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Feedback architectures to regulate flux of components
in artificial gene networks

Giulia Giordano, Elisa Franco and Richard M. Murray

Abstract— This paper focuses on RNA flux regulation for in
vitro synthetic gene networks and considers architectures that
can be scaled to an arbitrary number of species. Feedback
loops are designed based on negative auto-regulation (which
can minimize the potentially harmful amount of molecules not
used to form useful products) and cross—activation (which can
maximize the overall output flux): transcription rate matching
can be achieved through proper feedback constants; negative
feedback is faster and maintains stability. A possible experimen-
tal implementation of a three and four genes negative feedback
architecture is also numerically studied.

I. INTRODUCTION

Synthetic biology aims at designing from the bottom—up
new biological circuits with specific functionalities, in order
to devise innovative biotechnologies. Building new circuits
also offers a powerful insight into the design principles pre-
sent in nature and selected by evolution. Design and synthesis
of artificial biotechnologies can be greatly streamlined by
quantitative modeling, which provides rational explanations
and quantitative assessment of the system performance; a
control-theoretic approach is very powerful to investigate
dynamic properties and robustness [1], [2].

In vitro synthetic gene networks have been recently pro-
posed in [3], [4]: the activity of artificial, short DNA genes
(“genelets”) is regulated by their RNA outputs, through
displacement of key activating strands bound to the genes.
Thus, unlike in vivo transcriptional control, regulation is
mediated by RNA species rather than by proteins. These
networks are translation free (i.e. no proteins are produced)
and are built with few biochemical components (DNA, RNA,
two protein species off-the-shelf, and a well defined set of
buffer reagents), but can exhibit by design complex behaviors
such as bistability [3], [5] and oscillations [4], [6].

Binding of proteins and RNA underlies cell metabolism,
gene expression and self—assembly phenomena. Synthetic
biological systems also rely on the accuracy of programmed
binding pathways among biological components. In many
instances, binding of reagents has to occur with specific
stoichiometric ratios: therefore, it is important to regulate
production and degradation rates, i.e. the overall flux, of
biochemical species, so that their concentrations fall within
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desired bounds. Since they can generate many complex
behaviors, in vitro transcriptional circuits are a promising
toolkit to control dynamics in molecular machines [7], [8],
patterns [9] and computers [10]. Thus, we need scalable
flux control architectures tailored to these synthetic gene
networks. Feedback circuits regulating RNA transcription
rates were first proposed in [11], [12], [2]. Suppose two
RNA species bind in a 1:1 stoichiometry to form an output
product: if their production/degradation rates are not mat-
ched, the reagent with the higher flux accumulates, creating a
potentially harmful excess, and the flow of product is limited
by the lower reagent flux. To equate the two production rates,
negative feedback (self-repression) and positive feedback
(cross—activation) architectures were proposed.

The objective of this paper is to systematize and scale
up these two schemes, understanding their performance
in a context where n genes operate together to produce
outputs in a desired stoichiometry. Our main contributions
are: 1) We categorize different interconnection and feedback
architectures for the RNA outputs of the synthetic genes.
This categorization is useful in a scenario where these RNA
outputs will be employed as building blocks for complex
nanostructures or as inputs for downstream circuits. 2) We
numerically analyze the performance of these different archi-
tectures for schemes with 3 and 4 interconnected genelets,
using plausible experimental parameters. Feedback occurs
by stoichiometric interactions between RNA outputs and
genelets. We find that negative feedback architectures are
more scalable and respond with faster timescales. 3) We
propose a viable implementation for a negative feedback
architecture involving three and four genes.

Section II introduces artificial gene networks and our
categorization of different interconnections; our proposed
negative and positive feedback regulation is numerically
analyzed. In Section III we describe a synthetic gene network
implementation of a negative feedback scheme and numeri-
cally analyze the corresponding performance.

II. FEEDBACK ARCHITECTURES TO REGULATE
PRODUCTION RATES IN SYNTHETIC GENE NETWORKS

A. Artificial gene networks

Here we introduce artificial in vitro gene networks (trans-
criptional circuits) [3], with the support of Figure 1. In-
teractions among nucleic acids (DNA and RNA) can be
programmed by choosing their sequences (ATCG); strand
domains (subsequences of bases) having a particular func-
tion, Figure 1 (a), are identified with a specific color (once
domain interactions are chosen, automated software tools
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Fig. 1: (a) Domain representation of nucleic acids and branch
migration (b) On/off state of genelets (c) RNA-mediated
repression (d) RNA-mediated activation.

can be used to find optimal sequences [10]). The arrow on
every strand represented in Figure 1 represents the 5’ end.
Reactions in nucleic acid systems occur by hybridization
(two single stranded, complementary nucleic acids bind to
form a double stranded complex) and by toehold-mediated
branch migration [13], exemplified in Figure 1 (a): species A
and B interact through the exposed pink domain and switch
to a new, thermodynamically more favorable configuration,
creating species D and C. The reaction speed is determined
by the length of the toehold domain and is typically tunable
in the range 10-10%/M/s for 1-8 bases toeholds.

Figure 1 (b) introduces artificial genelets; synthetic DNA
templates are copied (transcribed) into RNA using T7 RNA
polymerase (RNAP); if the RNAP binding region, called pro-
moter, is incomplete (partially single stranded), the genelet
is off (T*). When the double stranded region is reformed
by the appropriate DNA activating strand, the genelet is on
(T) and RNA output R is produced. The total amount of a
genelet is constant, i.e. [T] + [T*] = [T*!]. We assume the
enzyme operates in a linear regime, thus R is produced at
rate (: TER + T. Output R can be used downstream at
a rate k, for instance to interact with other RNA species in
circuit dynamics or to form nanostructures [7].

In the next paragraphs, we describe repression and activa-
tion of genelets with a set of aggregate reactions; we obtain
intuitive models that bear relevance to general molecular
networks. Detailed models are in Section III.

In Figure 1 (c) we show how a genelet can be repressed
by an RNA species R. This pathway is at the basis of our
negative feedback circuits. By design, R displaces part of the
promoter in the activating strand through toehold-mediated
branch migration: R+ T — T*, where ¢ is proportional to the
length of the toehold domain (cyan domain). We lump the
species in the dashed box into species T*. The inactive gene
T* reverts at rate « to its active form T thanks to the action
of RNase H, an enzyme which degrades RNA in RNA/DNA
duplexes; R is degraded and the activating strand binds again
to the template forming T*.

In Figure 1 (d) we show how a genelet can be activated
by an RNA species R. This pathway is at the basis of
our positive feedback designs. In this case, species T*
(dashed box) is comprised of the inactive genelet and a
DNA inhibitor-activator complex (the activating strand is
sequestered by design). Again, by suitable domain design,
R releases the activating—strand through toehold (violet do-
main) mediated displacement: thus, T* is converted into T
with rate § (proportional to the toehold length). Now two
species coexist: active template T and the complex R-(DNA
inhibiting strand). Again, the active gene T reverts to its
inactive form T* at rate «, thanks to the action of RNase H,
which releases the inactivating DNA strand.

B. Output interconnection for n genes
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Fig. 2: Output connection schemes with n genes: circles represent
genes, triangles represent their RNA outputs. (a) single product, (b)
neighbor, (c) handshake.

We consider a set of n genelets and different interaction
scenarios. We say that genelets are interconnected when their
RNA outputs bind to form one or more products.

A single product interconnection occurs when a single
RNA complex (for instance, a large nanostructure) is formed
from the simultaneous interaction of all RNA species, as
shown in the scheme of Figure 2 (a).

A network of genelets may be designed to produce dif-
ferent subcomponents, that may later assemble into a larger
product. In this scenario, we can take two extreme cases: 1)
Each RNA participates in at most two subcomponents: we
identify this case as a neighbor interconnection, as shown
in Figure 2 (b); 2) Each RNA participates in the creation of
n — 1 subcomponents: we identify this case as a handshake
interconnection, as shown in Figure 2 (c).

We note that in these three cases, all RNA outputs are
used in the same number of complexes. Thus, we would like
them to be produced and degraded at comparable rates, given
that their downstream utilization is the same. We introduce
feedback in these circuits, to compensate imbalances in the



concentration of templates and match the transcription rate
of the RNA outputs. We will present architectures based on
negative and positive feedback, which scale up previously
proposed two—gene networks [11], [12].

In the following, using mass action kinetics we derive
ordinary differential equation (ODE) models for the different
interconnection cases above. We use the MATLAB ode23
routine to solve the nonlinear ODEs. We focus on n = 3
genes: in this case, the neighbor and handshake connection
coincide; we consider n = 4 for the negative feedback
architecture.

C. Parameters

Here we report the parameter values used in the numerical
analysis that follows. Parameters were chosen consisten-
tly with the literature to represent synthetic gene network
dynamics. For the handshake/neighbor connection we used
ki; = 2-10% /M/s and for single product connection k =
6 - 103/M/s. Negative feedback rates were §; = 5 - 103 /M/s,
positive feedback rates ¢;; = 50 /M/s. In all cases a; =
3-107* /s, B; = 1-1072 /s. The total genelets amounts
are: [T'] = 100 nM, [T*] = 200 nM, [T] = 300 nM;
[T%{°'] = 150 nM for the 4 genes simulations.
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Fig. 3: Handshake/neighbor interconnection for n = 3, (a) Nega-
tive feedback, (b) Positive feedback

D. Negative feedback architectures

Negative feedback is implemented as follows: when an
RNA output species is in excess relative to the effectively
used amount (i.e. RNA output bound to other RNA species
to form a product), it down-regulates its own production rate.
Inactive genes T} spontaneously revert to the active state at
rate a;, TF X T; and [T°"] = [Tj] + [T;] (see Section II-A).
Negative feedback occurs by self-repression: R; + T; % T,
where ¢; is the strength of the negative feedback. Regardless
of the output interconnection the template dynamics are:

d[T;]

dt

1) Single product: a single product P is produced by the

simultaneous interaction of n RNA outputs: > | R; = P:

= a; ([T{*"] = [Ti]) = 6 [R][T3], i=1,...,n (1)

= [T - R -k TR, S =k TR
e
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Fig. 4: Simulations: single product, negative autoregulation.

Figure 4 shows the numerical solution to the ODEs
for n = 3 and n = 4. Even though we have different
total amounts of genes, the flux mismatches (bottom right
panel), namely the differences in absolute value between
any two production rates, considerably reduce with a fast
time response. The single product interconnection is slower
in the four genes case; this interconnection also leads to a
significant amount of free RNA, which can be considered
waste because it is not used in the product formation.

2) Handshake and neighbor connection: each pair-wise
product Pj; is generated at rate k;;: R; + R; Mg P;; and thus

dRi] R _} : IRIR.
dt - ﬁi [Ti] - 51 [Rl] [Tl] : li [RI] [RJ],
d[PIJ] _ toty] _ *
o = ki [RillRg),  [R®] = [Ra] + [T7] + Ej [Py3].

(3)
In the handshake case i,j = 1,...,n, j # 4; in the neighbor
caset=1,...,n,j=i—1,i+1land wheni=1,1—1 =mn,



when ¢ = n, 1+ 1 = 1, to close the loop. Figure 3 (a) shows
a schematic representation for the case n = 3, when the two
connections coincide. Figure 5 shows the numerical solution
to the ODEs for n = 3 and for n = 4 in the handshake
connection case. As for the single product formation, even
though we have different total amounts of genes, the flux
mismatches (bottom right panel) are considerably reduced
with a fast time response; moreover, the response for n = 4
is faster with this kind of connection and there is much less
waste.
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Fig. 5: Simulations: negative feedback schemes.

For all the connections with negative feedback, the mi-
smatch decreases if d increases and increases if « increases,
as shown in Figures 7 (a) and (b).

E. Positive feedback architectures

Positive feedback is implemented with a cross—activation
scheme. When a reagent is in excess (i.e. it is not used in
the product formation), it increases the generation rate of
all the other reagents it is reacting with. The actlve T; is
assumed to naturally inactivate with rate o;: T; =T} and
(T4 = T3] + [T},

1) Single product: §; is the strength of the positive
feedback on gene ¢ due to all the others, k is the generation
rate of the unique product P, > | R; X P. Thus

d[T}]
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Fig. 6: Simulations: positive-feedback architectures.

The cross—activation scheme asymptotically eliminates the
flow mismatches, but the response time is much longer than
in the single product negative feedback case.

2) Handshake and neighbor connection: now J;; is the
strength of the positive feedback on gene 7 due to gene j,
Ri+ T} X T;. The generation of products Pj; occurs at rates



kij, Ri+R; kg Pj;. A scheme is shown in Figure 3 (b). Thus
d[Ti]

& =T+ S8 RICT) - m)
T m - D RRS — 320 (RIS - 1)
dPy] . o tot]

dt ki [Ri] [RJ]7 [R; Z + ; 1J :

4)
In the handshake case i,j = 1,...,n, j # 4; in the neighbor
case ¢ = 1,...,n,5 = ¢ — 1,4+ 1 and when 7 = 1,
i—1 =mn, when ¢ = n, i +1 = 1, to close the loop.
The flux mismatches decrease, but the response time is
still longer than in the negative feedback architecture. The
handshake/neighbor connection generates less waste (unused
R; species) than the single product interconnection.

For all the connections with positive feedback, the mi-
smatch increases if § increases (apart from the single product
case, when the mismatch is independent of §) and decreases
if « increases, as shown in Figures 7 (c) and (d).
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F. Negative and positive feedback: a comparison

Negative feedback schemes have a fast time response, are
easy to scale up (each gene controls its own production
rate) and, loosely speaking, stabilize the system. However,
negative feedback does not enhance the output production
rate: the overall output flux maintains low levels. Positive
feedback schemes have a slower response time, are more
difficult to scale up (each gene is controlled by others,
thus increasing the number of genes involved leads to a
growing number of interactions) and the feedback constant
must be kept very small to avoid unbounded increase of
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Fig. 8: DNA-domain implementation of the (a) three and (b) four
genes negative feedback interconnection. Complementary domains
have the same color. Nicked T7 promoters are in dark gray,
terminator domains in light gray. The RNA output of each genelet is
designed to be complementary to its activator strand. RNA species
are pairwise complementary.

product. However, positive feedback maximizes the output
flux. Thus, negative feedback is the best control strategy if
genes are not highly required, to avoid the accumulation of
potentially harmful excess of unused reagents; while positive
feedback is better for genes in high demand, to maximize
the production rate [14]. The output production fluxes can
be matched also when we use both positive and negative
feedback. With simulations, we can see that the system shows
an intermediate behavior, which is more similar to pure
negative or positive feedback, depending on which feedback
constant ¢ is the strongest.

III. NEGATIVE FEEDBACK: A NEW MODEL FOR A VIABLE
DNA STRAND IMPLEMENTATION

Here we describe a possible DNA implementation for our
three or four genes handshake negative feedback architecture,
with artificial gene networks (transcriptional circuits) [3].
The working principles of these circuits were described in
Section II-A. Referring to Figure 8, domains of the genes are
represented as sequences of bases with different colors. RNA
outputs of each gene are not shown, but their domains are
identical to the transcribed regions of the genes (downstream
of the promoter, dark gray). Domains with the same color
are complementary and are expected to bind. The domain
annotated as t;a; on Ty, for instance, is an activator strand
which can be displaced by the RNA output R;, which
has the domain t{a). Output RNAs R; are designed to be
complementary to their own activator strands and pairwise
complementary to one another, so that they can bind to form
products. Once R; and R; form Pjj, the complex is inert
and all the regulatory domains for negative auto-regulation
are covered. This design is an extension of that proposed
n [11] for a two-gene interconnection. This choice of the
domains introduces, in addition to the desired self—inhibition
loops, an undesired binding between T; and R;. The resulting
complex can be considered as another off state of the gene:
the complex obtained is a substrate for RNaseH and the RNA



strand is degraded by the enzyme, releasing the activating
strand.

We built a detailed model of this system, based on the
expected domain interactions. Each gene T; can have three
possible states: the on state, in which activator and template
are bound and form the complex T;A;; the off state given
by free T;; the off state represented by R; bound to T; (thus
forming T;R;). To be sure that the inhibition rate is the same
for all the genes, it is better to place the self—inhibition
domains t{ a/ in the same position inside the strand; for
example, first (near the 3’ end) or last (near the 5’ end)
domain (in Figure 8, self-inhibition domains are at the 3’
end). In the case of more than two genes, when the complex
RiR; forms, we cannot avoid the formation of loops or
torsions for some values of i, j. For example, referring to
Figure 8, the Ry and R; complex (binding of the domains
indexed 1 and 2) occurs by formation of a loop in the domain
agts on Rs. It is evident that it is possible to form a complex
between R, and R,, iff, going through one strand in the
arrow direction (from 5° to 3’) you find at first t/ a/ and
then a, t,, while going through the other strand you find
at first t/, a/, and then ay, t,,. Placing all the self-inhibition
domains t a/ either at the beginning or at the end of the
RNA strand assures that this condition is satisfied and thus
the binding can successfully occur. So, in the n genes case,
there can be 2 - ((n — 1)) different domain level designs
for a DNA strand implementation of the negative feedback
architecture for rate—regulation: the self—inhibition domains
can be in the first position inside the strand or in the last; in
each of these 2 cases, the possible permutations of the other
segments are ((n — 1)!)™ because there are (n — 1)! possible
different configurations in each of the n strands.

Including all reactions occurring in the system [11], we
can build the following ODEs, where 1 = 1,...,n,

d[T;
% = —koya [Ti][Ai] + ki mya; [Ri][Ts - A
— krym; [Ry][Ti] + ) _ keatn;; [RNaseH - R; - Ty]
j
d[A;
Eit = —kra; [Ti][Ai] = kr;a; [Ri][Ai] + keatr; [RNaseH - Ri - Aj]
d[Ri]
& XJ: kg ry [Ri] [Ry] + kg mya; [Ra] [Ts - A
— kg, 1; [Ri][Tj] — kr;a; [Ri][Ai] + keatoni[RNAP - T - Aj]
+ Keatorr, [RNAP - Ti] + > keatorr;; [RNAP - R; - Ty]
j
d[Ri - Ry]
g~ Thur[Ri[Ry]
d[R; - T;
% = +kRjTi [Rj”Ti] — kcatHj; [RNaseH ‘R - Ti].

Enzyme species are not modeled as separate states
in our analysis and we assume that the Michaelis—
Menten quasi—steady—state approximation holds. For exam-
ple, for the RNAP reactions, we define P = 1 +
S, % +30, % +2 54 k[]\/R;’Oi;[:‘L and we find that
[RNAP . Ti . AJ = [RNAPtOt} [Tl . Al]/P . kMONi' We can
derive similar expressions for other terms involving enzyme
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Fig. 9: Transcriptional circuit implementation, negative feedback
scheme; ODE solutions for 3 and 4 genes.

species. The system is solved numerically for the cases of
three and four genes, with parameters taken from [2]. Nume-
rical solutions are shown in Figure 9; the negative feedback
rate-regulation appears effective as well. This more complete
and accurate model can be experimentally implemented and
tested by means of transcriptional circuits.

IV. CONCLUSIONS

We considered different feedback architectures to regulate
the production of RNA species in a synthetic n—gene system,
where these species interact with one another to produce
one or more complexes. This problem is relevant in the
context of in vitro synthetic biology and nanotechnology,
where synthetic gene networks are useful as circuits pro-
ducing components that assemble in nanostructures or that
orchestrate dynamic behaviors for molecular computations.
Our numerical analysis for n = 3 and n = 4 revealed that ne-
gative autoregulation guarantees better scalability and faster
response than positive feedback based architectures. Finally,
we analyzed the performance of negative—autoregulated three
and four gene systems, proposing a viable DNA strand
implementation. Our results provide useful predictions for
the future experimental construction of these in vitro genetic
networks.
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