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Abstract: This paper investigates the results of distributing the delay of a single feedback
system. To distribute the delayed feedback, the single delay is replaced by the sum of two
distinct delays with the same e↵ective delay. The statistical properties of the new distribution
function in the feedback, namely the sum of two delta functions, are used to quantify the
e↵ectiveness of delay distribution. We show that the distribution is e↵ective in reducing the
magnitude of the open loop transfer function, thereby, decreasing the gain-crossover frequency
and improving the phase margin. Finally, using these results, we explain the stabilizing e↵ects
of a delayed controller proposed in another publication.
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1. INTRODUCTION

There have been seemingly contradictory results on the
role of delays in stability. Delays in control theory are
attributed to instability while biology inspired papers have
demonstrated their e↵ectiveness in stabilizing, otherwise,
unstable systems as shown in Lavaei et al. (2010) and
Orosz et al. (2010). We aim to illustrate that both concepts
are correct. In this paper, we show how an unstable
single-input single-output (SISO) system with delayed
feedback can be stabilized by distributing the delay about
an e↵ective mean. A system with a single finite delayed
feedback can become unstable for a large enough delay
but simply distributing the delay around a mean can lead
to a robustly stable system.

Prior work such as Bernard et al. (2001) shows conditions
for which distributed delay systems are stable and suggests
distributed delays are preferable to single finite delays.
Thiel et al. (2003) gives examples of biological systems
with delays and then compares results of simulations with
finite delays and distributed delays, the latter shown to be
more stable.

The contributions of this paper are formal results using
control theory tools to show the stabilizing e↵ects of two
delayed feedbacks versus one. We show that a system
with two distinct delayed feedbacks has a larger stability
region than a single delayed feedback system with the
same e↵ective mean. We show how these results can
potentially explain the stabilizing e↵ects of a delayed
controller design proposed in Orosz et al. (2010) for
the repressilator [Elowitz and Leibler (2000)], a genetic
regulatory network. Last, we show how these results can
potentially be applied to real systems.

Fig. 1. (a) Single delay feedback system. (a) Two delay
feedback system. (c) General distributed delay feed-
back system.

2. DISTRIBUTING A SINGLE FINITE DELAY

Suppose we have a system such as that shown in Figure
1(a) with a single delayed feedback. The phase margin
of the linear system H(s) is ✓PM . For simple transfer
functions H(s) it is often that case that if the delay,
T , is greater than ✓PM

!�
,where !� is the gain-crossover

frequency, then we will have instability. We aim to improve
the phase margin of the system by adding more delayed
feedbacks. Figure 1(c) shows the most general form of a
distributed delayed feedback, however, we would like to
maintain the feedback as a sum of finite delays assuming
they are inherent in the system and cannot be removed.

Now we will replace the delay e�sT with the distributed
delay

G(s) =
1

2
e�s� +

1

2
e�s⌧
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which has the corresponding distribution function

g(t) =
1

2
�(t� �) +

1

2
�(t� ⌧).

We put equal weights on both delays. The factor of 1
2

is necessary in order to keep from adding a gain to the
signal in the feedback. With

R1
0 g(t)dt = 1 we get unity

gain. Convolving the output y(t) with the distribution

function gives y(t��)+y(t�⌧)
2 so the input is the average

of the feedbacks and not the sum.

The system dynamics are deterministic but we use the
statistical properties of the distribution functions as pa-
rameters. In Anderson (1993), the author shows that
stability of a delayed system can be investigated with
only the statistical properties of the time delay known.
Accordingly, we expect that the mean and variance for
symmetric distributions directly influence the stability of
a system. From now on we will refer to the mean of the
distribution as the e↵ective delay. The e↵ective delay of
the new distribution function is

T =
� + ⌧

2
and the variance, V , of the new distribution function is

V =
(� � ⌧)2

4
.

We have chosen, without loss of generality, � � ⌧ .

This new system is shown in Figure 1(b). We set the
e↵ective delay to be equal to the original single delay to
maintain the concept of distributing the delay about the
original one. Furthermore, the distribution is symmetric
so that higher moments of the distribution are zero. In
Bernard et al. (2001)there has been evidence to suggest
that higher moments, when not zero, may play a role in
stability in addition to mean and variance.

The permissable delay for a single feedback system is
determined by the phase margin of the open loop transfer
function. We will now derive a complex function for the
distributed delay system mentioned above that will allow
us to apply the same method used to determine phase
margin in the single delayed feedback system. We assume
that H(s) is a stable linear system. By the Nyquist
criterion, any encirclement of �1 by the Nyquist plot of
the loop transfer function will indicate an unstable system
[Åström and Murray (2008)].

The closed loop transfer function is

Hcl =
H(s)

1 +H(s)(e�s� + e�s⌧ )/2
(1)

and, by the Nyquist criterion, at the boundary of instabil-
ity we have that the loop transfer function

H(jw)(e�jw� + e�jw⌧ )/2 = �1, (2)

for some !,� and ⌧ . With some algebraic manipulation we
will show the loop transfer function to take the form

Ge�sT ,

where, G is a complex function. In this form the permiss-
able e↵ective delays of the distributed system is deter-
mined by the plot of G on the complex plane. The e↵ective
delay term T will add a clockwise rotation until Equation
(2) is satisfied. Let us find what G is.

The loop transfer function is

L(s) = H(s)(e�s� + e�s⌧ )/2

= H(s)(1 + e�s(��⌧))e�s⌧/2

= H(s)
(es

��⌧
2 + e�s��⌧

2 )

2
e�s��⌧

2 e�s⌧

= H(s)
(es

��⌧
2 + e�s��⌧

2 )

2
e�s�+⌧

2 . (3)

If we evaluate the transfer function at s = j! we can
further simplify the equation to

L(s)|s=j! = H(j!)
(ej!

��⌧
2 + e�j! ��⌧

2 )

2
e�j! �+⌧

2

= H(j!) cos

✓
!
� � ⌧

2

◆
e�j! (�+⌧)

2 (4)

= H(j!) cos

✓
!
� � ⌧

2

◆
e�j!T . (5)

Finding the phase margin from the plot of

G = H(j!) cos

✓
!
� � ⌧

2

◆

= H(j!) cos(!
p
V ) (6)

on the complex plane will determine the permissable e↵ec-
tive delay for the new distributed delay system. Although
both G and T are functions of � and ⌧ , they can be
isolated in such a way that T can be varied while keeping
G constant and vice versa since V and T can be varied
independently but the maximum variance is limited by
the e↵ective delay,

p
V  T .

Notice that the magnitude of the the new complex function
is bounded by that of |H(j!)| for all frequencies, but for
a given frequency !, the point may be rotated an angle of
⇡ due to the sign change of the cosine term.

In the next section we show how, given the same e↵ective
delay, the single delay feedback system can be unstable
while the distributed feedback system is stable.

3. CHANGE IN PHASE MARGIN WITH TWO
FINITE DELAYS

For the given example, the phase margin of the new system
depends on the variance of the distribution. Depending
on the distribution, the phase margin can increase or
decrease in comparison to the original system. We will
show an example where a single delayed feedback will
cause instability but if we distribute the delay the new
system will have an increased phase margin, stabilizing
the system.

Let us investigate the system in Figure 1(a) with

H(s) =
.2

(s+ 1)(s+ .1)

and a fixed delay in the feedback. For the associated
distributed feedback, � and ⌧ are functions of the delay,
T , and the variance, V ; namely

� = T +
p
V and ⌧ = T �

p
V .

For a given e↵ective delay T we can always find � and
⌧ such that we achieve any desired variance satisfyingp
V 2 [0, T ]. We investigate the e↵ect of the variance



Fig. 2. Comparison of Nyquist plots showing the e↵ects
of changing the variance before adding the rotational
e↵ects of T .

on the phase margin of the new distributed system which
pertains to permissable e↵ective delays in the new system.

Figure 2 shows how the plot of G on the complex plane
changes with the variance V . As the variance approaches
zero, the plot approaches the Nyquist plot of the original
single feedback system as it should. One can see that an
increase in the variance improves the phase margin but if
we continue to increase the variance we will soon begin
to decrease the phase margin due to the sign change in
G. The plot of G intersects the origin infinitely times
because of the periodicity of the cosine term. Each time
the cosine term goes through the origin, it changes sign
and we have a rotation of ⇡. So the function G remains
bounded in magnitude but has ⇡ jumps in phase due to
the intersection of the origin.

Figure 3 shows how the maximum permissible time delay
changes as a function of the variance for the distributed
system. As we recall, the

p
V cannot exceed T . We mark

this boundary by the red dashed line. The curve must
lie above this boundary for the system to make physical
sense. One can see that the system nears optimality nearp
V = 17.5. After this point, the system is rendered

unstable due to the e↵ects of the sign change of G.

Now we will pick a value of T that destabilizes the original
system but when we distribute it, the system becomes
stable. We set T = 14 and

p
V = 10 which gives � = 24

and ⌧ = 4. Figure 4 shows the plots of G and H on
the complex plane before and after applying the delay.
For T = 14 the original system crosses the critical point
marked by a cross which makes the system unstable. The
distributed delay system remains stable. Figure 5 shows
the step responses for the two systems with T = 14.

Now that we have shown the benefits of delay distribution
we apply these principles to an example in the next section.

4. A DELAYED CONTROLLER FOR THE
REPRESSILATOR

Many genetic regulatory systems have multiple feedback
loops that serve the same function. The Gal network

Fig. 3. Maximum permissible time delay as a function of
variance.

Fig. 4. Comparison of Nyquist plots for G and H at T = 0
and T = 14.

Fig. 5. (a)Step response for a single finite delayed feed-
back. (b) Step response for the distributed delayed
feedback.

[Bennett et al. (2008)] has two transcription factor proteins
that regulate the expression of the same gene. Their
functions are almost identical but they have di↵erent



translation rates. This seemingly redundant feature may
prove to be functional in making the system robustly
stable aside from the obvious advantage if one of the
feedback loops gets knocked out.

Although biological systems have inherent finite delays like
the time required for transcription and translation, the
system remains stable under highly stochastic events. A
potential reason may be the distribution of these delays
by way of multiple feedbacks or by the stochastic nature
of the delays themselves.

In Orosz et al. (2010) the authors show how the repres-
silator Elowitz and Leibler (2000) can be stabilized with
delays. The repressilator is a synthetic oscillatory genetic
regulatory network. A regulating gene with delayed expres-
sion of mRNAs and proteins is added to the repressilator
as a controller. The system can be stabilized by tuning
parameters that pertain to the delay and weight of the
controller. A potential reason that this delayed controller
is e↵ective, with the right parameters, is the creation of a
second feedback path.

We will describe the delayed controller in Orosz et al.
(2010), and show how it falls into framework posed in sec-
tion 2. The linearized system for the modified system with
the controller is massaged into the form of Figure 1(c).

The following are the dynamics of the repressilator with
the added controller gene expressed by p4 Orosz et al.
(2010):

ṁi(t) = �mi(t) + ↵f(pi+1(t)) for i = 1, 2,
ṗi(t) = ��(pi(t)�mi(t)),
ṁ3(t) = �m3(t) + ↵f((1� ⌘)p1(t) + ⌘p4(t)),
ṗ3(t) = ��(p3(t)�m3(t)),
ṁ4(t) = �m4(t) + ↵f(p2(t� �)),
ṗ4(t) = ��(p4(t)�m4(t� ⌧)),

f(p) =
1

1 + pn
+ f0.

The dynamics of the repressilator can be recovered by tak-
ing ⌘ = 0 and discarding the dynamics of p4 and m4 which
are then disconnected. The system above corresponds to
Figure 6.

Fig. 6. Network diagram for repressilator with regulating
gene.

The linearized system is derived in Orosz et al. (2010):

d

dt
x(t) = Ax(t) +A1x(t� �) +A2x(t� ⌧),

where

x(t) =


�m(t)
�p(t)

�
.

�m(t) = m(t) �m⇤ and �p(t) = p(t) � p⇤. The asterisk
indicates equilibrium point. The dynamics matrices are

A =


�I ↵A0

�B0 ��I

�
, A1 =


0 ↵A�

0 0

�
, A2 =


0 0

�B⌧ 0

�
,

with  = f 0(p⇤) < 0 and

A0 =

2

64

0 1 0 0
0 0 1 0

1� ⌘ 0 0 ⌘
0 0 0 0

3

75 , B0 =

2

64

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

3

75 ,

A� =

2

64

0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

3

75 , B⌧ =

2

64

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

3

75 .

A0, B0, A� and B⌧ reflect the topological structure of the
system. The full nonlinear system can be represented by
the block diagram shown in Figure 7. For this system

L = A0 +A�,

P =

2

64

P (s) 0 0 0
0 P (s) 0 0
0 0 P (s) 0
0 0 0 P (s)e�s⌧

3

75 ,

P (s) =
↵�

(1 + �)(1 + s)
,

T =

2

64

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e�s�

3

75 ,

and matrix N is a diagonal with the nonlinear function
f(p) in the nonzero entries.

Fig. 7. Framework for the GRN network

From here on we apply all analysis to the linearized
system to determine stability. We consider the nonzero
“symmetric” equilibrium point, p⇤i = m⇤

i = p⇤i+1 = m⇤
i+1 6=

0 for i = 1, 2 and 3. The matrix N is now a diagonal matrix
with  in the nonzero entries. We would like to focus our
attention on stabilizing the output concentration of the
third protein. The structure in Figure 7 is used to find the
transfer function for the third protein. In a linear system
the transfer functions commute, so it works out that the
total delay in the regulating gene is the sum of the two
delays corresponding to the production of mRNAs and
proteins respectively.

We can now define in Figure 1(c) what H(s) is and
what the general distribution function g(t) is for a SISO
system with the output being the concentration of the



third protein in the represillator with controller proposed
in Orosz et al. (2010). We find

H(s) = �3

✓
↵�

(s+ 1)(s+ �)

◆3

(7)

and
g(t) = ⌘�(t) + (1� ⌘)�(t� (� + ⌧)). (8)

The distribution function is like the example given in the
beginning, two finite delayed feedbacks.

Looking at the Nyquist plot ofH(s) in Figure 8 we see that
the single feedback system is unstable. The added delayed
feedback path stabilizes the unstable system.

Fig. 8. Nyquist plots for H(s) in Equation 7 with param-
eters ↵ = 215.52, � =.2069 and  = �.009 .

It is this distribution of delays that helps to stabilize
the system for appropriate values of ⌘ and � + ⌧ . The
distribution creates a weighted average over the output at
the current time and some past time.

5. STABILIZATION USING PARALLEL DELAYS

Now we revisit the previous example and pose a di↵erent
problem. We previously explored the e↵ects of distributing
a delay about a given mean. We would like to take a
di↵erent approach on our analysis in order for our results
to be useful in application. If the delays are inherent in
a system then there is a minimum delay that can be
achieved. With this in mind, if a second feedback is to
be added there would be a naturally imposed constraint
on the size of the added delay. We will show that in some
cases it may be possible to stabilize the system by adding
a longer delay.

Now, we are given the constraint

Tmin = � < ⌧

where Tmin is the known minimum achievable delay in the
feedback. We find the range of the second delay ⌧ that
stabilizes the system, assuming the original system with
the single delayed feedback is unstable.

A utility function is defined as

JV =
✓�
!�

� T, (9)

Fig. 9. (a) Simulation for the single delayed feedback
system with T = 12s. (b) Simulation plot for and
added delay of ⌧ = 42s. (c) Simulation plot for and
added delay of ⌧ = 52s.

Fig. 10. Nyquist plot for the single delayed feedback system
and the two distributed delayed systems simulated in
Figure 10.

where ✓� and !� are the phase margin and gain-crossover
frequency of the newly defined open loop function G for
the double feedback system as defined in Equation (6). T
is the expected or average value of the two delays. JV gives
the di↵erence between the permissible delay,

TPM =
✓�
!�

, (10)

due to the new increased phase margin and the new
e↵ective delay,



T =
p
V + �, (11)

as a result of the second feedback. For the system to be
stable we require JV > 0.

We solve for !� in the same usual manner gain-crossover
frequencies are calculated. The gain-crossover frequency is
the frequency at which the magnitude of the open loop
transfer function is equal to 1,

|cos(!�

p
V )H(j!�)| = |cos(!�

p
V )||H(j!�)| (12)

= 1

|cos(!�

p
V )| = 1

|H(j!�)|
. (13)

The first equality in Equation (12) holds since one can
factor out the cosine term in calculating the magnitude.
This gives the constraint |H(j!�)| � 1

Solutions to Equation 13 are given by
p
V =

1

!�
cos�1

✓
± 1

|H(j!�)|

◆
. (14)

The phase margin ✓PM is the smallest CW rotation in
radians required for the point G|!� to cross the negative
real axis.

We use T+
PM and T�

PM to refer to the solutions correspond-
ing to the plus and minus term in Equation (14) respec-
tively. Figure 11 shows the solution curves to Equations
(10) and (11) as functions of the variance for the system
with

H(s) =
.2

(s+ 1)(s+ .1)
. (15)

Fig. 11. Phase margin for open loop system and average
delay as a function of variance with � = 11.39s.

The minimum delay � was calculated from the phase
margin of the original system, therefore, the unmodified
system is unstable. Positive values of JV correspond to
the region where the TPM curve lies above the T curve.
The plot shows a minimum variance of 4.42 is required to
stabilize the system. This corresponds to a second delay
value of ⌧ = 20.19s.

Maximizing the utility function is not necessarily the best
choice when designing the added feedback. This occurs
at approximately

p
V = 17.7s and it is obvious that the

system is not robust to uncertainty or variance in the delay.
It can easily perturb into the unstable region.

Figure 10 shows simulations for step inputs into the single
feedback system with delay Tmin = 12s and the double
feedback system with two di↵erent values for the second
delay.

We see that the system can indeed be stabilized by adding
a longer delay to the feedback path.

6. SUMMARY

We have shown how the shape of the distribution function
of the feedback influences the stability of the closed loop
system. The results in this paper suggest that multiple
feedbacks can serve to stabilize a system if their distri-
bution function can achieve high variance with little cost
to increasing the e↵ective delay. We looked at a posed
delayed controller for the repressilator and showed that
the resulting stabilizing e↵ects can be attributed to the
distribute of delay. Last, we demonstrated how adding
delays can have surprising results.
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