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Abstract—We study a simple pursuit scenario in which the
pursuer has potential access to an additional off-board global
sensor. However, the global sensor can be used for either of
two purposes: to improve the state estimate of the pursuer, or
to obtain more data about the trajectory being tracked. The
problem is to determine the variation in the performance of
the system as the global sensor changes its behavior. We use a
stochastic strategy to optimize over the transmission pattern
of the global sensor.

I. INTRODUCTION
We consider the following cooperative pursuit problem.
A road needs to be monitored for threats emanating along
it. There are two types of monitoring vehicles. There are
vehicles on the ground that can move fast and can pursue a
threat. However, their sensing radius is limited. In addition,
there are air-borne vehicles that can sense the entire region;
however they cannot actually pursue the target. There are
communication constraints that prevent passage of arbitrary
amounts of information (essentially a map of the entire
road) from the air-borne vehicle to the vehicles on the road.
The problem is to obtain the best possible estimate of the
situation on the road by using the two types of vehicles in
a cooperative fashion.

II. ANALYSIS
In this paper, we consider the case when only one air-
borne vehicle and one ground vehicle are present. The
ground vehicle has dynamics given by

xk+1 = Axk + Buk + wk, (1)

where xk ∈ R
n is the process state, uk ∈ R

m is the
control input and wk is zero-mean white Gaussian noise
with covarianceRw. We assume that the target has a random
initial state and then evolves according to the dynamics

tk+1 = Attk + vk, (2)

where vk is white Gaussian noise with covariance Rv. We
also assume that it is not possible to observe the control
inputs being fed to the target and hence the control input is
also clubbed with the noise vk. For simplicity we consider
the mean of vk to be 0, although in general, the effect of
the control input might be to make the mean equal to μ, to
represent, e.g., the general tendency of the target to move
in a particular direction.
The ground vehicle has on-board sensors detecting its
own state and is capable of following a trajectory through
the control input uk. The sensor equation is

y1
k = C1xk + n1

k, (3)
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where n1
k is zero-mean white Gaussian noise with co-

variance R1. The noises wk, vk and n1
k are all assumed

independent of each other. Thus on its own, the ground
vehicle is incapable of identifying the state (or location)
of the threat and hence of pursuing the threat. To gain
knowledge about the threat, it depends on the air-borne
vehicle. The air-borne vehicle can sense the entire region
of interest and can send either of two measurements

y2
k = C2xk + n2

k y3
k = C3tk + n3

k.

The communication between the air-borne vehicle and the
ground vehicle is over a wireless channel and is thus
subject to stochastic losses. For now, we model this loss
as occurring either in an i.i.d. fashion with probability λ.
We can also consider the loss as according to a Markov
chain as described later in the paper.
The object of the two pursuers is to pursue the threat by
reducing the error ek = xk − tk. We consider the quadratic
cost function

J = lim
K→∞

1

K

K∑
k=0

E
[
eT

k Qek + uT
k Ruk

]
. (4)

The expectation in the cost function is taken over the various
noises, the random initial conditions of the dynamics and
over the probability of message drop λ. The expectation
over vk is needed since the future values of tk are not
known when the optimal control law is designed. We can
consider the minimization of J by the ground vehicle
through design of control input uk for k = 0, 1, 2, · · · .
However, the minimization depends on what information
the controller has access to at each time step. The ground
vehicle can minimize the cost better either by knowing its
own state xk more accurately (hence if the air-borne vehicle
communicates y2

k) or by knowing the target state tk with
more accuracy (hence if the air-borne vehicle transmits y3

k).
For any schedule of transmission S of y2

k and y3
k, we define

J� = minuk
(J |S). We aim at further minimizing J� over

the schedule of transmission of y2
k and y3

k, i.e., to find
Jopt = minS J�.
To solve the problem, we proceed as follows. We first
note that we can easily calculate J� for any given S. To
this end, define zk =

[
xT

k tTk
]T

. Then we can combine
equations (1) and (2) into the joint equation

zk+1 =

[
A 0
0 At

]
zk +

[
B
0

]
uk +

[
wk

vk

]
(5)

= Azk + Buk + Wk,

with the covariance of the noise Wk being denoted by Rw.
For this system, the aim is to minimize the cost function (4)
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which can be re-written as

J = lim
K→∞

1

K

K∑
k=0

E

[
zT

k

[
Q −Q
−Q Q

]
zk + uT

k Ruk

]

(6)

At each time step, the controller has access to one of three
sensor measurements given by

Y 1
k =

[
C1 0
C3 0

]
zk +

[
n1

k

n2
k

]
= C1zk + N 1

k

Y 2
k =

[
C1 0
0 C2

]
zk +

[
n1

k

n3
k

]
= C2zk + N 2

k

Y 3
k =

[
C1 0
0 0

]
zk +

[
n1

k

0

]
= C3zk + N 3

k

Denote the covariance matrix of noise N i
k by RNi . For any

given schedule, the problem is to minimize the quadratic
cost function (6) for the linear plant (5) with a time-varying
sensor of the form

Yk = Ckzk + nk,

Using the standard method, e.g., described in [2] Chapter
9, we can prove that a separation principle exists between
the optimal control input and the optimal estimate given
the previous measurements. Thus the optimal control law is
designed assuming that the state could directly be measured
and the gain matrix for it is given by

F = −
(
R + BT SB

)−1
BT SAT

S = AT SA + Q− F T
(
R + BT SB

)
F.

The optimal control input uk at any point is formed by
calculating the optimal state estimate ẑk|k−1 based on the
measurements {Yj}

k−1

j=0 and then using the optimal control
law calculated above to yield uk = F ẑk|k−1. Furthermore,
the cost J� can be evaluated to be

J� = trace
(
(AT SA + Q− S)P

)
+ trace(SRw),

where P is defined as

P = lim
k→∞

E
[
(zk − ẑk|k−1)

2
]
.

The expectation in the above equation is again taken over
all the noises in the system and the initial conditions. If
the schedule involved the use of only one sensor, P would
have been given by the usual Ricatti equation, however for
a time-varying schedule, this is no longer the case.
Thus to minimize J� over all possible choices of the
schedule S, we need to minimize P . This is the classi-
cal sensor scheduling problem. We need to optimize the
schedule of use of sensors Y 1, Y 2 and Y 3 to minimize
the estimate error covariance P . Since the sensor Y 3 is
chosen stochastically, the usual tree-search based methods
do not work in this case. We use the stochastic sensor
selection strategy proposed in [1]. We assume that the air-
borne vehicle transmits the message y3

k at every time step
with probability ν and y4

k with probability 1 − ν. Initially,

we assume that the choice of the message to be sent is
done in an i.i.d. fashion. Thus the sensors Y 1

k , Y 2
k and

Y 3
k are chosen with probabilities ν(1 − λ), (1 − ν)(1 − λ)
and λ respectively. We aim at minimizing P by varying
the parameter ν. Because of the additional randomness in
the system introduced by the probability of choosing y2 or
y3, the error covariance P (and the cost J�) now becomes
stochastic. We consider its average value E[P ] where the
expectation is taken over the probabilities ν and λ. We can
now use the results from [1] to obtain an upper bound on
the cost as follows.
Proposition 1: An upper bound for E[Jopt] is given by

E[Jopt] < trace
(
(AT SA + Q− S)X

)
+ trace(SRw),

where X satisfies

X = AXAT + Rw

−
∑

i

qiAX(Ci)T
(
CiX(Ci)T + RNi

)−1
CiXAT ,

where q1 = ν(1 − λ), q2 = (1 − ν)(1 − λ) and q3 = λ.
Further the upper bound converges if there exists a positive
definite matrix Δ and matrices K1, K2 and K3, such that

Δ > Rw

−
∑

i

qi

(
(A + KiC

i)Δ(A + KiC
i)T + KiRNiKT

i

)
.

This is thus a sufficient condition for convergence of E[P ].
A necessary condition is

qi|λmax(Āi)|
2 ≤ 1,

where λmax(Āi) is the eigenvalue with the maximum mag-
nitude of the unobservable part of A when the pair (A, C i)
is put in an observable cannonical form.
Proof: Proof follows readily from the bounds

on E[P ] presented in [1] and the fact that
trace

(
(AT SA + Q− S)P

)
can be rewritten as

trace
(
(AT SA + Q− S)1/2P (AT SA + Q− S)T/2

)
.

Since exact calculation of E[P ] appears intractable, we min-
imize the upper bound presented in Proposition 1 instead.
Thus the optimization problem is minν X where

X = AXAT + Rw

−
∑

i

qiAX(Ci)T
(
CiX(Ci)T + RNi

)−1
CiXAT .

We can solve this problem to obtain the optimal value of ν
and implement the corresponding schedule.
The case where either the message loss occurs in a
Markovian fashion or the choice of which measurement
to transmit is done according to a Markov chain can also
be handled by using the results from [1]. Suppose the
message loss occurs according to a Markov chain with
transition matrix Q1 and the messages are chosen according
to transition matrix Q2. We need to consider 4 sensor states



represented by Y 1, Y 2, Y 3,1 and Y 3,2. The sensor Y 3,1

and Y 3,2 are of the same form as Y 3, but correspond
to the message being lost when y2 and y3 respectively
was transmitted. The sensors switch according to a Markov
chain with transition matrix

Q3 = Q1 ⊗ Q2,

where A⊗B represents the Kronecker product of matrices
A and B. Let qij denote the elements of Q3 and πi be the
steady-state probabilities of the various sensors being used.
Now we can write the upper bound to be minimized.
Proposition 2: An upper bound for Jopt is given by

Jopt < trace
(
(AT SA + Q− S)X

)
+ trace(SRw),

where X =
∑

j πjX
j and

πjX
j =

4∑
i=1

qijπi

(
AX iAT + Rw

−AX i(Cj)T
(
CjX i(Cj)T + RNj

)−1
CjX iAT

)
.

We can write down conditions for the convergence of E[P ]
similar to the i.i.d. case.
We now consider two examples to illustrate the algorithm
discussed above. For the first example, we consider the
ground vehicle to be double integrators with a step size
of 0.2. Thus

A =

[
1 0.2
0 1

]
B =

[
0.02
0.2

]
.

For the target vehicle, we assume At = 0.8I , where I is the
identity matrix. We consider the sensing matrices C i, all the
noise covariance matrices except R1 and the cost matrices
Q and R to be all identity. R1 is taken to be 0.2 times the
identity matrix. Figure 1 shows the optimum value of the
cost calculated using the above algorithm as the packet loss
probability λ is varied. It can be seen that the message loss
probability has a great impact on the information pattern
transmitted by the air-borne vehicle. In the second example,
we show how the algorithm is useful in modeling many sim-
ilar situations. Consider the case when there is only one air-
borne vehicle but N ground vehicles. The air-borne vehicle
has to provide the measurements to many ground vehicles,
which reduces the time it can spend on a particular vehicle.
We can study the decline in performance as N increases.
For simplicity, we assume that there are no message losses
and all vehicles are served with equal priority. Further for
each vehicle, the measurement y2

k and y3
k is transmitted

with the same probability. Thus any given vehicle obtains
measurements Y 1

k and Y 2
k with probability 1/(2N) and the

measurement Y 3
k with probability (N − 1)/N . We assume

the same system parameters as in the above example except
for Rw = Rv = 0.1I and R1 = 10I . Figure 2 shows
the variation in performance as a function of N . It can be
seen that initially the addition of more vehicles causes a
large decrease in performance. However, after some time
the plot flattens considerably showing that the control part
of the cost function dominates the estimation error.
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Fig. 1. Optimal value of parameter ν as the packet loss probability λ is
varied.
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Fig. 2. Performance of the system across a packet dropping channel.

III. CONCLUSIONS AND FUTURE WORK
We considered a simple cooperative pursuit scenario
in this paper and applied some known results in sensor
scheduling to obtain the optimal information pattern. Future
work would concentrate on multiple air-borne vehicles and
the case when the pursuers have partial information about
the control inputs of the target.
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