
Variable Elimination for Scalable Receding Horizon Temporal Logic
Planning

Mattias Fält 1, Vasumathi Raman2, Richard M. Murray3

Abstract— Correct-by-construction synthesis of high-level re-

active control relies on the use of formal methods to generate

controllers with provable guarantees on their behavior. While

this approach has been successfully applied to a wide range of

systems and environments, it scales poorly with the increasing

size of the environment. A receding horizon framework was

recently proposed to mitigate this computational blowup, by

decomposing the global control problem into several tractable

subproblems. The existence of a global controller is ensured

through symbolic checks of the specification, and local con-

trollers are synthesized when needed, using the current state

of the environment as the initial condition. This reduces the

size of the synthesized strategy, but does not provide much

improvement for problems with large dynamic environments,

because the large number of possible global environment

strategies. Ad-hoc methods to locally restrict the environment

have previously been used, at the risk of losing correctness.

This paper presents a method of reducing specifications by

eliminating locally redundant variables, while maintaining the

correctness of controllers. We demonstrate the method using an

autonomous car example, on problem sizes that were previously

unsolvable due to the number of variables in the environment.

We also demonstrate how the reduced specifications can be

used to identify opportunities for reusing the synthesized local

controllers.

I. INTRODUCTION

As autonomous systems are used in solving more and more
problems of increasing complexity it is important to be able
to verify their correctness. We are interested in complex tasks
where safety is critical, such as aircraft systems, autonomous
cars and space missions. It is essential to have formal and
unambiguous specifications of the problems to be able to
guarantee the desired system behavior.

Linear Temporal Logic (LTL) has proven effective for
correct-by-construction synthesis of controllers for a wide
range of applications [4], [6], [10], [8]. To apply these
specifications to real systems, the system and environment
are usually represented by a discrete abstraction over which
the problem can be specified. It is desirable to be able
to automatically create provably correct reactive controllers
from these specifications, and several methods have been
presented on how to do so. In particular, efficient methods
have been developed for the Generalized Reactivity (GR(1))
fragment of the LTL language. These methods are based on
finding a strategy to a two player game between the system

1 Mattias Fält is with the Department of Automatic Control, Lund
University, SE-221 00 Lund, Sweden faldt.mattias@gmail.com

2,3 Vasumathi Raman and Richard M. Murray are with
the Control and Dynamical Systems department of California
Institute of Technology, Pasadena, CA vasu@caltech.edu,

murray@cds.caltech.edu

and environment. If successful, a correct-by-construction
controller is generated that satisfies the specification on the
discrete abstraction. A continuous controller can then be used
to implement this strategy on the real system. However, as
the problems grow in size, the curse of dimensionality sets
in and it becomes increasingly intractable to generate these
reactive strategies.

Receding horizon control has been successfully been used
in many other areas where solving the full problem at
once is too hard. The method is shown to be effective
not only in terms of complexity, but also in robustness
and stability. A receding horizon framework was therefore
recently introduced to take advantage of these properties in
the temporal logic setting [11]. The framework relies on
splitting the problem into several short horizon problems
by partitioning the state-space. Realizability of the global
problem can be determined through symbolic checks of the
specifications, and the extraction of controllers for each of
the smaller problems postponed until the respective partitions
are reached.

The gain from this is twofold; the shorter problems limits
the number of events that have to be considered before the
next horizon is reached, and the controller extraction can
be restricted to the current state, ignoring extraction for the
cases that never occur. Even though this method is effective
at reducing the complexity of synthesis, it is not enough
in the presence of large environments with many possible
actions. Although the extraction of the controller can be
restricted to the choices the system will take towards its
goal, all possible actions of the environment still have to
be considered at every step. This results in a computational
blowup when the number of environment variables increases.

However, in each of the short horizon problems, usually
only a small subset of the environment variables is actually
interesting. This observation was previously addressed by
manually restricting the parts of the environment that were
deemed irrelevant in each of the short horizon problems.
This ad-hoc method results in problems of a manageable
size, but the guarantee of correctness is lost, as it is easy
to accidentally restrict the environment in ways that over-
simplify the problem.

Previous work on reducing specifications has resulted in
tools to find unhelpful parts of a specification and min-
imally sufficient specifications. The authors of [2] define
a notion of “helpful” signals, and iteratively remove un-
helpful ones. However, their approach relies on expensive
iterated realizability tests, which we circumvent in this paper.
The authors in [5] use model-based diagnosis to remove

Submitted, 2015 American Control Conference (ACC)
http://www.cds.caltech.edu/~murray/papers/frm15-acc.html

irrelevant output signals from the specification; these are
output signals that can be set arbitrarily without affecting
the unrealizability of the specification. Their approach also
uses repeated realizability checks, and is unhelpful in the
case of realizable specifications. Moreover, these approaches
do not use any domain-specific knowledge to restrict the
specifications, unlike that which we present in this paper.

In this paper, we present an algorithm that automatically
identifies variables that can be ignored in each short horizon
problems. We also show how to modify the specification
to ignore these variables without artificially restricting the
environment. This enables us to solve problems that were
previously unsolvable in a correct-by-construction manner.
We demonstrate the method on an autonomous car example
with a dynamic environment. We also demonstrate how the
reduced specifications can be used to identify cases in which
several short horizon problems are practically identical. This
was not possible when the problems were defined over all
variables, and it enables the possibility of reusing previously
resynthesized controllers.

II. PRELIMINARIES

A. Linear Temporal Logic

Syntax: Given a set of atomic propositions AP , boolean
operators for negation (¬), conjunction (^), and disjunction
(_), and temporal operators next (#), always (⇤) and
eventually (3), an LTL formula is defined by the recursive
grammar:

' ::= ⇡ | ¬' | ' _ ' | #' | ⇤' | 3'.

Semantics: LTL is interpreted over sequences of truth
assignments � : N! 2AP . We say that a truth assignment �
satisfies ⇡ 2 AP at time t (denoted (�, t) |= ⇡) if ⇡ 2 �(t),
i.e. � assigns ⇡ to True at time t. We say (�, t) 6|= ⇡ if ⇡
is assigned False at time t, i.e. ⇡ 62 �(t). The semantics
of an LTL formula is then defined recursively according to
the following rules

• (�, t) |= ¬' iff (�, t) 6|= '
• (�, t) |= ' ^ iff (�, t) |= ' and (�, t) |=
• (�, t) |= ' _ iff (�, t) |= ¬(¬' ^ ¬)
• (�, t) |= #' iff (�, t+ 1) |= '
• (�, t) |= 3' iff 9t0 � t s.t (�, t0) |= '
• (�, t) |= ⇤' iff (�, t) |= ¬3(¬')
Note that in this paper, we omit the definition of the until

operator. The reader is referred to [3] for the full syntax and
semantics of LTL.

B. Reactive Synthesis

We let the system and environment state be characterised
by a finite number of atomic propositions (also called
boolean variables). We say that X and Y are the sets of
variables that the system and environment can control respec-
tively, and let the the state of the system and environment
at any time step be described by a truth assignment tuple
(x, y) 2 X ⇥ Y where X = 2X and Y = 2Y . These states
can be the result of discretization as described in [7], [11]

where the variables X and Y are propositions that abstract
a continuous state space. Given an LTL specification ', the
reactive synthesis problem is to find a finite-state strategy for
the system that, at each time t, given xt 2 X and yt 2 Y ,
provides xt+1 2 X , such that the resulting infinite sequence
of truth assignments � = (x0, y0), (x1, y1), ... satisfies ' at
time 0 (i.e. (�, 0) |= ').

Reactive synthesis for a general LTL specification is
2EXPTIME-complete [9] hard, but [1] presents a tractable al-
gorithm for the Generalized Reactivity(1) (GR(1)) fragment,
which consists of specifications of the form

⇣

 init^⇤ e^
^

i2I
f

⇤3 f,i

⌘

=)
⇣

^

i2I
s

⇤ s,i^
^

i2I
g

⇤3 g,i

⌘

,

(1)
where:

• e is a propositional formula over X ,Y and #X , where
#AP = {#⇡ | ⇡ 2 AP}

• s,i is a propositional formula over X ,Y , #X and #Y
• init, f,i and g,i are propositional formulas over X

and Y .
The left hand side of this expression is referred to as the

assumptions, and the right as the guarantees part. It is based
on this form that the synthesis problem for the receding
horizon framework is defined [10].

C. Receding Horizon Temporal Logic Planning
To guarantee that it will still be possible to complete the

task when solving the problem using a receding horizon, and
thus only looking a few steps ahead at a time, additional
constraints on the execution may be required. Formally, for
each of the progress properties g,i, the required parts are
as follows:

• A partitioning of X ⇥ Y = Wi
0 [Wi

1 [... [Wi
p, such

that a state (x, y) 2 Wi
0 only if (x, y) ✏ g,i, and

partial ordering (�
g,i

) of these partitions, such that
Wi

0 � g,i

Wi
j for all j.

• A mapping F i : {Wi
0...,Wi

p}! {Wi
0...,Wi

p} such that
F i(Wi

j) � g,i

Wi
j .

• A propositional formula � of variables from X ,Y such
that init =) � is True.

The partial ordering of the partitions represents a measure of
closeness to the progress property g,i, while the mapping
F i decides where to set the short horizon goal while ensuring
that the system gets closer to fulfilling its progress property
 g,i. Lastly, the invariant represents the additional constraints
required to ensure realizability when switching between short
horizon problems. Formally, the following sufficient short
horizon specifications was proposed in Wongpiromsarn et al.
[11]:

 i
j

.
=

⇣

(⌫ 2Wi
j) ^ � ^⇤ e ^

^

i2I
f

⇤3 f,i

⌘

(2)

=)
⇣

^

i2I
s

⇤ s,i ^⇤� ^3
�

⌫ 2 F i
�

Wi
j

��

⌘

.

If the specification above can be guaranteed for all partitions
Wi

j , all progress properties g,i, and for a common �, then
a controller for the full specification (1) can be constructed
by only solving these short horizon problems [10].

III. PROBLEM

A. Complexity of receding horizon problems
The receding horizon method proposed by [11] enables

solving a large problem in steps by dividing it into sub prob-
lems and synthesizing a controller for each sub problem first
when that problem is encountered. This method reduces the
complexity of synthesizing a controller since the initial state
when entering a sub problem can be taken into consideration
when synthesizing a controller for this part. This effectively
reduces the number of configurations that has to be taken
into consideration in each controller and the number of states
in the controllers is greatly reduced by short horizons. For
example, if a general problem has |Y| system variables and
|X | environment variables, a controller might have up to
2|Y||X | states. But if the initial position is known and the
possible transitions for the environment is limited in each
step by NE and a solution can be guaranteed to be reached
in N transitions, the maximum size of a controller can be
bounded by (NE)N . However, if the problem is solved using
the receding horizon method, with a total of NH horizons and
a maximum number of steps M in each horizon, the upper
bound on the number of states in all controllers is reduced to
NH ·(NE)M . This is a great reduction in complexity if M is
smaller than N . It might be unintuitive that the environment
and its behavior would be so important to the complexity
of the controller. The reason why this might be the case is
because in each step, the environment may take any of NE

transitions, all of which have to be included in a controller,
however, we only need to include one of the valid states that
the system can go to in each step.

B. Previous approach
Although the receding horizon method is effective in re-

ducing the total size of controllers (and therefore synthesis),
there is still a problem with the complexity when NE is large.
It is often the case that several environment actions will result
in the same action from the system. When the horizons are
short, it could even be that some environment variables do
not have to affect the system at all within several of the
horizons, (this is especially true in applications in robotics
and path planning where obstacles and environment actions
in one location are almost unrelated to actions in another
location). In previous examples, such as the one presented in
Wongpiromsarn et al. [10], this was used to simplify each of
the short horizon specifications. However, this simplification
was done manually by including only the parts of the full
specification that the user deemed relevant in each of the
horizons. This is an ad-hoc approach, and the correctness
of the solution can no longer be guaranteed. We therefore
propose a method of reducing the number of variables in
the short horizon specification while maintaining guaranteed
correctness of the controller.

C. Reduction through variable elimination
The idea of the variable elimination method proposed in

this paper is that only a fraction of the environment variables
are relevant within each of the short horizon problems. If
each of the problems can be solved by only considering
Ne instead of NE variables, the complexity is reduced to
NH ·(Ne)M ⌧ NH ·(NE)M . This reduction can move a large
class of previously unsolvable correct-by-construction prob-
lems into the realm of computationally tractable problems.
The complexity of controllers no longer have to increase as
fast when adding problems together with partially disjoint
environments.

IV. APPROACH

A. Variable Reduction
Let X = {e1, e2, ..., en1}, Y = {s1, s2, ..., sn2} be the set

of system and environment variables respectively. We denote
environment inputs by x 2 2X = X and system outputs by
y 2 2Y = Y , and a state is a truth assignment to both system
and environment variables, i.e. (x, y).

Let the short horizon specification be

�ij = 'e ! 's (3)
= (init ^ � ^⇤'e

s ^3'e
l)!

�

⇤� ^⇤'s
s ^3's

p

�

,

where the specification 's
s is of the form

'(x, x0, y, y0) : X2 ⇥ Y 2 ! {0, 1},

'e
s is of the form

'(X,X 0, Y) : X2 ⇥ Y ! {0, 1},

and 'e
l , �, '̂init are of the form

'(X,Y) : X ⇥ Y ! {0, 1}.

Let R : W ! 2W and F : W ! W , where W,F(W) 2
R(W) and W = {X⇥Yj}j2[1,k] where {Y1, ..., Yk} is some
partitioning of the space Y .

Definition 1: Let a Boolean variable xi be in the support
of a function f(x1, ..., xn), iff

f(x1, ..., xi = 0, ..., xn) 6= f(x1, ..., xi = 1, ..., xn).
Definition 2: The existential abstraction of a Boolean

function f with respect to Boolean variable xi is defined
as

9x
i

f = f |x
i

=0 _ f |x
i

=1 .

Existential abstraction with respect to sets of Boolean
variables is defined naturally through iteration over variables
in the set.

Definition 3: Let the supporting set of a function f be the
set of variables in the support of f , and the non-supporting
set be the set variables not in the support of f . We denote
this as S(f) and NS(f) respectively.

Definition 4: We let YR(W
j

) be the domain
S

Yi for i
such that Wi 2 R(Wj), and denote a function f restricted
to X ⇥ YR(W

j

) as f̃ = f |X⇥YR(W
j

)
(where the index j is

understood from the context).

We want to reduce the specification to only include relevant
variables on the current horizon. After restricting the speci-
fications to the current plan set R(Wj), we define the sets

X s,s
ns =

n

ei 2 X
�

�

�

ei, e
0
i 2 NS

⇣

'̃s
s ^ �̃

⌘o

,

X s,p
ns =

�

ei 2 X
�

�ei 2 NS
�

'̃s
p

�

of variables that do not affect the two guarantee parts of
the specification. We let the intersection of these sets be
Xns = X s,s

ns \X s,p
ns . These are the variables that we want to

remove from the specifications. We then denote a function f̃
existentially conditioned with respect to Xns as f̂ = 9X

ns

f̃
and let the resulting space, the powerset of variables in
X\(Xus), be denoted Xs.

It is clear that existentially conditioning non-supporting
variables does not change a function in the sense that
f(Xs,Xns) , 9X

ns

f(Xs). We can therefore conclude that
'̂s
s = 's

s, '̂s
p = 's

p and �̂ = � on the subspaces
X2

s ⇥ Y 2
R(W

j

) and Xs ⇥ YR(W
j

) respectively.
Definition 5: We define the reduced short horizon prob-

lem as

�̂ij = '̂e ! '̂s (4)

=
⇣

'̂init ^ �̂ ^⇤'̂e
s ^3'̂e

l

⌘

!
⇣

⇤�̂ ^⇤'̂s
s ^3'̂s

p

⌘

,

where 's
p = (⌫ 2 F(Wi

j)), 'init = (⌫ 2Wi
j).

Lemma 1: For any infinite sequence of states � = �0�1...,
with �i = ((xs,i, xns,i), yi) 2 (Xs ⇥Xns)⇥ YR(W

j

), if we
define �s = �s,0�s,1... with �s,i = (xs,i, yi) then

� ✏ ('init ^ � ^⇤'e
s ^3'e

l)

=) �s ✏
⇣

'̂init ^ �̂ ^⇤'̂e
s ^3'̂e

l

⌘

Proof: From the definition of �̂ we have that �̂ = 9X
s

�̃
with �̃ = � on the subspace X ⇥ YR(W

j

). If �(�i) =
�((xs,i, xns,i), yi) = 1 then it follows from the definition of
existential abstraction that �̂(�s,i) = �̂(xs,i, yi) = 1. Anal-
ogously, the same applies to 'init, '

e
s, '

e
l . Thus, since any

state �i or transition (�i,�i+1) that satisfies 'init,�,'e
s,'

e
l

results in the state �s,i or transition (�s,i,�s,i+1) that
satisfies '̂init, �̂, '̂e

s, '̂
e
l , the implication for the sequences

follows.
Lemma 2: Given an infinite sequence of states �s =

�s,0�s,1..., with �s,i = (xs,i, yi) 2 Xs ⇥ YR(W
j

)

�s ✏
⇣

⇤�̂ ^⇤'̂s
s ^3'̂s

p

⌘

=) � ✏
�

⇤� ^⇤' ^3's
p

�

for any sequence � = �0�1... with �i = ((xs,i, xns,i), yi) 2
X ⇥ Y .

Proof: Given a state �s,i = (xs,i, yi) ✏ '̂s
p, from the

definition of existential abstraction there has to exist one
evaluation xns,i 2 Xns such that ((xs,i, xns,i), yi) ✏ '̃s

p. But
since xns,i 2 Xns, all corresponding variables ei must be in
the non-supporting set X s,p

ns , and thus '̂s
p((xs,i, xns,i), yi) =

'̃s
p((xs,i, x

0

ns,i), yi) for any x
0

ns,i. Since '̃s
p = 's

s on
X ⇥ YR(W

j

) we have shown that (xs,i, yi) ✏ '̂s
p)

((xs,i, xns,i), yi) ✏ 's
p for any xns,i. The same argument

can be made for the conjunction '̂s
s^ �̂, and the implication

is therefore true for the sequences �s and �.
Theorem 1: Realizability of the reduced short horizon

problem (4) implies realizability of the short horizon prob-
lem (3). Moreover, a strategy for the reduced short horizon
problem can be used as a strategy for the short horizon
problem.

Proof: If the reduced short horizon problem (4) is
realizable then there exists a strategy g : X2

s ⇥ YR(W
j

) !
YR(W

j

) (or gi : Xs⇥YR(W
j

) ! YR(W
j

) for the initial state)
that given inputs x will generate an infinite sequence of states
�s = ((x0, y0), (x1, y1), ... with yi+1 = g(xs,i, xs,i+1, yi)
such that �s satisfies equation (4). We now show how this
strategy can be used to satisfy equation (3). For an arbitrary
set of states xi = (xs,i, xns,i) 2 Xs⇥Xns = X , xi+1 2 X ,
yi 2 Y , define the strategy h : X2 ⇥ Y ! YR(W

j

) as

h(xi, xi+1, yi) = g(xs,i, xs,i+1, yi)

if yi 2 YR(W
j

), and arbitrarily otherwise. This strategy will
generate a sequence � = �0�1... of states. Assume first that
the sequence � 6✏ 'e, then 'e ! 's imposes no restrictions
and � ✏ 'e ! 's. If � ✏ 'e, then since 'init = (⌫ 2 Wi

j)
we have that y0 2 YR(W

j

) and since h is a function to
YR(W

j

), we conclude that yi 2 YR(W
j

) for all i. Through
Lemma 1 it follows that �s ✏ '̂e, and because g is a strategy
for the reduced short horizon specification, it follows that
�s ✏ '̂s. It is therefore clear from Lemma 2 that � ✏ 's,
and we have thus shown that � ✏ 'e ! 's. This means
that h is a strategy for the short horizon problem (3) and
because this strategy exists we conclude that the problem is
realizable.

V. APPLICATION TO PROBLEM CLASSIFICATION

It is reasonable to believe that several short horizon prob-
lems might be of very similar structure. However, before any
reduction of the short horizon problems are done, this is very
hard to check and to take advantage of. Using the method
proposed in this paper, each of the problems �ij , previously
defined on X⇥Y will now be defined on the smaller subset
Xs ⇥ YR(W

j

) and thus with fewer variables S = Xs [Y .
Given two such problems �̂1, �̂2 defined on S1,S2, if a
mapping M : S1 ! S2 exists such that f1 �M = f2 for all
f 2

n

('̂init ^ �̂), '̂e
s, '̂

e
l , (�̂ ^ '̂s

s), '̂
s
p

o

, then a controller

g1 for �̂1 can be used as a controller g2 = g1 �M for
�̂2. Finding such a mapping M is in general hard, but we
have implemented a method in the special case where a
bijection M exists. The method relies on testing all bijections
M : S1 ! S2, and although this is in general is a very
demanding method, it proves useful in practice by reducing
the number of bijections that actually has to be tested.

1) Algorithm: We want to find the set E of categories of
short horizon problems such that for all �̂1, �̂j 2 eqi 2 E
a mapping exists such that �̂j = �̂1 � M. Let F be
the set of functions that characterizes each of the short
horizon problems F =

n

('̂init ^ �̂), '̂e
s, '̂

e
l , (�̂ ^ '̂s

s), '̂
s
p

o

.
We can then find the equivalence classes eqi through the

1: procedure PROBLEM CLASSIFICATION({�ij})
2: E {} . Found equivalence classes
3: for �this 2 {�ij} do . All short horizon problems
4: c1, ..., cn VariableClassification(�this)
5: for eq 2 E do

6: �other First(eq)
7: if |ci(�this)| 6= |ci(�other)| for any i then

8: Next eq at line 5
9: end if

10: for all orderings M = M1M2...Mn, where
Mi is a permutation of the variables in ci do

11: for f 2 F do

12: if f�
this

6= f�
other

�M then

13: Next M at line 10
14: end if

15: end for

16: Add �this to eq . Mapping M found
17: Next �this at line 3
18: end for

19: Next eq at 5. No mapping exists for this eq
20: end for

21: . � does not belong to any class eq
22: Add new eq = {�this} to E
23: end for

24: end procedure

25: procedure VARIABLE CLASSIFICATION({�})
26: c0, ..., ck {}, {}, ..., {}
27: for variable v 2 S(�) do

28: val 0
29: for set sj 2 {Xs, S(f1), S(f2), ..., S(fn)} do

30: if v 2 sj then

31: val val + 2j

32: end if

33: end for

34: Add v to class cval
35: end for

36: return c0, c1..., ck
37: end procedure

Problem Classification procedure above. There are several
reasons why this method is effective:

• We compute the supporting sets only once for each short
horizon problem and function f 2 F , which categorizes
each variable into one of 22·|F | = 210 = 1024 groups.
We then only consider mappings if the specifications
have compatible types of variables, that is equal number
of variables in each class ci.

• Instead of considering all |Xs|! · |Y|! permutations of all
variables, we consider only permutations of variables
within each class (⇧i(|ci|!)).

• We compare two functions by computing and compar-
ing their Binary Decision Diagrams (BDDs) since the
BDD of a function is unique for a fix variable ordering.
When computing f1 �M, the BDD (or a hash of the
BDD) can be saved for each permutation M and each
f 2 F for the first function �̂1 of every equivalence

class in E. It is then sufficient to compare the BDD
of f2 to all the BDDs of f1 �M, which are saved,
when looking for a mapping. This greatly reduces the
complexity, since comparing two BDDs can be done in
linear time once the BDDs are computed!

• Specifications are usually built using some algorithm.
Equivalent specifications therefore usually have corre-
sponding variables in the same locations in the spec-
ification and the first variable in the first specification
usually corresponds to the first variable in the second
specification, and so on. This fact can be used to greatly
reduce the number mappings that will be tried.

• This method could be extended to categorize variables
based on on other characteristics too. Such as if a
variable is essential for a function (ei essential if f ,
f ^ ei).

VI. RESULTS

A. Example

The proposed methods were implemented and tested in the
Temporal Logic Planning Toolbox (TuLiP) [12]. We chose
a simple problem inspired by the road example previously
used for the receding horizon framework [11]. We consider
a discrete road of width 2 with a bend. We let the length
before and after the bend be n and m. At each location of
the road there might be an obstacle O. We denote an obstacle
at distance i from the start as Oi,l, Oi,r at the left and right
location respectively. We denote the position of the car with
Xi,l and Xi,r analogously, and let the set of distances from
the start be I . There might be obstacles at any location with
a few restrictions; they may not block the road completely:
^

i2I

¬(Oi,l ^Oi,r) ^ ¬(Oi,l ^Oi+1,r) ^ ¬(Oi+1,l ^Oi,r),

they may not appear or disappear while the car is nearby:
^

i2I
k2[i�1,i+1]

(Xi,l_Xi,r)! ((Ok,l$#Ok,l) ^ (Ok,r$#Ok,r)) ,

and they cannot block the turn ¬(On�1,r^On�1,r). The goal
for the car is to get to g = Xn+m,l _Xn+m,r by starting
in init = X0,l _X0,r. It may move to adjacent squares but
not diagonally (implicitly assumed for the rest of the paper),
and it may never be in the same square as an obstacle:

^

i2I

¬ ((Xi,l ^Oi,l) _ (Xi,r ^Oi,r)) .

This system is thus defined over the variables X =
[i2I(Oi,l [Oi,r) and Y = [i2I(Xi,l [Xi,r) with the
implicit mutual exclusion over the system variables. For
the receding horizon framework we choose the partitioning
Wi as the sets 2X ⇥ 2{Xi,l

,X
i,r

}, the mapping F(Wi) =
Wmin(i+h,max(I)) where h is the horizon. Lastly, we choose
R(Wi) = {Wi,Wi+1, ...,F(Wi)}. An illustration of the
problem is seen in Figure 1.

n

m

Wi
R(Wi)F(Wi)

 init

 g

Fig. 1. Example illustrating the road example of size n=6, m=7.
init

and
g

represents the initial condition and goal of the full specification.
The figure also illustrates W

i

,F(W
i

),R(W
i

) for a specific short horizon
problem with horizon 2.

TABLE I
RESULTS FOR THE DOUBLE ROAD WITHOUT RECEDING HORIZON

FRAMEWORK

length states table size
3 163 <50000
4 698 >50000
5 2827 >400000
6 ? >3200000

B. Regular road, no receding horizon
For comparison, we ran the solver on a similar problem

without a turn without using the receding horizon framework.
This problem quickly grows beyond what is possible to
solve because of the large number of available environment
transitions in each step. Table I shows how many states the
respective controllers have and the approximate table sizes
needed when extracting them for different road lengths. The
solver crashed because of excessive memory usage in the
last example.

C. Double road, horizon 1
The receding horizon framework reduces the number of

states in the controllers significantly as seen in table II. tsynth
is the total time for synthesizing all controllers, which seems
to increase linearly with the length. treduce is the total time
spent on reducing the short horizon problems. statemax,
statemed and statetot are the maximum, median and sum
of number of states over all short horizon problems. The
number of states in each short horizon problem is constant
after reduction as expected.

D. Double road, horizon 2
We included a few examples with horizon h = 2 too

even though h = 1 is sufficient. The number of states
quickly increases with the horizon as expected. However, the
complexity of the reduction still grows much slower than the

TABLE II
RESULTS FOR THE DOUBLE ROAD WITH HORIZON 1

n m t
synth

t
reduce

state
max

state
med

state
tot

3 3 11 22 230 45 410
4 4 13 47 237 45 505
5 5 14 84 197 45 552
2 9 15 109 197 45 597
2 10 15 109 197 45 642

10 10 22 568 231 45 1012

TABLE III
RESULTS FOR THE DOUBLE ROAD WITH HORIZON 2

n m t
synth

t
reduce

state
max

state
med

state
tot

5 5 43 89 303 303 1827
2 9 51 112 303 303 2179

10 10 105 571 303 303 4440

complexity did without reduction, we are thus able to solve
much larger problems. The results are seen in table III.

E. Problem classification

The time to synthesize controllers can be greatly reduced
by using the problem classification proposed above. By using
our algorithm we were able to classify most of the short
horizon problems as equivalent and can therefore check
realizability or extract controller for just one problem per
class. The method produced 5 different classes in the case
of h = 1, one for the first partition, one for the last, and
two for the partitions in the turn. All the other problems
were identified as the same class. An illustration of the clas-
sification is shown in Figure 2. The resulting reduced short
horizon specification for the majority of the specifications
can be described by the following functions

'̂init ^ �̂ = (Xk,l _Xk,r) ^ ¬Ck

'̂e
s =

^

i2{k,k+1}

(Ok,l $ #Ok,l) ^ (Ok,r $ #Ok,r)

'̂e
l = True

'̂s
s ^ �̂ = ¬Ck ^ ¬Ck+1

'̂s
l = Xk+1,l _Xk+1,r,

where k is the starting partition and Ci = (Xi,l ^ Oi,l) _
(Xi,r ^ Oi,r) denotes a crash in partition i. We have thus
reduced the set of environment variables X to the set
Xs = {Ok,l, Ok,r, Ok+1,l, Ok+1,r}. The mappings between
two specifications at index i and j is simply M(Oi,l) = Oj,l

and analogously for the other variables Oi,r, Xi,l, Xi,r.

VII. CONCLUSION

We have developed a method that effectively reduces
the complexity of the short horizon problems. This makes
the receding horizon framework usable in practice without
compromising the correctness of controllers. We have also
shown how it is possible to identify and reuse controllers for
several short horizon problems.

Fig. 2. Illustration of the five different categories of problems identified.
Each horizon is identified as equivalent to the others except for the horizons
in the start, turn and end.

REFERENCES

[1] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and
Yaniv Sa’ar. Synthesis of reactive(1) designs. Journal of Computer
and System Sciences, 78(3):911 – 938, 2012. In Commemoration of
Amir Pnueli.

[2] A. Cimatti, M. Roveri, V. Schuppan, and A. Tchaltsev. Diagnostic
information for realizability. In Proceedings of the 9th International
Conference on Verification, Model Checking, and Abstract Interpre-
tation, VMCAI’08, pages 52–67, Berlin, Heidelberg, 2008. Springer-
Verlag.

[3] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. MIT Press, 1999.

[4] Marius Kloetzer and Calin Belta. A fully automated framework for
control of linear systems from temporal logic specifications. IEEE
Transaction on Automatic Control, 53(1):287–297, 2008.

[5] Robert Könighofer, Georg Hofferek, and Roderick Bloem. Debugging
unrealizable specifications with model-based diagnosis. In Haifa
Verification Conference, pages 29–45, 2010.

[6] Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas.
Temporal-logic-based reactive mission and motion planning. IEEE
Transactions on Robotics, 25(6):1370–1381, 2009.

[7] Jun Liu and Necmiye Ozay. Abstraction, discretization, and robustness
in temporal logic control of dynamical systems. In Proceedings of
the 17th International Conference on Hybrid Systems: Computation
and Control, HSCC ’14, pages 293–302, New York, NY, USA, 2014.
ACM.

[8] P. Nuzzo, H. Xu, N. Ozay, J.B. Finn, A.L. Sangiovanni-Vincentelli,
R.M. Murray, A. Donze, and S.A. Seshia. A contract-based methodol-
ogy for aircraft electric power system design. Access, IEEE, PP(99):1–
1, 2013.

[9] Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57,
1977.

[10] T. Wongpiromsarn, U. Topcu, and R.M. Murray. Receding horizon
temporal logic planning. Automatic Control, IEEE Transactions on,
57(11):2817–2830, Nov 2012.

[11] T. Wongpiromsarn, Ufuk Topcu, and R.M. Murray. Receding horizon
temporal logic planning for dynamical systems. In Decision and Con-
trol, 2009 held jointly with the 2009 28th Chinese Control Conference.
CDC/CCC 2009. Proceedings of the 48th IEEE Conference on, pages
5997–6004, Dec 2009.

[12] Tichakorn Wongpiromsarn, Ufuk Topcu, Necmiye Ozay, Huan Xu, and
Richard M. Murray. Tulip: A software toolbox for receding horizon
temporal logic planning. In Proceedings of the 14th International
Conference on Hybrid Systems: Computation and Control, HSCC ’11,
pages 313–314, New York, NY, USA, 2011. ACM.

