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Flight control in a flapping-wing
fruit fly simulator
Sawyer B. Fuller, Michael Epstein, Stephen Waydo,
Will B. Dickson, Andrew D. Straw, Michael H. Dickinson, and
Richard M. Murray

A feedback controller closes the loop from vision to wing motion to
stabilize forward flight in a simulation of Drosophila Melanogaster.

Flying a small autonomous aerial robot across the room without
hitting a wall or lampshade is an example of an ‘information-
rich’ control problem. Control system design and analysis tools
are well suited to high-speed dynamics and small numbers of
sensors. An example is a robot arm, which might only need a sin-
gle angle sensor in each joint. But when the task is both dynamic
and data-intensive—like our fast flying robot which might navi-
gate using a video stream from a camera—the solution is not as
clear.

Technologies like radar, ladar, or global positioning systems
(GPS) can help with avoiding obstacles, but they are too heavy or
use too much power. And GPS does not even work indoors. The
robot must carry lightweight, efficient sensors. What remains is
a suite of sensors quite similar to what flies already use: cameras
for vision (eyes); rate gyros (halteres, which are beating vestigial
wings that sense rotation); anemometers for wind speed (anten-
nae); and perhaps a microphone or a smell sensor (antannae).
We know flies primarily use vision for navigation (most of their
brains are devoted to that task), yet they are still quick and ag-
ile, so it seems reasonable to find out how they have solved the
problem.

Much has been learned about fly vision, aerodynamics, and
so on by studying separate systems in isolation. But to under-
stand how they all work together requires being able to close the
feedback loop. Will Dickson and Andrew Straw have created a
fruit fly simulator that models the fly’s aerodynamics and vision
in a virtual world so that controllers can be hypothesized and
tested.1 The simulator’s flapping wing kinematics are based on
data from high-speed video sequences of flies in flight.2 Aerody-
namic forces and moments are verified against a dynamically-
scaled robotic model in a tow tank. Vision is rendered in 3D and
projected onto a faceted visual sphere like the fly’s eye (Figure 1).

Figure 1. The simulator environment with the fly (top) and the world
as seen by the faceted view of the fly (bottom).

Here we stabilize forward flight using a controller that
takes optic flow patterns as input and produces control com-
mands that are perturbations of wing motions from baseline
kinematics.3 Our approach is traditional for controls: a sensor
estimates the state of the system, an error is calculated, and a
control signal is produced.

Emulating what we know about the fly’s visual processing,
velocity estimation is performed using Hassenstein-Reichardt
elementary motion detectors (EMDs) and experienced-derived
matched filters. Behavioral studies on flies suggest that EMDs,
which perform a delay-and-correlate operation between pairs
of visual elements, measure optic flow.4 The velocity vector is
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estimated by correlating the current EMD response with the
EMD response to known velocity vectors. These known re-
sponse fields, known as matched filters, are shown in Figure 2
and resemble the optic flow sensitivity patterns observed in tan-
gential cells in flies.5

We focus on controlling the fly’s longitudinal motion: forward
speed, vertical speed and position, pitch angle, and pitch rate.
Pitch torque is induced by by changing the mean stroke posi-
tion and thrust is varied by changing stroke frequency. Forward
motion is induced by pitching forward like a helicopter. Wing
forces and moments are averaged over a complete wing stroke
and linearized around an operating point of 0.25m/sec. A fast in-
ner loop controls the pitch angle using a proportional-derivative
(PD) controller and an outer integral controller controls forward
velocity. Implemented in the simulator, the fly’s response oscil-
lates briefly before settling near the commanded steady-state for-
ward velocity (see Figure 3) as desired.

Controlling insect-sized robots through unknown environ-
ments presents a number of engineering challenges that will re-

Figure 2. The response of the elementary motion detectors (EMDs) to
the forward (top) and vertical (bottom) motion of the fly. Each arrow
represents the response of the EMD, drawn along the line connecting
adjacent visual elements. The front and rear hemispheres appear dif-
ferent in the forward velocity case because the arrows are generally
pointing upward versus downward.

Figure 3. The step response of the fly’s controller oscillates for about a
second before stabilizing near the desired forward velocity.

quire new technology and finesse. Among these is how to ex-
tract useful information from the stream of visual information
to control rapid dynamics of the robot in a computationally-
and energy-efficient manner. Flies are case studies in how this
can be accomplished, and they use the same sensors that might
be technologically possible on flying robots. We’ve designed a
controller that emulates what is known about flies and makes
guesses where there are gaps. The controller uses internal esti-
mates of tangible quantities such as ‘forward velocity,’ but the fly
may not encode things in this way and future work will attempt
to determine the validity of this assumption. Our controller is
an example of how simulation enables sophisticated hypotheses
to be generated and compared to actual fly behavior. Ultimately,
we expect the effort to lead to understanding how the fly imple-
ments its controller on the neuronal substrate and an implemen-
tation as a low-power, parallel circuit on a flying robot.
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