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Abstract

We examine two special cases of the problem of optimal Linear Quadratic Gaussian
control of a system whose state is being measured by sensors that communicate with
the controller over packet-dropping links. We extend the LQG separation principle
using a standard LQR state-feedback design, along with an optimal algorithm for
propagating and using the information across the unreliable link. Our design is
optimal for any arbitrary packet drop pattern. Further, the solution is appealing
from a practical point of view because it can be implemented as a small modification
of an existing LQG control design.
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1 Introduction

Recently, much attention has been directed toward systems which are con-
trolled over a communication link (see, e.g., [1,2] and the references therein).
Understanding and counter-acting effects such as quantization error, random
delays and packet drops that are introduced by communication links will be-
come increasingly important as emerging applications of decentralized control
mature. In this note, we consider systems communicating over links that ran-
domly drop packets. The nominal system is shown in Figure 1, where the links
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Fig. 1. The architecture of a packet-based control loop. The links are unreliable and
unpredictably drop packets.

L1, L2, · · · , LN are communication channels or networks that randomly drop
packets being communicated from the sensors to the controller. In particular,
we discuss two special cases of the problem.

(1) Case C1: There is only one sensor present.
(2) Case C2: There are 2 sensors present. However, while L1 drops packets

randomly, L2 transmits all packets.

While the case C1 is important in its own right, it is also the basic system
we need to understand for more general systems with multiple plants, sensors
and controllers. Preliminary work for this case has studied stability and perfor-
mance of systems utilizing lossy packet-based communication, e.g., in [18,20].
Approaches for compensation for data loss have been proposed, among others,
by Nilsson [16] and by Ling and Lemmon [14], who posed the problem of opti-
mal compensator design for the case when data loss is independent and identi-
cally distributed (i.i.d.) as a nonlinear optimization. A sub-optimal estimator
and regulator to minimize a quadratic cost was proposed by Azimi-Sadjadi [3]
and this approach was extended by Imer et al. in [13] and Sinopoli et al. in [8].
The related problem of optimal estimation across a packet-dropping link was
considered by Sinopoli et. al in [19] and extended in [15]. However, most of the
designs proposed in these references aim at designing a packet-loss compen-
sator as shown in Figure 2. The compensator uses the successfully transmitted
packets to come up with an estimate of the plant state. This estimate is then
used by the controller. Our work takes a more general approach by seeking
the LQG optimal control for this packet-based problem. In particular, our
architecture is as shown in Figure 3. Recognizing that sensors equipped with
wireless or network communication capabilities will likely have some compu-
tational power available as well, we introduce an encoder at the sensor end.
The compensator then effectively becomes a deocder for the information being
transmitted over the link. We jointly design the controller, the encoder and
the decoder to solve the optimal LQG problem.
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Process

Sensor 1

Sensor 2

Channel
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problem.

There does not appear to be existing work dealing with the case C2 specifically.
We encounter this case in our work on the multi-vehicle wireless testbed [10].
In the testbed, each vehicle is equipped with an on-board gyro. In addition,
each vehicle also obtains measurement from an overhead camera. While the
gyro-controller link is hard-wired and hence does not drop packets, the cam-
era communicates to the controller over a wireless link that randomly drops
packets. Thus this situation is identical to the case C2. Our solution to this
problem again adopts the philosophy of using some computation at the sensor
end to combat the effects of the channels. Our architecture is as shown in
Figure 4. We again provide the optimal design of encoders, decoder and the
controller.

An implicit assumption made in the entire paper is that the encoders and the
decoder at time step k know the control signals applied to the plant till time
step k−1. Depending on the particular application, this may or may not be a
reasonable assumption. We present simulations later in the paper for the case
when only a noise-corrupted version of the control signal is available to the
encoders.

As an intermediate step, we will also solve the following problem. Suppose,
as shown in Figure 5, two sensors are estimating a process jointly while com-
municating over a link that drops packets stochastically. What information
should the sensors exchange? Related work to this problem has dealt with fu-
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sion of data from multiple sensors and track-to-track fusion. A usual starting
point for such works is decentralization of the Kalman filter as described, e.g.,
in [11,17,21]. Alternative approaches include the Federated filter [6], Bayesian
method [9] and many others. However all these approaches assume a fixed
communication topology among the nodes with a link, if present, being per-
fect. Random loss of information due to the communication channels dropping
packets reintroduces the problem of correlation between the estimation errors
of various nodes as shown by Bar-Shalom [4] and renders the approaches pro-
posed in the literature as sub-optimal. Schemes to counter this through state
estimate fusion proposed, e.g., in [5] have been shown to not be optimal by
Chang et al [7]. In this note, we solve for the optimal information to be trans-
mitted by each sensor for the case of two sensors being present.

This paper is organized as follows. We begin in the next section by posing the
LQG problem in a packet-based setting. We then discuss a separation between
control and estimation costs, and present an optimal solution to the estima-
tion problem. Finally, we analyze the stability of our system and compare its
performance with some other approaches in the literature.

2 Problem Formulation

Consider a discrete-time linear system evolving according to

xk+1 = Axk + Buk + wk, (1)

where xk ∈ Rn is the process state, uk ∈ Rm is the control input and wk is
process noise assumed to be white, Gaussian, and zero mean with covariance
matrix Qw

1 . The initial condition x0 is assumed to be independent of wk

and to have mean zero and covariance matrix Q0. The state of the plant is
measured by two sensors according to the equations

yi
k = Cixk + vi

k i = 1, 2. (2)

The measurement noises vi
k’s are assumed white, zero-mean, Gaussian (with

covariance matrix Qi
v) and independent of the plant noise wk and of each

other. Note that substituting C2 = 0 and Q2
v = 0 would reduce the case C1 to

be a special case of C2. Hence, from now on, we will carry out the derivation
for case C2 only and adapt the results for the case of one sensor. Each sensor
communicates its own measurements (or some function of the measurements)
to the controller. We impose the constraint that the function communicated
should be a finite vector, whose size does not increase with time. Sensor 1

1 The results continue to hold for time-varying systems, but we consider the time-
invariant case to simplify the presentation.
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communicates over link L1 that randomly drops packets while sensor 2 utilizes
link L2 that is a perfect channel. For the moment we ignore delays and packet
reordering in L1; it will be shown that these effects can be accounted for with
time-stamping and a slight modification to our design. The packet dropping in
L1 is a random process. We refer to individual (i.e. deterministic) realizations
of this random process as packet drop sequences. A packet drop sequence P is
a binary sequence {ηk}

∞
k=0

in which ηk takes the value “received” if the link
delivers the packet at time step k, and “dropped” otherwise.

We assume sufficient bits per packet and a high enough data rate so that
quantization error is negligible. We also assume that enough error-correction
coding is done within the packets so that the packets are either dropped or
received without error. Finally, we assume no coding is done across packets;
that is, no packet contains information about any other packet. We impose
this constraint because coding across packets can induce a large encoding
and decoding delay which is undesirable for control applications. In order to
make the class of controllers that are allowed more precise, we introduce the
following terminology. Denote by si

k the finite vector transmitted from the
sensor i to the controller at time step k. By causality, si

k can depend (possible
in a time-varying manner) on yi

0, yi
1, · · · , yi

k, i.e., si
k = f i

k (yi
0, y

i
1, · · · , yi

k) . The
information set, Ik available to the controller at time k is the union of two
sets I1

k and I2
k defined by

I1

k = {s1

j |∀j s.t. ηj = received} and I2

k = {s2

j |∀j = 0 · · · k}

Also denote by tl(k) ≤ k the last time-step at which a packet was delivered
over link L1. That is tl(k) = max{j ≤ k | ηj = “received”}. The maximal
information set, Imax

k at time-step k is then the union of I2
k and the set I

1,max
k

defined by I
1,max
k = {y1

j | 0 ≤ j ≤ tl(k)}. The maximal information set is the
largest set of output measurements on which the control at time-step k can
depend. In general, the set of output measurements on which the control de-
pends will be less than this set, since earlier packets, and hence measurements,
may have been dropped. As stated earlier, the only restriction we impose is
that the vectors si

k not increase in size as k increases. We will call the set of
f i

k’s which fulfill this requirement as F. Without loss of generality, we will only
consider controllers of the form uk = u(Ik, k). We denote the set of control
laws allowed by U . We shall assume perfect knowledge of the system param-
eters A, B, C, Qw and Qi

v’s at the controller. Moreover we assume that the
controller has access to the previous control signals u0, u1, · · · , uk−1 while
calculating the control uk at time k. Finally, as noted earlier, we assume that
the encoders and the decoder at time step k know the control signals applied
to the plant till time step k − 1.
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We can thus pose the packetized LQG problem as:

min
u∈U,f i∈F

JK(u, f i, P ) = E

[
K∑

k=0

(
uT

k Qcuk + xT
k Rcxk

)
+ xT

K+1P
c
K+1xK+1

]
. (3)

Here K is the horizon on which the plant is operated and the expectation is
taken over the uncorrelated variables x0, {wk} and {vi

k}. Note that the cost
functional J above depends on the random packet-drop sequence P . However,
we do not average across packet-drop processes; the solution we will present
is optimal for an arbitrary realization of the packet dropping process. We now
present our solution to the problem.

3 Separation of Control and Estimation

In this section, we re-visit the familiar separation principle in the packet-based
setting of our problem. Consider the K-horizon cost functional given in (3).
Following [12], we gather terms that depend on the choice of uK and xK and
rewrite them as

TK = E
[
uT

KQcuK + xT
KRcxK

]
+ E

[
xT

K+1P
c
K+1xK+1

]
= SK + OK

SK = E

⎡
⎢⎣[

uT
K xT

K

]
Δ

⎡
⎢⎣ uK

xK

⎤
⎥⎦

⎤
⎥⎦ OK = E

[
wT

KP c
K+1wK

]

Δ =

⎡
⎢⎣ Qc + BT P c

K+1B BT P c
K+1A

AT P c
K+1B Rc + AT P c

K+1A

⎤
⎥⎦

Thus we can write

JK(u, f i, P ) = E

[
K−1∑
k=0

uT
k Qcuk +

K−1∑
k=0

xT
k Rcxk

]
+ SK + OK . (4)

We aim to choose uK to minimize JK(u, f i, P ) for given f i’s. From (4), it is
clear that the only term where uK enters is SK . SK can be written as

SK = E
[
(uK − ūK)T

Rc
e,K (uK − ūK)

]
+ E

[
xT

KP c
KxK

]
Rc

e,K = Qc + BT P c
K+1B

P c
K = Rc + AT P c

K+1A − AT P c
K+1B

(
Qc + BT P c

K+1B
)−1

BT P c
K+1A,

where ūK is the standard optimal LQ control, ūK = −
(
Rc

e,K

)−1

BT P c
K+1AxK .

In the absence of the packetized link, the controller could simply use the
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standard optimal control ūK . However, this control law does not lie in the set
of allowable solutions U because it is not realizable for any non-trivial packet-
dropping sequence. Instead, we will calculate uK based on the information set
IK (and the previous controls u0, u1, · · · , uK−1) and choose it to minimize
SK . The control problem thus reduces to an optimal estimation problem. We
denote the least mean square (lms) estimate of a random variable Γ based on
the information set at time k, Ik, and the previous controls by Γ̂|Ik

. Then we
can write the optimal control at time step K as

uK = ˆ̄uK|IK
= −

(
Rc

e,K

)−1

BT P c
K+1Ax̂K|IK

. (5)

Thus, we only need to find the lms estimate of xK , given the information IK

available to the controller. Note that since the information content in Ik is
upper bounded by the information contained in Imax

k , the error in x̂K|IK
is

lower bounded by the error in calculating x̂K|Imax

K
. In the next section, we will

provide a way to design the functions f i
k’s that will, surprisingly, allow the

errors to actually coincide.

Denote the estimation error incurred due to the minimizing choice of uK by
ΥK . Note that ΥK is independent of the previous control inputs u0, · · · , uK−1

since these are assumed known to the controller when it calculates uK in (5).
Thus we can write

JK(u, f i, P ) = JK−1(u, f i, P ) + ΥK + OK .

Thus we now need to choose control inputs for time steps 0 to K − 1 to
minimize JK−1, independently of the associated estimation cost at time step K

(the terms OK and ΥK do not involve these control inputs). But our argument
so far was independent of the time index K. Thus we can recursively apply
this argument for time steps K − 1, K − 2 and so on. We have thus proved
the following.

Proposition 1 (Separation) Consider the packet-based optimal control prob-
lem defined in section 2. For an optimizing choice of the control, the control
and estimation costs decouple. Specifically, the optimal control input at time
k is calculated by using the relation

uk = ˆ̄uk|Ik
= −

(
Rc

e,k

)−1

BT P c
k+1Ax̂k|Ik

,

where ūk is the optimal LQ control law while α̂k|Ik
denotes the lms estimate of

α given the information set Ik and the previous control laws u0, · · · , uk−1.

Remarks:

(1) This result must be viewed in light of the limited information available
to the controller. At every time step, the controller tries to estimate the
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optimal control input based on the information set Ik, and uses this esti-
mate in the optimal LQR control law. Thus, the state-feedback portion
of an LQG controller need not be reworked for a packet-based imple-
mentation. The packet-based LQG question reduces to choosing what
information should be sent from the sensor so that the optimal estimate
can be formed at the controller, given that some of the packets might be
lost. We address this issue in the next section.

(2) Note that we have not yet said anything about the design of the encoders
or the decoder for coming up with the estimate x̂k|Ik

(e.g., whether they
are linear or not). Proposition 1 simply says that whatever be the way
information is encoded and then decoded, given an information set Ik on
which the control has to depend, the best thing to do is to calculate ˆ̄uk|Ik

.
In the next section, we will give a design for which ˆ̄uk|Ik

coincides with
ˆ̄uk|Imax

k
at each time step.

(3) Since all past controls are supposed to be available at both the encoder
and the decoder, control does not have a dual effect in this problem.

4 Optimal Encoder and Decoder Design

Recall that we wish to construct the optimal estimate based on the information
set Imax

k , but we have not yet specified how to design f i
k’s that will allow the

controller to compute that. If L1 does not drop packets, sending the current
measurement yi

k in the current packets is sufficient. When L1 randomly drops
packets, a náıve solution would be to send the entire history of the output
variables at each time step. However, as mentioned earlier, this is not allowed
since it requires increasing data transmission as time increases. Surprisingly,
we can achieve performance equivalent to the náıve solution using a constant
amount of transmission, and a constant amount of memory at the receiver
end. We propose the following algorithm. Denote by x̂i

k|l the estimate of xk

based on all the measurements of sensor i up to time l and all previous control
inputs. Also denote the corresponding error covariance by P i

k|l .

Optimal Transmission and Estimation Algorithm:

• Encoder for sensor 1: At each time step k,
· Obtain measurement y1

k and run a local Kalman filter for x̂1
k|k and P 1

k|k.

· Calculate λ1
k =

(
P 1

k|k

)−1

x̂1
k|k −

(
P 1

k|k−1

)−1

x̂1
k|k−1

.
· Calculate global error covariance matrices Pk|k and Pk|k−1 using

(
Pk|k

)−1

=
(
Pk|k−1

)−1

+
(
C1

)T (
Q1

v

)−1 (
C1

)
+

(
C2

)T (
Q2

v

)−1 (
C2

)
Pk|k−1 = APk−1|k−1A

T + Qw.
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· Obtain γk =
(
Pk|k−1

)−1

Ak−1Pk−1|k−1.

· Finally calculate i1k = λ1
k + γki

1
k−1 with i1−1 = 0 and transmit it.

• Encoder for sensor 2: At each time step k, transmit the measurement y2
k.

• Decoder: At each time step k,
· Use y2

k to come up with i2k using an algorithm similar to the one followed
by the encoder for sensor 1.

· Maintain a local variable x̂dec
k which is updated as follows.

(1) If ηk = received, both links L1 and L2 have successfully transmitted

packets. In that case, calculate ψk =
(
Pk|k−1

)−1

Buk−1 +γkψk−1 with
ψ0 = 0 and obtain the estimate through

(
Pk|k

)−1

x̂dec
k = i1k + i2k + ψk.

(2) If ηk = dropped, only L2 has transmitted the packet. In this case,
propagate the estimate x̂dec

k−1 using the measurement y2
k and the con-

trol uk−1 through a Kalman filter.

Proposition 2 (Optimal Estimation) In the above algorithm, x̂dec
k = x̂|Imax

k
.

PROOF. Consider a centralized filter that has access to measurements from
a sensor of the form

yk = Cxk + vk

where

C =

⎡
⎢⎣ C1

C2

⎤
⎥⎦ vk =

⎡
⎢⎣ v1

k

v2
k

⎤
⎥⎦ . (6)

Let R be the covariance matrix of the noise vk. Since R is block-diagonal, the
time and measurement update equations of the Kalman filter are

(
Pk|k

)−1

=
(
Pk|k−1

)−1

+ CT R−1C =
(
Pk|k−1

)−1

+
∑

i

[(
P i

k|k

)−1

−
(
P i

k|k−1

)−1
]

(
Pk|k

)−1

x̂k|k =
(
Pk|k−1

)−1

x̂k|k−1 + CT R−1yk

=
(
Pk|k−1

)−1

x̂k|k−1 +
∑

i

[(
P i

k|k

)−1

x̂i
k|k −

(
P i

k|k−1

)−1

x̂i
k|k−1

]

Pk|k−1 = APk−1|k−1A
T + Qw x̂k|k−1 = Ax̂k−1|k−1 + Buk−1.

Thus at time step k, the covariance matrices can be calculated offline while for

the estimate the sensor i needs to send Λi
k =

(
P i

k|k

)−1

x̂i
k|k −

(
P i

k|k−1

)−1

x̂i
k|k−1

.
We can write
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(
Pk|k

)−1

x̂k|k =
(
Pk|k−1

)−1

x̂k|k−1 +
∑

i

Λi
k =

∑
i

I i
k + Ψk

I i
k = Λi

k + ΓkΛ
i
k−1 + ΓkΓk−1Λ

i
k−2 + · · · + (ΓkΓk−1 · · ·Γ1) Λi

0

Ψk =
(
Pk|k−1

)−1

Buk−1 + ΓkΨk−1 Γk =
(
Pk|k−1

)−1

APk−1|k−1,

with Ψ0 = 0. In the above derivation, we have used the fact that x0 was zero
mean and thus x̂0|−1 = 0. Thus, the information needed from sensor i at time
step k is precisely I i

k. Now for the case when ηk = received, the decoder in
the algorithm has access to i1k and i2k that are the same as I1

k and I2
k . Thus

it can calculate the centralized Kalman filter output x̂k|k which is x̂k|Imax
.

For the case when ηk = dropped, the decoder propagates the best Kalman
filter estimate x̂k−1|k−1 with sensor 2’s measurement. Thus in this case too,
x̂dec

k = x̂k|Imax �

Proposition 2 presents the solution to the estimation problem posed in case C3

since we can use an encoder and a decoder described in the algorithm at each
sensor. Moreover, taken together, propositions 1 and 2 solve the packet-based
LQG control problem posed in Section 2.

Proposition 3 (Optimal Packet-Based LQG Control) For the packet-
based optimal control problem stated in section 2, an LQR state feedback design
together with the optimal transmission-estimation algorithm described above
achieves the minimum of J(u, f i, P ) for any P .

Remarks:

(1) Note that the computation and memory required for calculating I i
k does

not grow with time since we can use the recursion I i
k = Λi

k + ΓkI
i
k−1.

(2) The information vector I i
k ‘washes away’ the effect of any previous packet

losses, If ηk = received, x̂k|k is calculated as if all the previous measure-
ments from both sensors were available.

(3) We have made no assumption about the packet dropping behavior. The
algorithm provides the optimal estimate based on Imax

k for an arbitrary
packet drop sequence, irrespective of whether the packet drop can be
modeled as an i.i.d. process (or a more sophisticated model like a Markov
chain) or whether its statistics are known or unknown to the plant and
the controller.

(4) For the case C1, the algorithm reduces to the following:
• The encoder (at the sensor end) receives as input the measurement yk.

It runs a Kalman filter that provides the llms estimate of xk based on
all the measurements until time step k, denoted by x̂k|k and transmits
this vector across the link.

• The decoder (at the controller end) maintains a local variable x̂dec
k . It

is updated as follows:
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· If ηk = received , the decoder receives x̂k|k, and sets x̂dec
k = x̂k|k.

· If ηk = dropped , then the decoder implements the linear predictor:

x̂dec
k = Ax̂dec

k−1 + Buk−1. (7)

(5) The solution can readily be extended to the case when the channel applies
a random delay to the packet so that packets might arrive at the decoder
delayed or even out-of-order, if we assume that there is a provision for
time-stamping the packets sent by the encoder. For ease of notation, we
present the solution for optimal asynchronous estimation for the case C1.
The case C2 is similar. At each time step, the decoder will face one of
four possibilities, and will update its estimate as described below:
• It receives x̂k|k. It uses this as its estimate.
• It does not receive anything. It uses the predictor equation (7) on x̂dec

k−1.
• It receives x̂m|m while at a previous time step, it has already received

x̂n|n, where n > m. It discards x̂m|m and uses (7) on x̂dec
k−1.

• It receives x̂m|m and at no previous time step has it received x̂n|n, where
n > m. It uses x̂m|m as x̂dec

m and obtains x̂dec
k through (7).

(6) Note that we do not assume knowledge of the cost matrices Q and R

at the sensor end. Thus the controller can be changed at will without
affecting the sensor/encoder operation. This is important, e.g., in our
MVWT work where the matrices Q and R are user-specified while the
encoder code is much harder to change.

(7) As pointed out by Imer et al in [13] if we have a channel between the con-
troller and the plant, the separation principle would still hold, provided
there is a provision for acknowledgment over the channels.

5 Analysis of the Proposed Algorithm

In this section, we model the channel erasures as occurring according to a
Markov chain and analyze the stability and performance of our design. Thus
the channel exists in either of two states, state 1 corresponding to a packet drop
and state 2 corresponding to no packet drop and it transitions probabilistically
between these states according to the transition probability matrix Q. Note
that i.i.d. drops can be handled by a special choice of Q. We assume strict
causality in the Kalman filter used by the encoder. Thus to calculate the
estimate of xk, only the measurements till time step k−1 are used. The analysis
for the causal case is similar. Finally we assume that (A,B) is stabilizable and
the pair (A,C) is detectable, where C is defined in (6). We will denote the
Kronecker product of matrices A and B by A ⊗ B.

We begin with the stability analysis. Denote by yk the vector formed by stack-
ing y1

k and y2
k. We have three dynamical systems. The plant state xk evolves as
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in (1). The state x̂k of a centralized Kalman filter with access to measurements
from both sensors at every time step would evolve as

x̂k+1 = Ax̂k + Buk + Kc
k (yk − Cx̂k) .

Finally the state x̂dec
k of the estimator at the decoder evolves according to

x̂dec
k+1 =

⎧⎨
⎩Ax̂dec

k + Buk + Kd
k

(
y2

k − C2x̂dec
k

)
channel in state 1

x̂k+1 otherwise.

Denote ek = xk − x̂k and tk = x̂k − x̂dec
k . Since uk = Fkx̂

dec
k , (1) implies

xk+1 = (A + BFk) xk + wk − BFk (tk + ek) .

Since (A,B) is stabilizable and Fk is the optimum control law, the system
would be stable in the bounded covariance sense as long as the disturbances
wk, tk and ek have bounded covariances. We assume the noise wk has bounded
covariance matrix. Also ek has bounded covariance matrices by our detectabil-
ity assumption. Finally tk evolves according to

tk+1 =

⎧⎨
⎩

(
A − Kd

kC2
)
tk + L1(ek) + L2(v1

k) + L3(v3
k) channel in state 1

0 otherwise,
(8)

where Ln(β) denotes a term linear in β. Again note that vi
k’s and ek have

bounded covariance. For tk to be of bounded variance, the Markov jump sys-
tem of (8) needs to be stable. Finally, since our controller and encoder/decoder
design is optimal, if the closed loop is unstable with our design, it is not sta-
bilizable by any other design. We can thus say the following.

Proposition 4 (Stability Condition) Consider the control problem defined
in Section 2 in which the packet erasure channel is modeled as a Markov
chain with transition probability matrix Q = [qij]. Let the matrix pair (A,B)
be stabilizable and the matrix pair (A,C) be detectable. The system is stabi-
lizable, in the sense that the variance of the state is bounded, if and only if
q22|λmax

(
Ā

)
|2 < 1, where λmax

(
Ā

)
is the maximum magnitude eigenvalue of

the unobservable part of matrix A when (A,C2) is put in the observer canonical
form. Further, if the system is stabilizable, one controller and encoder/decoder
design that stabilizes the system is given in Proposition 3.

Using the results of [16], we can also calculate the total quadratic cost incurred
by the system for the infinite-horizon case (the case when K → ∞ in (3)) if
we make the additional assumption that the Markov chain is stationary and
regular. We state the result for the case C1. We consider the cost

J∞ = lim
K→∞

E
[
xT

KRcxK + uT
KQcuK

]
= trace (P∞

x Rc) + trace (P∞
u Qc) , (9)
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where P∞
x = limK→∞ E

[
xKxT

K

]
and P∞

u = limK→∞ E
[
uKuT

K

]
. We see that

P∞
x =

[
I 0 0

]
P∞

⎡
⎢⎢⎢⎢⎢⎣

I

0

0

⎤
⎥⎥⎥⎥⎥⎦ P∞

u = F

[
I −I −I

]
P∞

⎡
⎢⎢⎢⎢⎢⎣

I

−I

−I

⎤
⎥⎥⎥⎥⎥⎦ F T ,

where P∞ = P̃1 + P̃2 and P̃ =
[
vec(P̃1)

T vec(P̃2)
T

]T

. Then, it can be shown

that P̃ is the unique solution to the linear equation

P̃ =
(
QT ⊗ I

) ⎡
⎢⎣ A1 0

0 A2

⎤
⎥⎦ P̃ +

(
QT ⊗ I

) ⎛
⎜⎝

⎡
⎢⎣ π1 0

0 π2

⎤
⎥⎦ ⊗ I

⎞
⎟⎠ G.

In the above equation, Ai = Ai ⊗Ai, and G =
[
vec(G1)

T vec(G2)
T

]T

, where

A1 =

⎡
⎢⎢⎢⎢⎢⎣

A + BF −BF −BF

A − KC 0 0

0 −KC A

⎤
⎥⎥⎥⎥⎥⎦ A2 =

⎡
⎢⎢⎢⎢⎢⎣

A + BF −BF −BF

A − KC 0 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎦

B1 =

⎡
⎢⎢⎢⎢⎢⎣

I 0

I −K

0 −K

⎤
⎥⎥⎥⎥⎥⎦ B2 =

⎡
⎢⎢⎢⎢⎢⎣

I 0

I −K

0 0

⎤
⎥⎥⎥⎥⎥⎦ Gi = Bi

⎡
⎢⎣ Qw 0

0 Qv

⎤
⎥⎦ BT

i .

Example

We now consider some examples to illustrate the performance of our algorithm.
First, we consider the example system considered by Ling and Lemmon in [14].
The system evolves as

xk+1 =

⎡
⎢⎣ 0 −2

1 −1

⎤
⎥⎦ xk +

⎡
⎢⎣ 2

1

⎤
⎥⎦ uk +

⎡
⎢⎣ 2

1

⎤
⎥⎦ wk.

There is only one sensor of the form

yk =
[
0 1

]
xk.

The process noise wk is zero mean with unit variance and the packet drop
process is i.i.d. The cost considered is the steady state output error limK→∞ y2

K .
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Fig. 6. Comparison of performance for
our algorithm with the one obtained us-
ing optimal compensator.
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Fig. 7. Comparison of performance for
when the encoder has access only to a
noise corrupted value of the control.

[14] assumes unity feedback when packets are delivered and gives an optimal
compensator design when packets are being lost.

On analyzing the system with our algorithm, we observe that our algorithm
allows the system to be stable up to a packet drop probability of 0.5 while
the optimal compensator in [14] is stable only if the probability is less than
0.25. Also if we analyze the performance we obtain the plot given in Figure 6.
The performance is much better throughout the range of operation for our al-
gorithm, even if we assume unity feedback in our algorithm. This shows that
the difference in performance is mainly due to the novel encoding-decoding
algorithm proposed. In the above plots we assumed that the encoder had per-
fect access to the control signal. Figure 7 shows the performance when the
encoder uses a noise corrupted value of the control. Four different curves for
noise variances 0, 0.1, 1 and 2 are plotted. The curves show the simulated
expected performance for the system. We see that the increase in stability
margin remains valid in all four cases. Furthermore, even though the perfor-
mance degrades as the noise is increased, the performance still remains better
than the no encoding strategy.

In the next example, we consider the same system being observed through two
sensors of the form

y1

k =
[
1 0

]
xk + v1

k y2

k =
[
0 1

]
xk + v2

k.

The sensor noises are zero mean with variance 10 and 1 respectively. We
consider the cost function limK→∞ (y2

K)
2
. Figure 8 shows the simulated per-

formance of our algorithm as a function of the packet loss probability. We
also plot the performance for a hypothetical sensor that received information
from both sensors without any packet drop and for a scheme in which sensors
exchange only measurements. It can be seen that even in this very simple
case, our algorithm can lead to a performance gain of up to 40% over simply
sending measurements.
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6 Conclusions and Future Work

In this paper, we considered the problem of optimal LQG control when the
sensor and controller are communicating across a channel or a network. We
modeled the link as a switch that drops packets randomly and proved that a
separation exists between the optimal estimate and the optimal control law.
For the optimal estimate, we identified the information that the sensor should
provide to the controller. This can be viewed as constructing an encoder for
the channel. We also designed the decoder that uses the information it receives
across the link to construct an estimate of the state of the plant. The proposed
algorithm is optimal irrespective of the packet drop pattern. For the case of
packet drops occurring according to a Markov chain, we carried out stability
and performance analysis of our algorithm.

The work can potentially be extended in many ways. One obvious extension
is to consider multiple sensors and communication links. Another intriguing
possibility is considering the effect of allowing only finite number of bits in
the packet.
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