits further
production of itself by not allowing the RNA polymerase to
bind and, therefore, inhibiting initiation of transcription. The
constants p

tot

and K
d

represent the total concentration of the
DNA promotor and the ratio of dissociation to association
rates.

We will consider only noise on protein production (n2 =
0). We modify the model to account for delays due to
transcription and translation,

ẋ = �
p
tot

x(t� ⌧)/K
d

+ 1
� � x+

s
� p

tot

A
e

/K
d

+ 1
n1.

The system is then linearized around the equilibrium point
x
e

= 1
2

⇣p
K2

d

+ 4� p
tot

K
d

/� �K
d

⌘
by treating the delay

channel as an input which gives

ẋ = �� x(t) + x(t� ⌧) + b1 n1,

where  = �� p

tot

/K

d

(x
e

/Kd+1)2 , b1 =
q

� p

tot

x

e

/K

d

+1 and b2 =

�
p
� x

e

. Applying the zero order hold method, an equivalent
discrete time system is given by,

x(k + 1) = d2 x(k) + d1 x(k � ⌧) + d1 b1 n1(k)

where d2 = e�T� and d1 = 1
�

(1 � e�T�). By assuming
that the delay is a multiple of the sampling time T , we
can arrive at a discrete-time system with multiple delayed
feedback channels:

x(k + 1) = d2 x(k) + d1 

NX

i=⌧

w
i

x(k � i) + d1 b1 n1(k).

We optimize over the weights and compare to the original
system. The system parameters are partially taken from [21]
and chosen to be p

tot

= 10, K
d

= 10, � = .1, and � = .01.

B. Design Results

Bode Magnitude Plot for different filters
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Fig. 2. First order highpass filter, (1+↵)z
z�↵ , with multiple ↵.

We first present various high pass filters, (1+↵)z
z�↵

, by
varying ↵ in Fig. 2. Note, a larger ↵ results in a smaller
cut-off frequency. Therefore, depending on our assumption
on the noise, we can choose ↵ to obtain an appropriate
sensitivity transfer function.

For the discretization, we use T = 60s (1 minute) as a
sampling period, and assume the minimum time delay ⌧ =
10, which corresponds 10 minutes. For maximum delays, we
test N = 10, 15, 20, 25 and 30 as an example, and set the
filter parameter ↵ = 0.99.

Fig. 3 shows the bode magnitude pot of the transfer
function for various maximum delays. A larger maximum
delay N results in more degrees of freedom in the design
stage, hence, we should expect better performance in the
result. As we can see, when N = 30 the transfer function
H = P

1+PC

shows better attenuation. Notice that we opti-
mized the filtered version of the H1 norm, ||FH||1 and



Bode Magnitude Plot for Different Maximum Delays
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Fig. 3. Resulting transfer function P
1+PC for multiple maximum delays
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Fig. 4. Resulting delay distribution for multiple maximum delays N .

not the unweighted one, so a direct numerical comparison
of Bode magnitude plots should be considered carefully.

For the corresponding delay distribution vector see Fig. 4.
Notice that the first and the last delay channels are most
important, and other channels have similar weights to each
other.

C. Time Simulation

We apply the results obtained to the original nonlinear
equation (11) with n2 = 0. For a general distributed delay
representation, (11) can be re-written as

ẋ = �
p
tot

x̃/K
d

+ 1
� � x+

s
� p

tot

A
e

/K
d

+ 1
n1

x̃ =

Z 1

0
x(t� ⌧)g(⌧)d⌧

where g(t) is the delay distribution function such thatR1
0 g(⌧)d⌧ = 1, and g(t) � 0 for all t. In the discretization

of the system, g(t) takes on the form

g(t) =

NX

k=⌧

w
k

�(⌧ � kT )

where
P

N

k=⌧

w
i

= 1, T is the sampling period, and � is
the Dirac delta function. The final model representing the
modified network is described by

ẋ(t) = �
p
tot

(
P

N

k=⌧

w

k

x(t�kT ))
K

d

+ 1
�� x(t)+
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tot

A
e

/K
d

+ 1
n1.

One way the delays can be implemented is by adding ”junk”
DNA in between the promotor site and the gene to delay
the initiation of transcription. The ”junk” DNA would be a
sequence of DNA strand that does not code for anything,
but that the RNA polymerase would still need to transcribe
before beginning transcription of the target gene. Since the
overall gain remains unchanged there is no need to change
any of the parameters in the system such as the production
rate. This, in general, may be harder to do. However, one
does need to consider how to account for the differences
in the weights. This can possibly be implemented through
proportions of various plasmids with the different delays
implemented so that the ratios on concentrations correspond
to the weights. A more challenging but possibly useful
approach would be to apply competitive binding so that
the weights correspond to the probability of each particular
delayed state binding to the promotor site.

Before presenting simulations, the stability regions for
the different sets of delays and their respective weights are
considered. This is important to take note of when consid-
ering how the system stability may change with respect to
uncertainty in the parameters of the system when adding
delays. The stability region for the general system (2) is
determined by the characteristic equation

z � a� b

NX

i=⌧

w
i

z�i = 0

given by the denominator of the transfer function (4). For
discrete-time systems, a system is unstable when |z| � 1,
therefore, the characteristic equation is evaluated at |z| = 1
to map out the curves on the (a, b) parameter space when
an eigenvalue crosses the unit circle. These curves can be
obtained by evaluating the characteristic equation at z = 1,
z = �1, and z = ei✓ [22,23]. It is worth noting z = 1
(black curve) gives a delay independent stability condition
b = 1� a. However, z = �1 (red curve) and z = ei✓ (blue
curves) give

b =
�(a+ 1)

P
N

i=⌧

w
i

(�1)i



and

b(✓) = � sin(✓)/
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respectively.
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Fig. 5. Stability plot for the system with a single delay ⌧ = 10. The black
circle indicates the parameter values corresponding to the simulations.

Fig. 5 shows the stability region for the original system
with a single delay. If the system parameters (a, b) are in the
shaded region, then the system is stable. From our nominal
parameter values, we obtain (a, b) = (0.5488,�0.3293),
which is indicated by a circle marker in Fig. 5.

Fig. 6 shows the stability regions for the various distributed
delayed systems. The overlaying green shaded region and
grey curves correspond to the stability region for the original
system shown in Fig. 5. One can see that the area of the
stability region increases as the maximum delay N increases.
There is also a notable difference in the robustness to
uncertainty in parameter values.

Lastly, the nonlinear system with multiple delayed feed-
back is simulated in Fig. 7. The noise is modeled as a sum
of periodic functions at various equally spaced frequencies
beginning at 10�3Hz. Notice that in Fig. 7, our designed
multiple delayed feedback channels help to decrease the
fluctuations in protein production.

VI. CONCLUSION

Inspired by biological applications, we consider the sub-
optimal multiple delayed feedback channel design for a
scalar linear discrete-time system. We formulate a H1
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Fig. 6. Stability plots for different delay ranges and distributions (blue).
The shaded green region and grey lines correspond to the stability plot in
Fig. 5. The black circle indicates the parameter values corresponding to the
simulations.
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Fig. 7. Simulations of nonlinear system with distributed delays.

design problem with multiple delayed feedback, and make a
connection to a static output feedback H1 with additional
linear constraints on a static gain. We apply this design
procedure to a sampled, linearized scalar auto-regulatory
genetic system, and show that the effect from the input
disturbance can be suppressed by adding appropriate multiple
delays. Furthermore, we simulate an auto-regulatory genetic
system with multiple delays, and show, indeed, the full
nonlinear system has improved performance in the presence
of stochastic protein production.



Notice, that even though adding additional delays de-
creases the H1 norm from the input to the output, the
waterbed affect can result in larger magnitudes at the higher
frequencies. It appears as though the distribution which gives
the smallest H1 norm may not always be the best choice.
One could imagine designing the weighting filter such that
improvement is obtained where needed, based on knowledge
of uncertainty.

In the future, we generalize this concept to a multi-state
system. We would also like to explore removing the positive
definite constraint on the weights in order to allow for design
with a combination of positive and negative feedback loops.
Another potential application to explore is that of achieving
plant stability in a car following model with delays. Plant
stability is achieved when the H1 norm of the transfer
functions from every possible source of input to output
remain equal to or below unity. This method may provide a
simpler method of improving performance with minimized
computational cost.
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