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Abstract— We study the problem of using a small number
of mobile sensors to monitor various threats in a geographical
area. Using some recent results on stochastic sensor scheduling,
we propose a stochastic sensor movement strategy. We present
simple conditions under which it is not possible to maintain a
bounded estimate error covariance for all the threats. We also
study a simple sub-optimal algorithm to generate stochastic
trajectories. Simulations are presented to illustrate the results.

I. INTRODUCTION AND MOTIVATION

In recent years, systems comprised of multiple mobile
sensors acting cooperatively have garnered increasing atten-
tion. Even though using a network of mobile sensors is more
complicated than having one static sensor, the increased
accuracy and flexibility often makes it worthwhile. In this
work, we look at the problem of monitoring a geographical
region using multiple sensors cooperatively. Each sensor can
individually sense a limited region, but together the sensors
must monitor the entire area. The problem of optimal
sensor location in case there are no bounds on the range
over which the sensors can sense leads to the problem
of Voronoi partitioning of the space and has been solved
both in a centralized framework [2] and in a decentralized
fashion [3]. The latter reference also discussed imposing
sensing range restrictions and proposed altering the cost
function in a similar manner to deal with the situation.
The problem when there are range (or direction) limitations
on the sensors has also been looked at other places in the
literature. However most of the approaches that have been
proposed are very application specific, see [4] for a typical
example. Finally some greedy approaches have also been
proposed to determine the optimal sensor trajectory using
different cost functions, e.g., in [5], [6].

A different approach was proposed in [1], which showed
the formal similarity between the sensor trajectory gen-
eration and the sensor scheduling problem. A stochastic
algorithm was proposed to solve the problem. The algorithm
differs from the other approaches mentioned above in that it
is based on the idea of letting the sensors switch randomly
according to some optimal probability distribution to obtain
the best expected steady-state performance. In this note,
we explore the algorithm further for the problem of sensor
coverage. We consider multiple sensors patrolling a grid of
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points and identify conditions when no stochastic strategy
would lead to a bounded expected error covariance. We also
provide a gradient descent based algorithm to generate the
optimal probability distribution.

This paper is organized as follows. We set up the problem
in the next section. We then present some results that place a
bound on how fast the dynamics of the underlying systems
evolve and how many sensors need to be present for the
estimation error to be unbounded. Finally we present an
algorithm to design an optimal probability distribution.

II. PROBLEM SETUP

Let the geographical region that needs to be monitored
be divided into a grid of N points. There are dynamical
processes occurring at these points whose state we want to
estimate. Denote the state at the i-th point at time k by xk

i .
The process at the i-th point is driven by wk

i , assumed to
be zero mean, white and Gaussian with covariance matrix
Ri. We assume that the noises at two distinct points i and
j are uncorrelated. We consider two distinct cases:

1) Coupled processes: The processes at points i and j
are coupled. Thus the process at a point i evolves as

xk+1
i = Aix

k
i +

∑

j 6=i

Ai,jx
k
j + wk

i ,

where all the matrices Ai,j are not zero.
2) Uncoupled processes: Processes at distinct points are

unaffected by each other. All matrices Ai,j are zero.
Denote the state of the entire region obtained by stacking

all xk
i ’s as xk. Then xk evolves according to the equation

xk+1 = Axk + wk,

where wk is the vector formed by stacking wk
i ’s. If the

processes are uncoupled, A is a (block) diagonal matrix
with Ai’s along the diagonal.

The region is monitored using n sensors. If the m-th
sensor is at point i at time k, it generates the measurement

yk
m = xk

i + vk
m, (1)

where vk
m is zero mean white Gaussian noise with covari-

ance Rm, assumed independent of all other noises present.
This can be rewritten as an observation of the state xk as

yk
m = Cix

k + vk
m,

where Ci is a row vector with zeros everywhere except the
i-th element which is replaced by 1.1 This gives rise to

1This description of Ci assumes the states xk
i ’s to be scalars. The

extension to the vector case is obvious. Similarly we can consider a sensing
matrix being present in (1).
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the concept of a virtual sensor. A physical sensor at point i
gives rise to a virtual sensor being used with sensing matrix
Ci. Similarly, if there are physical sensors at points i and
j, we will say that a virtual sensor is being used that has a
sensing matrix with rows Ci and Cj .

If there is more than one sensor present, we assume that
all measurements are exchanged without delay or distortion.
Thus based on all the measurements obtained by all the
sensors, any sensor can compute an estimate x̂k of the state
xk.2 Let P k denote the covariance of the estimate error,

P k = E
[
(xk − x̂k)T (xk − x̂k)

]
. (2)

There are two basic problems that arise.
1) Under what conditions does P k remain bounded?
2) What is the optimal trajectory that minimizes P k?

The error covariance is a function of the trajectory of the
physical sensor, or of the sensor schedule for the virtual
sensor. All the possible sensor schedules can be represented
by a tree. The depth of any node represents time steps with
the root at time zero. The branches correspond to choosing
a particular sensor to be active at that time instant. Thus,
the path from the root to a node at depth d represents a
sensor schedule for time steps 0 to d. We can associate with
each node the cost function evaluated using the schedule
corresponding to the path from the root to that node. Finding
the optimal sequence requires traversing all the exponential
number of paths from the root to the leaves in the tree.
This procedure might place too high a demand on the
computational and memory resources of the system.

In this note, we forgo traversing the tree altogether
and propose stochastic trajectories, i.e., the sensors choose
their positions at any time step at random according to
a probability distribution. The probability distribution is
chosen so as to minimize the expected steady state error
covariance. We cannot calculate the exact value of the error
covariance since that will depend on the specific sensor
schedule chosen. Hence we optimize the expected value
of the error covariance. To characterize the expected error
covariance, we use some of the framework developed in [1].

In this work, we assume that the sensor trajectories are
designed independent of each other. There are two particular
cases of sensor motion that we will study:

1) The choice for the position of the j-th sensor at time
step k + 1 is done in an i.i.d. fashion at each time
step with probability qi of being at the i-th point.

2) The choice is done according to a Markov chain
with transition probability matrix Q. This can model
physical constraints on the sensor motion, e.g., the
probability qij is 0 if i and j are points that are
physically distant from each other.

Note that we have assumed that each sensor chooses its
trajectory according to the same parameters (probabilities
qi’s or the transition probability matrix Q). We will say

2Since every sensor has access to the same information set, they would
have identical estimates.

that the problem can be solved if there exists at least one
choice of parameters such that beginning from any initial
condition, the expected error covariance remains bounded
as time progresses; otherwise the problem cannot be solved.

In the above description we have assumed that all the
agents are interested in coming up with an estimate for the
processes in the area. We can use the same framework if
the data is transmitted to a central data processing node. In
this case, we can also allow for communication channel im-
perfections. As an example, if the communication channel
loses packets stochastically, we can model the time instants
at which data loss occurs as being used up by a fictitious (as
opposed to physical and virtual) sensor which has sensing
matrix 0. The data can be lost in an i.i.d. or a Markovian
fashion (e.g., according to the Gilbert-Elliot channel model).

III. MOTION GOVERNED BY I.I.D. CHOICES

In this section we will consider the case when each sensor
is choosing the next point to move to in an i.i.d. fashion,
with the probability of any sensor being at point i being qi.

A. Uncoupled processes

From theorem 4 of [1], we can obtain the following result.
Proposition 1: (Theorem 4 from [1]) Let a process with

evolution matrix A be observed at each time step by one
among n sensors with sensing matrices C1, C2, · · · , Cn

such that the i-th sensor is chosen at any time step with
probability qi. Denote λmax(Ai) as the eigenvalue with the
maximum magnitude of the unobservable part of A when
the pair (A,Ci) is put in the observable canonical form.
Then a sufficient condition for the expected estimate error
covariance to diverge from at least one initial value is

qi|λmax(Ai)|2 > 1,

for any i = 1, 2, · · · , n.
Let λi be the eigenvalue with the maximum magnitude of
matrix Ai. Without loss of generality, we can assume that

|λ1| ≥ |λ2| ≥ · · · ≥ |λN |. (3)

We can prove the following result.
Proposition 2: Consider the sensor coverage problem

when N points are to be patrolled by one sensor. If the
processes are uncoupled and (3) holds, then the problem
cannot be solved if for any 1 ≤ m ≤ N − 1,

(
N−1

m

)

|λ1|2 +

(
N−2
m−1

)

|λ2|2 + · · ·+
(
N−1−m

0

)

|λm+1|2 <

(
N − 1
m− 1

)
. (4)

Proof: The m-th sufficient condition is obtained by
considering all virtual sensors formed by considering sets
of m points. We say that a virtual sensor is used if the
physical sensor is present at any point in the set of m points
that the virtual sensor represents.

1) There are
(
N
m

)
such virtual sensors.

2) Denote the probability of choosing the j-th virtual
sensor by πj . For a virtual sensor with the set of m
points denoted by M, πj =

∑
t∈M qt.



For each virtual sensor, denote the lowest i which is not
included in its set of m points by imin. Then the condition
for stability when that virtual sensor is used is πj |λimin |2 <
1. Simple algebra yields that λt occurs in

(
N−t

m−t+1

)
such

inequalities. Adding all the inequalities together, we obtain
that at least one inequality will be violated if

(
N−1

m

)

|λ1|2 +

(
N−2
m−1

)

|λ2|2 + · · ·+
(
N−1−m

0

)

|λm+1|2 <

(
N − 1
m− 1

)
.

Considering different values of m, we obtain the result.
For specific values of m, the condition in equation (4) looks
as follows. For m = 1, the condition is

N − 1
|λ1|2 +

1
|λ2|2 < 1. (5)

For m = N − 1, the condition is
N∑

i=1

1
|λi|2 < N − 1. (6)

Neither of the conditions is more general. As an example,
for a system with λ1 = 2, λ2 =

√
3, λ3 = 1/

√
2 the

problem is predicted to be unsolvable by (5) but not by (6).
The opposite is true for a system with λ1 = λ2 = λ3 =

√
2.

We now move on to the case when there is more than
one physical sensor, i.e., n > 1. To begin with, consider the
case of only two points to be patrolled, i.e., N = 2.

Proposition 3: If N = 2 points have to be patrolled by
n sensors with the assumptions stated above, the sensor
coverage problem cannot be satisfied if

1
|λ1| 2n

+
1

|λ2| 2n
< 1.

Proof: There are 2n virtual sensors in this case,
corresponding to the n physical sensors being present at
either of the two points. When both the points are covered
by at least one physical sensor, the entire system matrix A
is observed. There are two cases when A is not observed

1) all the physical sensors are located at the first point.
This event occurs with a probability (q1)n; or

2) all the physical sensors are located at the second point.
This occurs with a probability (q2)n or (1− q1)n.

Thus the conditions for covariance of the error to diverge
are for any one of the following inequalities to be true,

(q1)n|λ2|2 > 1
(1− q1)n|λ1|2 > 1.

Adding the inequalities completes the proof.
Combining the proof technique of Propositions 2 and 3
immediately leads to the generalization stated below.

Proposition 4: The sensor coverage problem when N
physical points are to be patrolled using n sensors, but
otherwise the same assumptions hold as above, cannot be
solved if for any 1 ≤ m ≤ N − 1,

(
N−1

m

)

|λ1| 2n
+

(
N−2
m−1

)

|λ2| 2n
+ · · ·+

(
N−1−m

0

)

|λm+1| 2n
<

(
N − 1
m− 1

)
. (7)

B. Coupled processes

Let the process at the i-th point evolve as

xk+1
i = Aix

k
i +

∑

j 6=i

Ai,jx
k
j + wk

i .

As long as all Ai,j’s are not zero, it is possible to obtain
information about xk

j even though the sensor is at point i.
Moreover, the eigenvalues of the unobservable modes when
considering two physical sensors located at points i and j
may have no relation to the eigenvalues when the sensors
are at points i and k. Thus the analysis is more involved
in this case. We will now consider virtual sensors formed
by sets of m physical points and say that a virtual sensor
is used if none of the physical sensors are located outside
the specified m points. Denote the set of all such virtual
sensors by Sm. For any member M of this set, consider
the sensing matrix CM formed by stacking all the Ci’s such
that i belongs to the set of m points corresponding to M .
Denote by αM the eigenvalue with the maximum magnitude
of the unobservable part of A when the pair (A,CM ) is put
in the observer canonical form.

Proposition 5: The sensor coverage problem for N phys-
ical points and n sensors with the above assumptions cannot
be satisfied if for any m such that 1 ≤ m ≤ N − 1,

∑

M∈Sm

1
|αM | 2n

<

(
N − 1
m− 1

)
.

Proof: Proof follows exactly along the lines of that of
proposition 4 and is omitted.

IV. MOTION GOVERNED BY A MARKOV CHAIN

We now consider the more general case where each
sensor decides its position at time step k + 1 according to
its position at time step k by using a transition probability
matrix Q. This can also model the case when data loss is
occurring according to a Markov chain. We still assume
that the various sensors act independently. We will use the
following result from [1].

Proposition 6: (Theorem 5 from [1]) Let a process with
evolution matrix A be observed at each time step by
one among n sensors with sensing matrices C1, C2, · · · ,
Cn such that the i-th sensor is chosen at any time step
according to a Markov chain with transition probability
matrix Q = [qij ]. Denote λmax(Ai) as the eigenvalue with
the maximum magnitude of the unobservable part of A
when the pair (A,Ci) is put in the observable canonical
form. Then a sufficient condition for the expected estimate
error covariance to diverge from at least one initial value is

qii|λmax(Ai)|2 > 1,

for any i = 1, 2, · · · , n.
We assume that the Markov chain is positive recurrent

and irreducible, thus there exists a unique stationary distri-
bution. Let πi denote the stationary probability of being in
the i-th state. The general result statement along the lines
of proposition 5 is now presented. Define αM as before.



Proposition 7: The sensor coverage problem for N phys-
ical points and n sensors with the above assumptions cannot
be satisfied if for any m such that 1 ≤ m ≤ N − 1, any of
the following

(
N
m

)
conditions are satisfied

1∑
j∈M πj


 ∑

k∈M

∑

j∈M

qkjπk


 >

1
|αM | 2n

.

Proof: Proof is along the lines of proposition 5. The
only trick is in the calculation of the probability qii for
the i-th virtual sensor. For a Markov chain with transition
probability matrix P and a set of states S, the probability
that the state at time k +1 belongs to S given that the state
at time k belonged to S is given by the expression

1∑
j∈S πk

j


∑

t∈S

∑

j∈S

ptjπ
k
t


 ,

where πk
t is the probability of being in state t at time k.

Since the Markov chain reaches a stationary distribution,
πk

t → πt as k increases. Thus qii’s can be evaluated.
Remarks:

1) One special case is when the sensors are chosen in an
i.i.d. fashion. Thus qkj = qj for all pairs (k, j) and
the conditions in proposition 7 reduce to

∑

j∈M

qj >
1

|αM | 2n
.

Summing all
(
N
m

)
inequalities obtained by the various

choices of M yields the condition in proposition 5.
2) When the processes at various points are uncoupled,

the terms αM are expressible in terms of the eigenval-
ues with the maximum magnitude λi of the processes
at the various points. Let the points be numbered such
that |λ1|≥ |λ2|≥· · · ≥ |λN |. Let M̄ be the set of
points i ∈ {1, 2, · · · , N} that are not contained in
M . Then αM = λi, where i = minj∈M̄ (j).

V. SENSOR SCHEDULE DESIGN

In this section, we look at designing the probabilities such
that the sensor coverage is done in some optimal fashion.
As a metric, we would consider the trace of the steady-state
value of the estimate error covariance P k as defined in (2).
Since the trajectories we consider are stochastic, the error
covariance is a random quantity. We will adopt the trace of
the steady state expected error covariance as the metric to
be minimized. We begin by characterizing this quantity.

Consider a process with evolution matrix A being driven
by white noise with mean 0 and covariance matrix Q.
Let the process be observed at each time step by one
among n sensors, with the i-th sensor characterized by the
sensing matrix Ci and measurement noise with mean 0 and
covariance Ri. Further let all the noises be independent of
each other. Let the choice of sensor be done randomly at
each time step. Then the minimum mean square estimator is
a Kalman filter with a time-varying sensor. If the i-th sensor

was chosen at time step k, the error covariance at time step
k + 1, denoted by P k+1, is given by P k+1 = fi

(
P k

)
,

where fi (.) is the Riccati operator defined as

fi (X) = AXAT +Q−AXCT
i

(
CiXCT

i + Ri

)−1
CiXAT .

Because of the random schedule of the sensors, the error
covariance is a stochastic quantity. We consider its mean
value which evolves as

E
[
P k+1

]
= E

[
fi

(
P k

)]
. (8)

However, exact evaluation of the above quantity seems
intractable. Instead, we consider an upper bound on the
expected error covariance, using the results from [1].

A. Sensor motion being governed by i.i.d. choices

Denote the probability of sensor m being at point i at
time step k by qi. We start by obtaining an upper bound
for the mean error covariance in (8) using Theorem 3 of [1].

Proposition 8: (Theorem 3 of [1]) The mean error co-
variance E

[
P k

]
evolving as in (8) is upper bounded by

∆k, where ∆k evolves according to the recursion

∆k+1 = A∆kAT + Q

−
n∑

i=1

qiA∆kCT
i

(
Ci∆kCT

i + Ri

)−1
Ci∆kAT , (9)

with ∆0 = P 0. Further if there exist matrices K1, K2, · · · ,
Kn and a positive definite matrix P such that

P > Q+
n∑

i=1

qi

(
(A + KiCi)P (A + KiCi)T + KiRiK

T
i

)
,

then the above recursion converges for all initial conditions
P 0 > 0 and the limit X is the unique positive semi-definite
solution of the equation

X = AXAT + Q

−
n∑

i=1

qiAXCT
i

(
CiXCT

i + Ri

)−1
CiXAT . (10)

X is an upper bound on the steady state expected error
covariance. In the sequel, we will adopt trace(X) as the
metric to be minimized as an approximation to minimizing
the expected error covariance itself. Divergence of the upper
bound is a necessary condition for the divergence of the
expected error covariance; hence the design can be expected
to be conservative in this sense. Let there be p virtual
sensors present. The design problem is

min
qi

trace(X) (11)

s.t. X =
p∑

i=1

qifi (X)

∑
qi = 1 0 ≤ qi ≤ 1 X ≥ 0.

For a problem of small size, a brute force search suffices
to find the optimal probabilities. However, we can also use



a gradient descent algorithm to solve the problem. For ease
of notation, we adopt the following notation. Define

gq(X) =
p∑

i=1

qifi(X),

where q is the vector of qi’s. The cost function of our
problem is trace(X) or trace(gq(X)). From now on, we
will refer to any vector γ whose components γi’s are non-
negative and sum to 1 as a valid probability vector. The
algorithm proceeds as follows:

1) Initialize at step k = 1, with an arbitrary valid
probability vector γ1 and calculate the positive semi-
definite matrix X1 that satisfies X1 = gγ1

(
X1

)
.

2) At every step k, do the following :
• Calculate γmin as a valid probability vector that

minimizes trace
(
gγ(Xk)

)
.

• Calculate γ̄k = γk + δ
(
γmin − γk

)
, where δ is

the step size parameter between 0 and 1.
• Obtain γk+1 by projecting γ̄k on the set of valid

probability vectors.
• Calculate Xk+1 = gγk+1

(
Xk

)
.

• If γk = γk+1 (within a prescribed tolerance) then
break else repeat the loop.

3) Output γk+1 as the minimizing vector and
trace

(
Xk+1

)
as the minimum cost function.

γmin is obtained through an optimization of the form

arg min
γ

trace

(
p∑

i=1

γifi(X)

)

∑
γi = 1 0 ≤ γi ≤ 1,

where X is a given positive semi-definite matrix. This
is a linear program and can be solved efficiently. The
projection step in the algorithm is required since γ̄k may
have individual components that are negative or greater
than 1, even though they sum up to 1. Even though the
optimal projection would be to find out the vector that
is a valid probability vector and minimizes the Euclidean
distance from the original vector, in practice, heuristics such
as setting the negative components to 0 and redistributing
their weight to all the other components seem to work well.
Also since we have not proven anything about the convexity
of the problem, the minima may not be global. Finally
note that we can consider additional constraints placed on
the probability vector. As an example if packets are being
dropped with a probability λ, then the other p− 1 sensors
are being used with a probability q1(1− λ), q2(1− λ) and
so on, where the qi’s still sum to 1.

B. Sensor motion being governed by Markovian choices

Denote the probability of sensor m being at point i at
time step k by πk

i and the probability of the sensor moving
from point i to point j as qij . We again obtain an upper
bound for the mean error covariance using a result from [1].

Proposition 9: (Theorem 5 of [1]) The mean error co-
variance P k evolving as in (8) when sensors are chosen in
a Markovian fashion is upper bounded by ∆k, where ∆k

evolves according to the recursion

∆k+1 =
n∑

j=1

πk
j ∆k+1

j (12)

πk
j ∆k+1

j =
n∑

i=1

fj

(
∆k

i

)
qijπ

k
i ,

with the initial conditions ∆0
i = P 0. Further, assume that

the Markov chain transition probability matrix Q is such
that the states reach a stationary probability distribution with
the probability of the j-th sensor being used as πj > 0. If
there exist n positive definite matrices X1, X2, · · · , Xn and
n2 matrices K11, K12, · · · , K1n, K2,1, · · · , Kn,n such that

πjXj >

n∑

i=1

(
(A + KijCj)Xi(A + KijCj)∗

+ Q + KijRjK
∗
ij

)
qijπi,

then (12) converges for all initial conditions X0 > 0 and
the limit X̄j is the unique positive semi-definite solution of

πjXj =
n∑

i=1

fj (Xi) qijπi. (13)

The upper bound for the error covariance is given by

X̄ =
n∑

j=1

πjX̄j .

Similar to the i.i.d. case then, if we assume p virtual sensors
to be present, we can pose the following optimization
problem to solve for the transition probability matrix.

min
qij

trace(X) (14)

s.t. X =
p∑

j=1

πjXj πjXj =
p∑

i=1

fj (Xi) qijπi

∑

j

qij = 1 0 ≤ qij ≤ 1

Xj ≥ 0 πi =
p∑

j=1

qjiπj .

This can again be solved by an algorithm similar to the one
proposed above for the i.i.d. case. The step of finding the
minimizing qij’s remains a linear program.

VI. EXAMPLE

We now illustrate our results with the help of some simple
examples. As the first example, consider a grid of 6 points
such that the value at each point represents a flow traveling
from the first node towards the sixth node. Thus the dynamic
equation at points 2 through 6 is given by

xk+1
i = xk

i−1 + wk
i ,



while for point 1 it is given by xk+1
1 = wk

1 . We assume that
the covariance matrix of the noise wk

i is Ri = 0.5. Consider
only one sensor of the form (1) with the matrix Rm = 0.1
that chooses its position independently from one time step
to the next. There are 6 virtual sensors with the sensing
matrix of the i-th sensor, Ci, being a row vector with all
zeros except a 1 at the i-th place. The noise covariance
matrix for all the sensors is Rm. The process matrix A is
a 6× 6 identity matrix. Let qi denote the probability of its
being at the i-th point. Naively, we may assume that the
optimal probability distribution would be either to spend
a lot of time at the source, i.e., the first node or equally
among all the nodes. However if we optimize the probability
distribution (using a brute-force search), it turns out that for
the optimal distribution, q3 = 1. The optimal cost is 6.28.
If the sensor spends all its time at the source node, the cost
is 8.42 while for a strategy of spending time with the same
probability at all the points it is 8.23. If we use a greedy
strategy in which the sensor moves to minimize the cost at
every time-step, it leads to the sensor spending all its time at
the fourth point, leading to a cost of 6.69. Thus our strategy
performs better than heuristic or greedy algorithms.

As our second example we choose a ring network of 4
agents in which each agent is trying to calculate the average
of the values of all the agents. Thus for the i-th agent

xk+1
i = xk

i − h(2xk
i − xk

i+1 − xk
i−1) + wk

i ,

where the addition in the agent number i is done modulo
4 and h is a positive constant. For a small enough value
of h, the agents will calculate the average if no noise were
present. We assume the noises wk

i to be independent of
each other and with variance R1 = R4 = 1 and R2 =
R3 = 0.8. We again assume there is only one sensor that is
choosing its position in an i.i.d. fashion. We will consider
h = 0.2. We use the gradient descent algorithm with initial
probability distribution q1 = q2 = 0.5 and a step size of
0.01. On optimizing the distribution, the values turn out to
q1 = q4 = 0.3 and q2 = q3 = 0.2 with an optimal cost
(upper bound) of 5.81. Indeed if we run 10000 random
runs of the system generating sensor switching with this
probability, we obtain a mean steady state error covariance
trace of 5.8. Hence the upper bound is pretty tight at least
in this example.

We can also impose the restriction that the sensor can
only move from one physical point to its neighbors. Thus
the sensor positions are chosen according to a Markov
chain. Let us assume no packet losses for simplicity. Be-
cause of the symmetry of the system, we look for transition
probability matrices of the form




1− 2λ1 λ1 0λ1

λ2 1− 2λ2 λ2 0
0 λ2 1− 2λ2 λ2

λ1 0 λ1 1− 2λ1


 .

Then the optimal parameters turn out to be λ1 = λ2 = 0.5.
As we vary the value of h, the system becomes more or less

stable. Thus to keep the error covariance bounded, we need
different number of sensors. Figure 1 shows a bound on the
number of sensors required, as predicted by Proposition 5.
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Fig. 1. Lower bound on the number of sensors required.

VII. CONCLUSIONS AND FUTURE WORK

We considered the problem of monitoring a geograph-
ical region using a small number of mobile sensors. We
proposed a stochastic strategy to determine the trajectories
of the sensors. We identified conditions under which no
probability distribution can lead to a bounded expected error
covariance and presented an algorithm to generate optimal
probability distributions for choosing the sensor trajectories.

The work can be extended in multiple ways. In this
work, we assumed that the motion for the n sensors was
independent of each other. If the sensors are able to plan
their motion together, they probably can be represented as
one sensor with a bigger transition probability matrix. We
are currently working on the details of this case. Another
possible avenue for future work is to determine a relaxation
such that the optimization problem stated in the paper can
be solved efficiently (possibly as a convex program).
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