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Marcella M. Gomez1, Gábor Orosz2 and Richard M. Murray3

Abstract— This paper investigates the stability of linear

systems with stochastic delay in discrete time. Stability of the

mean and second moment of the non-deterministic system is

determined by a set of deterministic discrete time equations

with distributed delay. A theorem is provided that guaran-

tees convergence of the state with convergence of the second

moment, assuming the delays are identically independently

distributed. The theorems are applied to a scalar equation

where the stability of the equilibrium is determined.

I. INTRODUCTION

Noise is often a source of concern for control engineers
and, most recently, a concern in efforts to progress in the field
of synthetic biology. This paper focuses on the uncertainty
in delay in dynamical systems. Much investigation has been
done on systems with uncertainty in the state matrix for
linear systems [7] but little has been done on systems
with uncertainty in the delay. In [6] the author provides an
improved stability criterion for systems with uncertain delays
in continuous time linear systems but there is still uncertainty
to how conservative the criterion is.

It is important to asses the effect of uncertainty in delay
since it often arises in biological systems. In genetic regula-
tory networks, delays arise in the transcription and translation
process [8]. Often the production of a protein induced by its
activating transcription factor is modeled as an instantaneous
process. In fact, there is a delay in the process with some
variation.

For control engineers, determining stability or designing a
controller for a system with stochastic delays is often chal-
lenging. One can take the worst case scenario (e.g. largest
delay) but this can lead to unnecessary conservativeness or
may simply give erroneous results.

We derive a method of investigating the effects of stochas-
tic delays in discrete time systems by deriving a set of de-
terministic distributed delay systems which describe the time
evolution of the mean and second moment of the stochastic
system. Under certain conditions, we can guarantee with
probability one (w.p.1) the stability of the equilibrium.
We apply this method to select examples and make some
interesting observations. For example, we demonstrate that
it is possible to obtain noise-induced stability in some cases.
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That is, a system with a single deterministic delay may be
unstable but upon introducing uncertainty in the delay, the
system can become asymptotically stable.

II. PROBLEM SET UP

In this paper we consider the problem with scalar random
variables and we derive the corresponding moment equations.
We also demonstrate the potential stabilizing effects of
stochastic delays.

We consider the scalar stochastic system

X(k + 1) = aX(k) + bU(k), (1)

where X(k) 2 R is a stochastic variable at time k 2 Z and
Uk represents the uncertain delayed feedback

U(k) = X(k � ⌧),

where ⌧ takes finite positive integer values, ⌧ 2 [1, . . . , N ].
Here, N is the maximum value of the delay. The initial
condition includes the state values in the past N time steps.
We can generalize the problem to include uncertainty in
the initial condition, where X(0), X(�1), . . . X(�N) are
selected from some known distributions.

We consider the following probability density function for
U(k)

pU(k)(u) =

Z 1

0
pX(k�⌧)|⌧ (u|�)p⌧ (�)d�, (2)

where the density function p⌧ for the delay is

p⌧ (�) =
NX

i=1

wi�(� � ⌧i), (3)

with
NX

i=1

wi = 1.

The discrete stochastic variable ⌧ has finite support, because
N is a finite integer. All the possible delays are given
by positive integers ⌧i, and wi represents their associated
weights, or likelihood of occurring. For ease of notation we
take ⌧i = i and wi � 0. The integral in (2) is considered
along the positive axis because the delays are positive. If we
evaluate (2) using (3) we obtain

pU(k)(u) =
NX

i=1

wipX(k�⌧i)(u).

With this we can proceed to analyze the statistical properties
of (1).
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III. DERIVATION OF EXPRESSIONS FOR THE MEAN AND
SECOND MOMENT

First, we look at the stability criteria of the expected value,
E[X(k)]. Taking the expectation on both sides of (1) we
obtain

E[X(k + 1)] = aE[X(k)] + bE[U(k)], (4)

where the expected value of the feedback term U(k) is

E[U(k)] =

Z 1

0
upU(k)(u)du

=

Z 1

0
u

"
NX

i=1

wipX(k�⌧i)(u)

#
du

=
NX

i=1

wi

Z 1

0
upX(k�⌧i)(u)du

=
NX

i=1

wiE[X(k � ⌧i)]. (5)

Let us define the deterministic variable

y(k) = E[X(k)]. (6)

Substituting this into (4) and (5), the dynamics of the
expectation is described by the deterministic system with
distributed delay

y(k + 1) = a y(k) + b

NX

i=1

wiy(k � ⌧i). (7)

Since the system is a discrete-time system with finite
maximum delay, the state space is finite dimensional. By
defining the following state vector

~

X(k) =

2

6664

X(k)
X(k � 1)

.

.

.

X(k �N)

3

7775
, (8)

equation (1) can be rewritten as

~

X(k + 1) = A(k) ~X(k), (9)

where A(k) 2 R(N+1)⇥(N+1) is a stochastic variable whose
probability distribution is independent of ~

X(k). So we have

p ~X(k),A(k)(
~

X,A) = pA(k)| ~X(k)(A| ~X)p ~X(k)(
~

X)

= pA(k)(A)p ~X(k)(
~

X).

Notice, that the sequence { ~X(k)} is a Markov chain and the
sequence {A(k)} is mutually independent. Since the matrix
A(k) can only take on a finite set of values, its probability
distribution becomes

pA(k)(A) =
NX

i=1

wi�(A�⇤i),

where

⇤i =

2

666664

a bIi(1) bIi(2) · · · bIi(N)
1 0 0 · · · 0
0 1 0 · · · 0
.

.

.

.

.

.

.

.

.

.

.

.

0 · · · 0 1 0

3

777775

with Ii being the indicator function,

Ii(j) =

⇢
0 if j 6= i

1 if j = i

.

Indeed by taking the expected value of (9), one may also
derive (7):

E[ ~X(k + 1)] = E[A(k) ~X(k)]

=

Z

R(N+1)⇥(N+1)

Z

RN+1

A ~

Xp ~X(k),A(k)(
~

X,A)d ~XdA

=
NX

i=1

wi

Z

RN+1

⇤i
~

Xp ~X(k)(
~

X)d ~X

=
NX

i=1

wi⇤iE[ ~X(k)]. (10)

Using the variable defined in (6), we define the deterministic
state vector

~y(k) =

2

6664

y(k)
y(k � 1)

.

.

.

y(k �N)

3

7775
, (11)

and obtain a deterministic system with distributed delay

~y(k + 1) =
NX

i=1

wi⇤i~y(k), (12)

where the state transition matrix is given by

NX

i=1

wi⇤i =

2

666664

a bw1 bw2 · · · bwN

1 0 0 · · · 0
0 1 0 · · · 0
.

.

.

.

.

.

.

.

.

.

.

.

0 · · · 0 1 0

3

777775
. (13)

Indeed, (7) and (12,13) are equivalent.
We now determine the governing equations for the second

moment of X(k). From (9) we have

~

X(k + 1) ~XT (k + 1) = A(k) ~X(k) ~XT (k)AT (k). (14)

Taking the expected value on both sides yields

E[ ~X(k+1) ~XT (k+1)] = E[A(k) ~X(k) ~XT (k)AT (k)], (15)

where the expectation operator is taken element-wise, but
we use the short-hand notation above. The right hand side



of (15) can be evaluated to

E
h
A(k) ~X(k) ~XT (k)AT (k)

i

=

Z

R(N+1)⇥(N+1)

Z

RN+1

A ~

X

~

X

TAT
p ~X(k),A(k)(

~

X,A)d ~XdA

=
X

i

wi

Z

RN+1

⇤i
~

X

~

X

T⇤T
i p ~X(k)(

~

X)d ~X

=
NX

i=1

wi⇤i

Z

RN+1

~

X

~

X

T
p ~X(k)(

~

X)d ~X⇤T
i

=
NX

i=1

wi⇤iE[ ~X(k) ~X(k)T ]⇤T
i . (16)

Defining the deterministic matrix-valued variable

P(k) = E[ ~X(k) ~X(k)T ], (17)

and substituting this into (15) and (16) we obtain the deter-
ministic system

P(k + 1) =
NX

i=1

wi⇤iP(k)⇤T
i (18)

for the time evolution of P(k). Note that pi,j(k) = E[X(k�
i + 1)X(k � j + 1)] for i, j = 1, . . . , N + 1. The second
moment E[X(k)2] is given by the matrix element

p1,1(k) = E[X(k)2] = ~

C

TP(k) ~C, (19)

where ~

C = [1, 0, · · · , 0]T but the time evolution of E[X(k)2]
depends on other elements of the matrix P(k).

Exploiting that P(k) is a symmetric matrix, i.e.

pn,m(k) = E[X(k � n+ 1)X(k �m+ 1)] = pm,n(k),

we carry out the matrix multiplication in (18) and obtain a
set of discrete time systems that describe the time evolution
of the elements of P(k). We obtain the distributed delay
system

p1,1(k + 1) = a

2
p1,1(k) + b

2
NX

i=1

wi p1,1(k � i)

+ 2ab
NX

i=1

wi p1,i+1(k),

p1,j(k + 1) = a p1,j�1(k) + b

j�3X

i=1

wi p1,j�i�1(k � i)

+ b

NX

i=j�2

wi p1,i�j+3(k � j + 2), (20)

for j 2 2, . . . , N + 1. If for a given j the subscript of wj

is less than one, then wj = 0 is considered and if the upper
value on the sum is less than the lower value, then the sum
is zero.

We will now show that we can obtain a Markovian
structure for the system above. We define the state vector

~

P (k) =

2

6664

p1,1(k)
p1,2(k)

.

.

.

pi,N+1(k)

3

7775
, (21)

and with this we define a super vector

P̂ (k) =

2

6664

~

P (k)
~

P (k � 1)
.

.

.

~

P (k �N)

3

7775
. (22)

We can now represent (20) in state space form which takes
the following structure

P̂ (k + 1) = ˆ̂AP̂ (k) (23)

where

ˆ̂A =

2

666664

A B1 B2 · · · BN

I 0 0 · · · 0
0 I 0 · · · 0
.

.

.

.

.

.

.

.

.

.

.

.

0 · · · 0 I 0

3

777775
. (24)

The submatrices A,B1, . . . ,BN 2 R(N+1)⇥(N+1) are
given by

A =

2

666664

a

2 2abw1 2abw2 · · · 2abwN

a bw1 bw2 · · · bwN

0 a 0 · · · 0
.

.

.

.

.

.

.

.

.

.

.

.

0 · · · 0 a 0

3

777775
, (25)

Bi =2

6666666666664

b

2
wi 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 · · · · · · 0 0 0 · · · 0
bwi bwi+1 · · · bwN�1 bwN 0 · · · 0
0 bwi 0 · · · 0 0 · · · 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 · · · 0 bwi 0 0 · · · 0

3

7777777777775

 row
(i+ 2)

(26)

and I is the (N+1)-dimensional identity matrix. Notice that
ˆ̂A 2 R(N+1)2⇥(N+1)2 .

IV. STABILITY OF THE MEAN AND SECOND MOMENT

To determine stability of a deterministic discrete time
system one looks at the eigenvalues of the state transition
matrix. The magnitude of all eigenvalues must be less than
one for the system to be stable. The stability of the mean is
derived from the eigenvalues of the state transition matrix,



PN
i=1 wi⇤i in (12,13). The characteristic equation is found

to be

(s� a)� b

NX

i=1

wis
�⌧i = 0. (27)

To determine the stability boundaries in the parameter space
(a, b), we evaluate the characteristic equation at the possible
values s so that |s| = 1, in particular s = 1, s = �1 and
s = e

±i✓, ✓ 2 (0,⇡). Each of these provide different stability
curves [5,3]. Notice that for s = 1, one obtains a delay-
independent condition.

Stability for the variance is determined in the same way
using the state transition matrix in (24). At first glance, it
appears that analyzing the stability of the second moment
will involve analyzing a matrix of dimension (N + 1)2, but
it can be reduced to analyzing an N +1 dimensional matrix.

We denote the submatrices delimitated by the lines in (24)
as

ˆ̂A =

"
A B̃

C̃ ˜̃D

#
, (28)

which yields

det(sˆ̂I� ˆ̂A) = det(s˜̃I� ˜̃D)⇥

det
⇣
(sI�A)� B̃(s˜̃I� ˜̃D)�1C̃

⌘

= s

N(N+1) det
⇣
(sI�A)� B̃(s˜̃I� ˜̃D)�1C̃

⌘
,

(29)

where ˜̃I denotes the N(N + 1) dimensional identity matrix.
We are only left with determining the remaining (N + 1)
eigenvalues. We find

det
⇣
(sI�A)� B̃(s˜̃I� ˜̃D)�1C̃

⌘
= det(M1+M2), (30)

where
M1 =2

66666666664

s� a

2 �2abw1 �2abw2 . . . �2abwN

�a s� bw1 �bw2 . . . �bwN

0 �a s 0 . . . 0
0 bw1

s �a s 0 . . . 0

0 bw2
s2

bw1
s �a s

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 0

0 bwN�2

sN�2
bwN�3

sN�3 . . .

bw1
s �a s

3

77777777775

(31)
and

M2 =

2

66666664

b

2
PN

i=1
wi
si 0 0 . . . 0 0

0 0 0 . . . 0 0
bw1
s

bw2
s

bw3
s . . .

bwN
s 0

bw2
s2

bw3
s2 . . .

bwN
s2 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

bwN�1

sN�1
bwN
sN�1 0 . . . 0 0

3

77777775

.

(32)
Setting (30) equal to zero, gives the characteristic equation
for the second moment, whose roots are the eigenvalues of
the system.

V. NOTIONS OF STABILITY FOR STOCHASTIC SYSTEMS

We have provided deterministic discrete time equations
whose stability determine the stability of the mean and sec-
ond moment for the non-deterministic system (1). However,
the first and second moment converging to zero does not
guarantee that the state converges to zero with probability
one (w.p.1). We restate a theorem that can be found in [2]:

The following implications hold

(X(k)
w.p.1���! X)
+

(X(k)
P�! X) ) (X(k)

D�! X)
*

(X(k)
r�! X)

for any r � 1. Also, if r > s � 1 then

(X(k)
r�! X)) (X(k)

s�! X).

No other implications hold in general.
Here, X(k)

r�! X denotes that the sequence X(k) con-
verges to a constant X in r

th order, for r � 1, which holds
if E[|X(k)|r] <1 for all k and

E[|X(k)�X|r]! 0 as k !1.

While X(k)
P�! X and X(k)

D�! X denote convergence
in probability and distribution [2] . Notice, convergence in
r

th order only guarantees convergence in probability and
distribution. Finally, X(k)

w.p.1���! X denotes convergence
with probability one. Namely, {X(k)} converges to X w.p.1
if, for every ✏ > 0, |X(k) � X| � ✏ only finitely often.
That is, for each path !, there is a number k(!) so that
|X(k) � X| � ✏, for all k > k(!), [4]. We may say that,
with the exception of a set of sequences of probability zero,
all sequences {X(k)} converge to X in the usual sense.

Convergence of the second moment, X(k)2, is then equiv-
alent to convergence in 2nd order since X(k)2 is positive
definite. This is why convergence of the mean is insufficient
but the convergence of the second moment may be enough.
Now, we would like to show the case when {X(k)} con-
verges with probability one (w.p.1).

Given the general vector case ~

X(k + 1) = A(k) ~X(k),
where the {A(k)} are mutually independent random matri-
ces, [4] provides the following theorem, using a Lyapunov
function of the form ~

X

TQ ~

X , where Q is positive definite
i.e. Q > 0.

Let Q > 0, C � 0 and

E[A(k)TQA(k)]�Q = �C. (33)

Then E[ ~X(k)TC ~

X(k)]! 0 and ~

X(k)TC ~

X(k)! 0 w.p.1.
Let the A(k) be identically distributed. If { ~X(k)} is mean
square stable (that is, E[ ~X(k)T ~

X(k)] ! 0), then for any
C > 0, there is a Q > 0 satisfying (33).

Given this theorem, if {A(k)} are identically distributed
and mutually independent, there exists a solution Q for (33)
if we choose C = I. According to the theorem, the existence
of the solution implies ~

X(k)T ~

X(k) ! 0 w.p.1. This is
a sufficient condition for w.p.1 stability when all possible
delays are distinct and equally likely.



VI. EXAMPLES

Now that we have set up our conditions for mean and
second moment stability, we will give some examples where
we utilize this method to analyze systems with different
delay distributions. We will use distributions that satisfy the
conditions for the theorem stated in [4], wherein, stability
of the second moment guarantees w.p.1 stability. Figure 1
shows the discrete probability function for a uniform delay
distribution while Fig. 2 is for a distribution with two equally
probably delays which we refer to as a toggle distribution.

0 2 4 6
0

0.5

1

1.5

P

�

V = 0

0 2 4 6
0

0.5

1

1.5

P

�

V = 1

0 2 4 6
0

0.5

1

1.5

P

�

V = 4

Fig. 1. Discrete probability function for uniform distribution with E = 3.

Although stability of the second moment implies stability
of the mean, it is interesting to take a look at the region of
stability for the mean since it provides necessary conditions
for stability. In [1] we show how introducing additional
delays to an already delayed continuous system can stabilize
an unstable system. It is interesting to see that a similar result
can be obtained for the discrete time system.

Figure 3 shows the stability region for the system (7)
with uniform distribution. E is the expected delay value of
the distribution and V is the variance. The black and red
curves indicate eigenvalue crossings of the unit circle on
the complex plane at 1 and �1. The cyan curve indicates
complex conjugate eigenvalues crossing the unit circle. One
can see that as the variance is increased, the region of
stability (cyan region) increases. It is important to point out
the region of stability for a single delay is not contained in
the region of stability for the distributed delay case.

Next, we look at w.p.1 stability region. Recall that a
system with identically independent distributed delays is
stable w.p.1. if the second moment is stable. We first consider
such systems with uniform distribution, then look at systems

0 2 4 6
0

0.5

1

1.5

P

�

V = 0

0 2 4 6
0

0.5

1

1.5

P

�

V = 1
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0

0.5

1

1.5

P

�

V = 4

Fig. 2. Discrete probability function for a toggle distribution with E = 3.

where the delay toggles between two values, each with equal
probability.

Figure 4 shows the stability boundaries for the mean of
the non-deterministic system with uniform delay distribution.
For the curves the same notation is used as in Fig. 3 but here
the cyan region indicates the region of w.p.1 stability. The
cyan bound was found by sweeping across the state space
of (a, b) and checking the eigenvalues of the system (23,24)
for the second moment.

In Fig. 5 we show the stability when the delay toggles
between two values with equal probability. Again, we plot
the mean stability curves and indicate the second moment
stability region by shading, which implies w.p.1 stability.
From the toggle cases investigated here, the w.p.1 stability
region for the uncertain delay is dominated by the region of
stability for the mean of the system.

The introduction of uncertainty in the delay distorts the
stability region for the single deterministic delay as can be
seen in Fig. 6. Since some of the w.p.1 stability regions ex-
tend outside the stability bounds for the deterministic system
we can stabilize the system by introducing uncertainty in the
delay. We demonstrate this by numerical simulation in Fig.
7 where the parameters correspond to the mark “⇥” in Fig.
6.

VII. CONCLUSION

In this paper we defined a notion of stability and derived
a method of stability analysis for a class of linear system
with stochastic delay. We investigated stability regions for
scalar stochastically delayed feedback systems and made
some interesting observations. We looked at two different
types of delay distributions and found they had very different
effects on the region of stability. In the case of the uniformly
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V = 1
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b
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Fig. 3. Shaded region denotes the mean stability region for a uniform
distribution. When crossing a black curve an eigenvalue crosses the unit
circle at 1, while crossing a red curve (from stable to unstable) indicates
that an eigenvalue crosses the unit circle at �1. Crossing a cyan curve
indicates that a pair of complex conjugate eigenvalues cross the unit circle.

distributed delays, a worst case scenario would certainly
be conservative. However, for two equally probably delays,
the stability region of the mean seems to provide a good
approximation of the stability bounds. We also found that
introducing stochasticity in the delay may lead to stabiliza-
tion of the system. Future work includes generalizing results
for higher dimensional systems and w.p.1 stability conditions
for general delay distributions.
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w.p.1 stability region (shaded cyan). For the discrete delay V = 0, while
for the stochastic delay V = 1 is used.
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Fig. 7. Simulation comparing the cases deterministic and stochastic delay
with a = �1.1 and b = �.4 as indicated by “⇥” in Fig. 6.


