
Model Reduction and System Identification
for Master Equation Control Systems

Martha A. Gallivan and Richard M. Murray
Division of Engineering and Applied Science

California Institute of Technology
Pasadena, CA 91125

Abstract

A master equation describes the continuous-time evolution

of a probability distribution, and is characterized by a simple

bilinear structure and an often-high dimension. We develop

a model reduction approach in which the number of possi-

ble configurations and corresponding dimension is reduced,

by removing improbable configurations and grouping simi-

lar ones. Error bounds for the reduction are derived based

on a minimum and maximum time scale of interest. An

analogous linear identification procedure is then presented,

which computes the state and output matrices for a prede-

termined configuration set. These ideas are demonstrated

first in a finite-dimensional model inspired by problems in

surface evolution, and then in an infinite-dimensional film

growth master equation.

1 Introduction

A master equation is a probabilistic differential equa-
tion that describes a system defined by discrete config-
urations. Master equations are useful in describing sys-
tems at small length scales when continuum assump-
tions break down, particularly when fluctuations are
important. The number of discrete configurations is of-
ten very large, so instead of numerically integrating the
master equation, stochastic realizations are obtained
through kinetic Monte Carlo (KMC) simulations [1].
The states of the master equation are the probabilities
of each configuration, which evolve according to the lin-
ear equation

d

dt
PH(t) =

∑
H′

kH′→HPH′(t) −
∑
H′

kH→H′
PH(t), (1)

where H and H ′ denote two of the n configurations of
the system, PH(t) is the probability of being in H at
time t, and kH′→H is rate of transition from H ′ to H.
We focus on the evolution of expected properties of the
system, defined as

〈Y 〉(t) =
∑
H

PH(t)Y (H), (2)

where Y is the quantity of interest, Y (H) is the value of
Y associated with configuration H, and 〈Y 〉(t) denotes

the time-dependent expected value of Y . One acts on
the system by altering the transition rates using phys-
ical inputs u ∈ R

q, resulting in the state-affine control
system of equations (1) and (2).
We now reformulate this system by assembling the
states into a single vector and by grouping terms having
the same values of the transition rates, obtaining

d

dt
x =

m∑
i=1

ki(u)Nix (3)

y = Cx (4)

where x = {PH1 , . . . , PHn
} ∈ R

n is the probability vec-
tor and y ∈ R

p is the vector of expected outputs. The
coefficients of the state and output matrices, Ni ∈ R

n×n

and C ∈ R
p×n, respectively, are obtained directly from

equations (1) and (2), while the m unique transition
rates are dependent on u, but not on x. Equations (3)
and (4) are identical to (1) and (2)—only the notation
is different. Note that x is a probability vector, such
that 0 ≤ xj ≤ 1, j = 1, . . . , n and

∑n
j=1 xj = 1. Simi-

larly, each Ni is a stochastic matrix, in which columns
sum to zero, diagonal elements are nonpositive, and off-
diagonal elements are nonnegative.
We are motivated in this work by our interest in ma-
terials processing. Transition rates for an associated
master equation have been enumerated [9], and are the
basis of KMC simulations of surface evolution during
thin film deposition and etching. It would be useful
to have a more compact version of this master equa-
tion. In recent work by Gillespie [4], conditions are
derived for which the discrete variable distinguishing
configurations may be made continuous, allowing the
passage to a stochastic Langevin equation. In constrast
to the chemically-reacting systems studied by Gillespie,
the transition rates for surface evolution are not smooth
and do not satisfy the criterion [4]. We consider here
a different approach to dimension reduction, in which
the dimension of the probability vector is reduced by
exploiting the system’s linearity, and then develop an
analogous system identication method requiring only a
constrained linear least squares computation.
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2 Model Reduction

We constrain our reduced-order model to also be a mas-
ter equation. Although this is restrictive, it also has
many benefits, including the preservation of the neutral
stability of the system (under constant inputs), which is
not guaranteed under most model reduction techniques.
Each new state retains a physical interpretation, as a
probability of some configuration, and the linearity of
the system is preserved. We explore here two means of
reduction, the first in which individual configurations,
and corresponding states, are removed, and a second in
which similar configurations are grouped into a single
state. Any configuration may initially be occupied, so
one can never reduce the dimension while incurring no
error. However, if we restrict our attention to partic-
ular initial conditions, outputs, ranges of inputs, and
time scales of interest, it may be possible to reduce the
number of configurations with little output error.
It is often true that one wishes to model the evolution of
a system over a finite period of time tf , and that one is
only interested in the evolution with a time resolution of
∆t. For convenience we set nt = tf/∆t to be an integer.
Constraining the input to be constant over each ∆t, we
may thus formulate the discrete-time system

Auj
≡ exp

(
m∑

i=1

ki(uj)Ni∆t

)
(5)

xd[j + 1] = Auj
xd[j] (6)

yd[j] = Cxd[j], (7)

where j = 0, 1, . . . , nt increments the time, Auj
∈ R

n×n

is the time-dependent state matrix, and xd[j] ∈ R
n and

yd[j] ∈ R
p are the discrete-time state and output.

We now seek a state matrix Ãu ∈ R
n×n that approx-

imates Au, is also based on a master equation, and
will admit the elimination or grouping of configurations
(and consequent reduction in state dimension) with no
error incurred. Note that both Au and Ãu are stochastic
matrices, with nonnegative elements and column sums
of one. Using this property, we may analyze the dif-
ference between the evolution of equations (6) and (7)
and an analogous approximating system with Ãu, C,
x̃d ∈ R

n, and ỹd ∈ R
p. Comparing the states using the

one-norm, we obtain

‖xd[j + 1] − x̃d[j + 1]‖1 = ‖Auj
xd[j] − Ãuj

x̃d[j]‖1

= ‖Auj
xd[j] − Ãuj

xd[j] + Ãuj
xd[j] − Ãuj

x̃d[j]‖1

≤ ‖Auj
xd[j] − Ãuj

xd[j]‖1 + ‖Ãuj
xd[j] − Ãuj

x̃d[j]‖1

≤ ‖Auj
− Ãuj

‖1‖xd[j]‖1 + ‖Ãuj
‖1‖xd[j] − x̃d[j]‖1 .

Using the fact that ‖xd[j]‖1 = 1 and ‖Ãuj
‖1 = 1, and

defining εuj
≡ ‖Auj

−Ãuj
‖1, we obtain a recursive equa-

tion for the bound

‖xd[j + 1] − x̃d[j + 1]‖1 ≤ εuj
+ ‖xd[j] − x̃d[j]‖1. (8)
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Figure 1: Four examples of physical mechanisms under-
lying configuration reduction. The dots denote
configurations, with arrows denoting transitions
with their rates.

Thus, with each additional time step j, the maximum
additional error incurred is εuj

. Because we are only
considering a maximum time of tf , we may impose a
maximum acceptable value on εuj

to ensure that the
error after tf/∆t time steps is sufficiently small.

It is clear that if Ãu is close to Au, as measured by
the one-norm, then little error is incurred by using
the approximating map. Such ideas have been previ-
ously developed in the context of homogeneous Markov
chains, particularly in the economics community [5, 8].
However, we are interested in controlled systems, and
have developed the bound of equation (8) that enables
straightforward consideration time-varying inputs.
Configurations may be truncated from a master equa-
tion if they are decoupled from the states in which the
system is initially occupied. In other words, if Au is
a block-diagonal matrix, then there is no coupling be-
tween states belonging to different blocks, so if the sys-
tem does not begin in a block, it will never enter it.
When this is only approximately true for Au, we may
then formulate an Ãuj

in which it is exactly true. Two
examples of approximate decoupling are shown in Fig-
ure 1, as A and B. For all the examples in this figure,
we consider a maximum time tf = 10, with ∆t = 0.1,
and also assume that the system begins in configura-
tion I. The original graph of A shows a transition of
rate 1 from I to II, and a much slower transition with
rate 0.001 from II to III. Over the time interval of in-
terest, we would not expect signficant transitions from
II to III, and thus construct an approximating graph in
which the transition from II to III has been removed.
Configuration III is now decoupled from I and II, and
since we begin in I, III will never be occupied, and may
thus be eliminated from the master equation, resulting



in the reduced graph on the right of Figure 1. The error
associated with the approximating map is ε = 2× 10−4

for these transition rates, so over nt = 100 time steps,
we would incur an error no greater than 2 × 10−2 in
the probability distribution. Example B of Figure 1
also results in a near decoupling of Au, not because of a
slow transition, but rather because of a transition much
faster than ∆t. After each interval of ∆t the system will
not occupy III with any significant probability, so an ap-
proximating map is constructed in which the transition
from I to III is replaced by a transition from I to II. In
this case, we get ε = 3 × 10−3, and again obtain the
reduced graph on the right of Figure 1.
Another method of configuration reduction is through
the grouping of configurations. In example C, II and
III are similarly coupled to the rest of the system,
and therefore evolve similarly. In the approximating
graph, the coupling is made identical, resulting in re-
dundant configurations that may be grouped, yielding
ε = 2×10−3. One may search for potential groupings by
observation of Au. If the columns corresponding to the
two states are identical, and the rows are identical up to
a constant factor, then the states evolve in a fixed ratio
and may be grouped via a coordinate transformation
[6], yielding the reduced graph in Figure 1. A second
example of grouping is shown as D, in which two config-
urations are tightly coupled to each other, and achieve
their equilibrium ratio at times less than ∆t. In this
limit, the corresponding columns of Au are equal, with
corresponding rows differing by their equilibrium ratio,
so as in example C, they may be grouped, as shown in
the approximating graph, with ε = 4×10−4, and again,
with the reduced graph in the box on the right side of
Figure 1.
The reduction process has a straightforward physical in-
terpretation, but also may be automated, by inspecting
Au for all u’s in the set of allowable inputs. Configura-
tions may be eliminated if the system can be decoupled,
and may be grouped if they have similar columns and
rows. We note that many of the physical arguments
used in the examples rely on the separation of time
scales, and therefore require that the transition rates
are constrained via input constraints. This is entirely
consistent with the establishment of tf and ∆t, since
the transition rates scale the time in equations (1) and
(3). We also note that other configuration reduction
approaches, like singular perturbation [7], are possible,
but may not preserve the structure of the master equa-
tions, which we exploit in the system identification.

3 System Identification

The state and output matrices of the reduced master
equation may be determined by constructing an approx-
imating graph, or by performing coordinate transforma-
tions on the master equation. This is straightforward
when the system dimension is small, but for large sys-
tems, it might be desirable to determine the coefficents

using a data-driven system identification approach. We
develop here an approach that relies on the linearity
of the system, and that requires only that the reduced
configurations be known.
The master equation does not contain a purely linear
input, so frequency-response methods to linear system
identification are not applicable. However, we may use
an impulse-response approach, in which the impulsive
inputs are replaced by appropriate initial conditions.
We approximate equations (3) and (4) by a Taylor ex-
pansion, with small ∆t, to obtain

Âuj
≡ I(n) + ∆t

m∑
i=1

ki(uj)Ni (9)

xd[j + 1] = Âuj
xd[j] (10)

yd[j] = Cxd[j], (11)

where I(n) ∈ R
n×n is the identity matrix, and xd ∈ R

n,
yd ∈ R

p, Âuj
∈ R

n×n, and C form a discrete-time
version of the master equation.
The identification is based on the construction of an
observability matrix for a particular fixed value of u,
where

Ou =




C

CÂu

CÂ2
u

...
CÂnt

u


 . (12)

Simulations are performed for nt time steps, beginning
with the n initial conditions of ei, i = 1, ...n, where el-
ement i of ei ∈ R

n is one, and all others zero. This is
equivalent to performing stochastic KMC simulations,
in which the system begins in each of the n configura-
tions. In either case, the simulation beginning in the ith

configuration generates the ith column of Ou. The out-
put matrix C can be extracted as the first block of Ou,
while Âu may be determined in a linear least squares
computation, using the shift property of O:

Ou(1, . . . , nt − 1)Âu = Ou(2, . . . , nt), (13)

where the argument of Ou is used to denote blocks of
the original matrix.
The linear least squares computation is guaranteed to
give the globally-optimal solution for Âu, in which the
two-norm of the residual is minimized. However, this
may not be the optimal solution for our application.
The continuous-time state matrices Ni are stochastic
matrices, in which the columns sum to zero, the di-
agonal elements are non-positive, and the off-diagonal
elements are non-negative. These properties guarantee
the conservation of probability, and may be enforced
through linear equality and inequality constraints in
a constrained linear least squares solution to equation
(13). When ∆t is small, this also enforces the stochas-
tic properties of the Ni in continuous time. An element



Âu(p, q) may also be set to zero using additional equal-
ity constraints, to eliminate the possibility of a tran-
sition from configuration p to configuration q. Such a
constraint would typically be justified based on physical
arguments.
This identification algorithm produces Âu, but does not
independently yield the state matrices Ni. However,
because Âu is linear in Ni, and because ki(u) is known,
several observability matrices may be constructed for
different (but constant) transition rates, which are then
assembled into a single constrained linear least squares
problem, yielding the coefficients in Ni, i = 1, ...m.
The linear least-squares computation yields a solution
with the minimum two-norm of the residual, but if the
problem is underconstrained, this solution may not be
unique. The condition for unique determination of Âu

depends not only on the rank of Ou, but also on the
equality constraints imposed. We suggest only that if
the problem is underdetermined, one could either used
more data in the identification, select additional out-
puts to provide more information about the state, or
perhaps reduce the number of configurations, if some
are redundant or are not contributing to the output.
Alternatively, if the problem is underdetermined, then
the connectivity implied by the least squares solution to
Âu may be sufficient to describe the output of interest.

4 Example 1: sixteen-state system

We now demonstrate the model reduction and system
identification techniques developed in the previous sec-
tions on an example motivated by our interest in surface
evolution. We consider a one-dimensional surface con-
sisting of ten atomic sites, with five atoms located on
the surface. The surface evolves as the atoms hop to ad-
jacent empty sites. Figure 2 shows the sixteen unique
configurations of the surface. Periodic boundary condi-
tions are assumed, so configurations differing by only a
translation or a reflection are not distinguished. Config-
urations are characterized by the number and relative
location of monomers (single atoms with no neighbors)
and clusters (groups of at least two adjacent atoms).
Configurations with the same number of monomers and
clusters are contained within a single box in Figure 2,
and are considered to be potential candidates for con-
figuration grouping.
We create a master equation by considering two
expected outputs—the numbers of monomers and
islands—and two distinct types of transitions. In the
first, a monomer hops to an adjacent empty site. This
transition may occur from IIa to IIb, from IIb to IIa,
or from IIa to I. All transitions of this form have the
same rate, which is dependent on the (input) temper-
ature. The second type of transition occurs when an
atom hops off the edge of a cluster to an empty site,
and provides a transition, for example, from VIa to IVa
or from I to IIa. This transition rate is less than for
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Figure 2: Sixteen unique configurations of a ten-site sur-
face with five atoms. The configurations are
grouped according to the number of monomers
and clusters.

Table 1: Values of the error bound ε in equation (8) for two
sets of transition rates and for three reductions.

{k1, k2} = {k1, k2} =
{104, 10} s−1 {103, 0.5} s−1

Group IIa & IIb,
Va & Vb 9.3 × 10−4 6.5 × 10−4

Eliminate III,
VI, VII 1.2 × 10−3 9.3 × 10−4

Both 2.1 × 10−3 1.5 × 10−3

monomer hopping, since the extra atomic bond associ-
ated with the cluster makes the atom less mobile.
We now consider a minimum time resolution of ∆t =
0.1 s, and maximum time tf = 10 s, and two sets of
transition rates: {104, 10} s−1 and {103, 0.5} s−1. The
first rate in each pair is the monomer hopping rate,
while the second is for detachment from a cluster. For
each set of transition rates, we compute ε associated
with various configuration reductions. The results are
given in Table 1. We first group the configuration pairs
{IIa, IIb} and {Va, Vb}, since they are tightly coupled
through monomer hopping transitions, resulting in di-
mension reduction from sixteen to fourteen. The effect
of eliminating configurations in the groups III, VI, and
VII is also reported, reducing the dimension from six-
teen to nine. These configurations are unlikely to be
occupied in the case when the monomer hopping rate
is much greater than the cluster detachment rate. We
finally present the error associated with both the group-
ing and the configuration elimination, and produce a
seven-state system with the error given in Table 1.
We next apply the identification algorithm to the
reduced-order master equation. We generate the simu-
lation data by numerically integrating the master equa-
tion, and then adding to each element a random num-
ber of maximum magnitude 10−5. The time step for
the simulations is 0.1 s, with nt = 5. Transition rates
of {1, 1} s−1 and {0, 1} s−1 are used in the simula-
tions, so that the time scale of the transients is consis-
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Figure 3: Comparison of the original equation of exam-
ple 1 to its reduced-order version, and to two
identified models.

tent with the time step. We thus construct two observ-
ability matrices and perform a single constrained linear
least squares computation to generate the output ma-
trix, and a state matrix for each of the two transition
mechanisms. Two different identified models are com-
puted, one in which the state matrices are constrained
to be stochastic, and another with no constraints at all.
The identified systems are compared to both the origi-
nal system and to the reduced master equation, under
the same set of random inputs and beginning in config-
uration I. The transition rates take new values at each
time step of 0.1 s, with a monomer hopping rate be-
tween 0 and 104 s−1, and a cluster detachment rate
between 0 and 10 s−1. The results are shown in Figure
3. The identified model generated by constrained lin-
ear least squares compares well with the reduced and
full master equations. The difference in performance
between the identified master equation and the (unsta-
ble) unconstrained system is striking, but should not be
surprising. Since the state matrices of a master equa-
tion are stochastic, they contain at least one eigenvalue
at the origin. If the eigenvalues of the identified matri-
ces are not constrained in some way, any noise added
to the simulation data may lead to one or more unsta-
ble eigenvalues in the identified system. While, in gen-
eral, constraining the eigenvalues of a matrix in a linear
computation is nonlinear, the eigenvalues of a stochas-
tic matrix are never unstable. This point turns out to
be critically important in our identification method.
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Figure 4: (a) Individual KMC simulations at three con-
stant temperatures. (b) Reduced-order model
under the same temperatures.

5 Example 2: infinite-dimensional system

We are ultimately interested in reducing the dimension
associated with large two-dimensional surfaces during
film growth. In this case each surface site may take
any integer height, yielding an infinite number of con-
figurations. Our simulations are described in further
detail in [2, 3]. We consider transitions for the ad-
sorption of a new atom onto the surface, with rate
kads = 1 s−1, and atom hopping, or diffusion, with
rate kdif,i = 1013 exp ((Edif,0 + i∆E)/kb/T ) s−1, where
Edif,0/kb = 9000 K, ∆E/kb = 2500 K, and i is the
number of side bonds for each atom. The temperature
is restricted to the range 400 ≤ T ≤ 500 K, and a
surface with 300×300 sites is used.
To generate a reduced model, the finite configuration
set must first be established. Due to the infinite number
of original configurations, individual configurations are
not grouped or eliminated, but instead we select a finite
number of typical, representative configurations, based
on our understanding of the physics. Each configuration
in this finite set is intended to represent a group of con-
figurations with similar statistics that evolve together.
Unimportant configurations are impliciting eliminated
if they are not associated with one of these groups.
Kinetic Monte Carlo simulations at 400, 450, and 500 K
are shown in the top plot of Figure 4. The ‘x’s mark the
configurations selected for the configuration set. Ob-
servability matrices are then constructed for each of
these three temperatures from individual simulations
to generate three discrete-time state matrices Au, as-
sociated with each temperature. We do not generate
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Figure 5: Results of optimization: (a) Optimized temper-
ature profile. (b) Simulation of reduced-order
model under optimized temperature.

the individual Ni, but instead interpolate between the
Au for intermediate temperatures. Simulations of this
80-state model are shown in the lower portion for Fig-
ure 4, demonstrating good qualitative and quantitative
agreement.
We now use the reduced-order model to compute the op-
timal temperature profiles to minimize the cost function
Cost = W (N) + β

∑N−1
j=1 (Tj − Tj+1)2, where N is the

number of time steps, W (N) is the final roughness, and
β is the cost for fast temperature change. We consider
three values of β, and compute the optimal tempera-
ture over two layers of growth, with results shown in
Figure 5. When the penalty on temperature change is
large, the optimal strategy is to keep the temperature
high, but for small penalties, the best approach is to
lower the temperature at the beginning of each layer to
create many small clusters, and then raise the temper-
ature to fill in the gaps between clusters. It would be
impractical to perform this type of analysis directly on
the KMC simulations. Further discussion of the rela-
tive computational costs is available in [2], in which the
simulation cost of the reduced-order model is 3-4 orders
of magnitude less than the KMC simulations.

6 Discussion and Conclusions

Master equations describe many systems of interest, in-
cluding chemical reactions and surface evolution. The
number of discrete configurations is often large or infi-
nite. However, the behavior observed in the evolution
of expected properties may not require this high dimen-
sion, either because some configurations are improbable
or because redundant configurations or paths exist. We
have developed here an error bound between an origi-
nal and a reduced-order master equation. The bound
depends only on the differences in the exponential oper-
ators over one time step, and the number of time steps
executed. A system identification procedure is then pre-
sented. Only the configuration set must be known a
priori, which may either be the original data set, or
a reduced configuration set. Simulation data is then
used to generate the state and output matrices. The

reduction and identification methods are demonstrated
in a sixteen-state master equation based on surface evo-
lution. We have also considered much larger surfaces
(300 × 300 sites) evolving during thin film deposition.
In this example the number of configurations is infinite,
as atoms are continually deposited on the surface. In-
stead of formally reducing the system dimension via co-
ordinate transformations and computing error bounds
for the reduction, we simply postulate a representative
configuration set. Kinetic Monte Carlo simulations are
then performed to generate the corresponding state and
output matrices. The identified models compare well
with the original KMC simulations, and can be used to
compute optimal input trajectories.
We conclude that master equations are an important
class of control systems, particularly for physical sys-
tems at small length scales, and that their often high
dimension may be reduced. We have presented in this
work complementary model reduction and system iden-
tification methods for finite-dimensional master equa-
tions that capture the dominant dynamics with a re-
duced dimension. These approaches also suggest a path
for reducing infinite-dimensional master equations to
low-order models.
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