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Abstract—Specifications for complex engineering systems are
typically decomposed into specifications for individual subsystems
in a manner that ensures they are implementable and simpler
to develop further. We describe a method to algorithmically
construct component specifications that implement a given spec-
ification when assembled. By eliminating variables that are
irrelevant to realizability of each component, we simplify the
specifications and reduce the amount of information necessary
for operation. We parametrize the information flow between
components by introducing parameters that select whether each
variable is visible to a component or not. The decomposition
algorithm identifies which variables can be hidden while pre-
serving realizability and ensuring correct composition, and these
are eliminated from component specifications by quantification
and conversion of binary decision diagrams to formulas. The
resulting specifications describe component viewpoints with full
information with respect to the remaining variables, which is
essential for tractable algorithmic synthesis of implementations.
The specifications are written in TLA+, with liveness properties
restricted to an implication of conjoined recurrence properties,
known as GR(1). We define an operator for forming open systems
from closed systems, based on a variant of the “while-plus”
operator. This operator simplifies the writing of specifications that
are realizable without being vacuous. To convert the generated
specifications from binary decision diagrams to readable formulas
over integer variables, we symbolically solve a minimal covering
problem. We show with examples how the method can be applied
to obtain contracts that formalize the hierarchical structure of
system design.

I. INTRODUCTION

A. Motivation

The design and construction of a large system relies on the
ability to divide the problem into smaller ones that involve
parts of the system. Each subproblem may itself be refined
further into smaller problems, as illustrated in Fig. 1. Typically
the subsystems interact with each other, either physically, via
software, or both. This interaction between modules needs to
be constrained, in order to ensure that the assembled system
behaves as intended. For example, if we consider a component
that controls the manipulator arm of a rover for exploring
the geology of other planets, it depends on a camera for
deciding how to position the arm, and on a power supply,
as sketched in Fig. 2. The maximum manipulator speed that
the controller can safely command is limited by the camera
frame rate. Depending on power supply and type of operation,
the manipulator controller can request a lower frame rate from
the camera, in order to economize on power. During grasping
operations however, the controller requires high fidelity and
frequent frames. Based on the available power supply, the
controller may decide to decline a request for grasping, due to
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Fig. 1: Anatomy of hierarchical system design in TLA+: com-
position is represented by conjunction (∧), hiding of details
by (temporal) existential quantification (∃∃∃∃∃∃ ), and refinement by
logical implication ⇒.

insufficient power for completing the operation. Such an issue
could arise in rovers that depend on solar energy, because their
power supply is contigent on environmental conditions.

Systems are built from designs, and designs are created
incrementally. A common direction is to start thinking in terms
of larger pieces, and divide those in smaller ones that are more
detailed, but also more specific and local in nature [1]. The
design activity should be captured with sufficient accuracy to
describe the intended system operation without ambiguity [2],
[3]. A representation with precise syntax and semantics, or
specification, is desirable to describe how each component
should behave in the context of other modules. When a
specification is available, we can attempt to prove that a system
is safe to operate and useful. Unsafe designs can have a
high cost, for example in the context of airliners, automotive
subsystems, nuclear power plant controllers, and several other
application areas.

This decomposition involves distributing functionality
among components, and creating interfaces between them [4],
[5]. We are motivated to decompose in order to focus and
isolate. Focus of attention allows for fewer errors. Isolation
makes reasoning easier, and more tractable to automate [6].
Decomposition also makes possible the use of off-the-shelf
components, and the assignment of tasks to different subsys-
tem manufacturers. Obtaining conclusions about a system by
using facts about its subsystems comes at an extra cost [7],
[8]. But it may be the only scalable way of approaching the
design of a large system [9], [7, pp. 421–422], [10, p. 168].

A system can be described at different levels of detail [11],
[12, p. 192]. A description that corresponds closely to available
physical elements is directly implementable [1]. However,
writing specifications at this level of detail is often more diffi-
cult than specifying behavior at a higher level. A specification
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Fig. 2: A component is specified by expressing requirements
that the implementation should fulfill under assumptions about
other parts of the assembled system.

at the implementation level can then be derived by hand or us-
ing (automated) synthesis. Synthesis has attracted considerable
interest in the past two decades, and advances both in theory
and implementation have been made, as described in Sec. II-B
[13], [14], [15], [16], [17], [18], [19]. In this work, we are
interested in automated decomposition of specifications that
yields implementable component specifications. In particular,
we aim at automatically modularizing a design that has been
partially specified by a human. Human input is necessary, in
one form or another, because an algorithm cannot know what
the assembled system is intended for, and what part of the
system each component represents. Algorithmic synthesis can
be used to implement the specifications that result after some
iterations of decomposition.

B. Proposed approach

A component is mathematically represented by a collection
of variables, whose behavior is described by a temporal logic
formula. A component can be studied in the context of an
environment, which is represented by other variables, in which
case the temporal logic formula describes the desired behavior
of the component in the presence of its environment, for
example how the component should respond to environmental
changes.

In this paper, a contract is a collection of realizable com-
ponent specifications that combined imply the specification
we decomposed. We assume synchronous interaction of com-
ponents that allows in each step at most one component to
change in a non-unique way, described using a scheduler that
ensures interleaving changes for other components (see also
Remark 14 on page 33). It is easier to write a centralized
specification, referring to any variable as needed. But it is
simpler to specify internal details in absence of variables
from other components. We study the problem of eliminating
variables during the decomposition of an overall specification
into component specifications that form an assume-guarantee
contract (a top-down approach [20]). The number of compo-
nents, and which variables represent each component are given
as problem input. In order to detect which variables, from
those that represent other components, each component needs
to know about, we use parameters that prescribe whether each

variable is hidden or not. This can be regarded as parametriz-
ing the information communicated between components.

We prove that variables selected to be hidden can be elim-
inated from the resulting specifications. Thus, information is
hidden without producing component specifications that would
be computationally expensive or intractable to implement
[21], [22], [23]. Different interconnection architectures can be
associated to each recurrence goal, in which case switching
between them is controlled by one component, and can take
multiple steps.

Both the property to be decomposed and the generated
component properties are expressed with liveness restricted to
an implication between conjunctions of recurrence properties,
a fragment called GR(1) [14]. The polynomial computational
complexity of implementing open-system GR(1) specifications
motivates this choice, discussed more in Sec. III-C. The
fulfillment of liveness requirements between components is
acyclic, in order to avoid circular dependencies.

A simple example to demonstrate how decomposition works
is the following. Consider a building with secure doors con-
trolled by some central location. We want to be able to re-
peatedly enter and exit the building (overall system property),
but we do not control the doors. In order for the building
security controller to open a door, we should both swipe our
card near the door we want opened, and stand in front of
a camera. The security controller and the persons that enter
and exit are the two components. An incorrect decomposition
would be to require that if the doors repeatedly open, then
we repeatedly enter and exit the building. Another incorrect
decomposition would be to assume that swiping our card will
lead to the door eventually opening. We need to assume that
if we both swipe and stand in front of a door, then eventually
the door will be opened (one component specification). The
security controller is required to eventually respond to such
a request by eventually opening the corresponding door (the
other component specification). The decomposition approach
we propose constructs liveness specifications of this form
that ensure the overall objective, which is to repeatedly cross
through doors.

The second problem that we study is writing the con-
structed specifications in a form that humans can read, so
that they can work with the produced specifications at a
lower level of refinement, for example to specify details
internal to a subsystem before decomposing the subsystem into
components. The algorithms that we develop are symbolic,
in that they manipulate binary decision diagrams (BDDs),
which are graph-based data structures that represent sets of
states [24], [25], [26]. The predicates of the assume-guarantee
component specifications are computed as BDDs first, which
are not suitable for reading. Assuming that shorter formulas
are more readable, we formulate as a minimal set covering
problem the construction of minimal formulas in disjunctive
normal form of interval constraints over integer variables. The
covering problem is solved exactly with a symbolic branch
and bound algorithm originally proposed for two-level logic
minimization [27].

In summary, the contributions of this work are a decom-
position algorithm that takes a specification and partition of
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variables as input and computes implementable specifications
for the components represented by these variables, which
avoids circular dependence between components, a parametric
analysis for finding what variables can be hidden when speci-
fying components that are implementable, an implementation
of an algorithm for converting binary decision diagrams to
minimal formulas that involve integer-valued variables and its
application to specification construction, a formalization of
realizability, and an operator for defining assume-guarantee
properties from complete-system properties (closed systems).

The paper is organized as follows. A short literature review
is given in Sec. II. Sec. III introduces the mathematical
language we use, a formalized notion of implementability,
and some elements from algorithmic game theory. Assume-
guarantee contracts are defined in Sec. IV-A and open systems
in Sec. IV-B. The parameterization of which variables are
hidden when solving a game is developed in Sec. V. The
decomposition algorithm is described in Sec. VI. How minimal
specifications are generated is described in Sec. VII. An
example is analyzed in Sec. VIII, and conclusions summarized
in Sec. IX.

II. PREVIOUS WORK

A. Modular design by contract

The dependence of a component on its outside world
is known as assumption-commitment, or rely-guarantee,
paradigm for describing behaviors [3]. The assumption-
commitment paradigm about reactive systems is an evolved
instance of reasoning about conditions before and after a
terminating behavior. Early formulations [28, pp. 26–29], [29,
p. 4] were the assertion boxes used by Goldstine and von Neu-
mann [30], and the tabulated assertions used by Turing [31],
[32]. A formalism for reasoning using triples of a precondition,
a program, and a postcondition was introduced by Hoare [33],
following the work of Floyd [34], [29, pp. 3–4] on proving
properties of elements in a flowchart, based on ideas by Perlis
and Gorn [35, p. 122], [28, p. 32 and Ref.25, p. 44].

Hoare’s logic applies to terminating programs. However,
many systems are not intended to terminate, but instead con-
tinue to operate, by reacting to their environment [36]. Francez
and Pnueli [37] introduced a first generalization of Hoare-style
reasoning to cyclic programs. They also considered concurrent
programs. Their formalism uses explicit mention of time and
is structured into pairs of assumptions and commitments.

Lamport [12] observed that such a style of specification
is essential to reason about complex systems in a modular
way [38, p. 131]. Lamport and Schneider [39], [40] introduced,
and related to previous approaches, what they called gener-
alized Hoare logic. This is a formalism for reasoning with
pre- and post-conditions, in order to prove program invariants.
Misra and Chandy introduced the rely-guarantee approach
for safety properties of distributed systems [41], [42, §6 on
p. 532]. Stepwise implication in their work constrains the
immediate future behavior of a system in case its environment
behaved as assumed throughout the past. The increment of
time between constraint and assumption enables assembling
interdependent components without circular dependence. All

properties up to this point were safety, and not expressed in
temporal logic [43]. Two developments followed, and the work
presented here is based on them.

The first was Lamport’s introduction of proof lattices [20].
A proof lattice is a finite rooted directed acyclic graph, labeled
with assertions. If u is a node labeled with property U , and
v ,w are its successors, labeled with properties V ,W , then if
U holds at any time, eventually either V or W will hold. In
temporal logic, this can be expressed as ✷(U ⇒ ✸(V ∨W )).
Owicki and Lamport [44] revised the proof lattice approach, by
labeling nodes with temporal properties, instead of atemporal
ones (“immediate assertions”).

The second development was the expression of stepwise
implication operators ( +−◃ and variants) in temporal logic by
Lamport [12], and Pnueli [38], i.e., without reference to an
explicit time variable. In addition, Pnueli proposed a proof
method for liveness properties, which is based on well-founded
induction. This method can be understood as starting with
some temporal premises for each component, and iteratively
tightening these properties into consequents that are added to
the collection of available premises, for the purpose of deriving
further consequents. This method enables proving liveness
properties of modular systems. Informally, the requirement
of well-foundedness allows using as premises only properties
from an earlier stage of the deductive process [45], [46].
This prevents circular existential reasoning about the future,
i.e., circular dependencies of liveness properties [47, §2.2,
p. 512], [48, §5.4, p. 264], [49]. As a simple example, consider
Alice and Bob. Alice promises that, if she sees b, then she
will do a at some time in the future. Reciprocally, Bob
promises to eventually do b, after he sees a . As raw TLA
formulas, these read ✷(b ⇒ ✸a ′) for Alice, and ✷(a ⇒ ✸b′)
for Bob. If both Alice and Bob default to not doing any
of a or b, then they both satisfy their specifications. This
problem arises because existential quantification over time
allows simultaneous antecedent failure. Otherwise, if Bob was
required to do b for the first time, then Alice would have to
do a , then Bob do b again, etc.

Compositional approaches to verification have treated the
issue of circularity by using the description of the implemen-
tation under verification as a vehicle for carrying out the proof.
The implementation’s immediate behavior should constrain the
system sufficiently much so as to enable deducing its liveness
guarantees. This approach is suitable for verification, because
an implementation is available at that stage. Specifications
intended to be used for synthesis are more permissive. For this
reason liveness properties, and minimal reliance on step-by-
step details, are preferred in the context of synthesis. Stark [49]
proposed a proof rule for assume-guarantee reasoning about a
non-circular collection of liveness properties. McMillan [50]
introduced a proof rule for circular reasoning about liveness.
However, this proof system is intended for verification, so
it still relies on the availability of a model. It requires the
definition of a proof lattice, and introduces graph edges that
consume time, as a means to break simultaneity cycles. The
method we propose in this work constructs specifications that
can have dependencies of liveness goals, but in a way that
avoids circularity (Sec. VI).
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The assumption-guarantee paradigm has since evolved, and
is known by several names. Lamport remarks that a module’s
specification may be viewed as a contract between user and
implementer [12, p. 191]. Meyer [51] called the paradigm
design by contract and supported its use for abstracting soft-
ware libraries and validating the correct operation of software.
The notion of a contract has several forms. For example, an
interface automaton [52] describes assumptions implicitly, as
those environments that can be successfully connected to the
interface. An interface automaton abstracts the internal details
of a module and serves as its “surface appearance” towards
other modules.

More recently, contracts have been proposed for specifying
the design of systems with both physical and computational
aspects [53], [54], [55]. In this context, contracts are used
broadly, as an umbrella term that encompasses both interface
theories and assume-guarantee contracts [56], [57], [53], [58],
with extensions to timed and probabilistic specifications. A
proof system has been developed for verifying that a set of
contracts refines a contract for the composite system [59], as
well as a verification tool of contract refinement using an SMT
solver [60]. This body of work focuses mainly on using and
modifying existing contracts. We are interested in constructing
contracts.

Decomposition of an assume-guarantee contract for an over-
all system into assume-guarantee contracts for components
has been investigated in an approach that checks whether a
candidate decomposition satisfies certain sufficient conditions,
and if not amends the contracts in a sound way in search
of a correct decomposition [61]. This approach is formulated
generically for contract theories whose operators satisfy cer-
tain distributivity requirements, and is demonstrated in theories
with trace-based and modal transition specifications.

An approach to architectural synthesis based on contracts
of components available from a library has been studied in
[62], [63]. In that approach, the components are automatically
selected from an existing library, with the objective of creating
an assembly that satisfies a given specification.

Contract theories in the framework of [53], [55] formulate
the notion of contract as a pair of two assertions (properties)
that represent a component and its intended environment. In
our approach, each component is specified by a single tempo-
ral formula, which incorporates assumptions and guarantees
implicitly, as a suitable form of implication (stepwise for
safety, propositional for liveness) [42], [64], [65]. For example,
the formula ϕ ! ✷✸(a = 1) ⇒ ✸✷(b = 2), is equivalent to
✷✸(b ̸= 2) ⇒ ✸✷(a ̸= 1). Which one is intended as assump-
tion, ✷✸(a = 1), or ✷✸(b ̸= 2)? Formally, we cannot distin-
guish without mentioning a separate formula other than ϕ. In
other words, the formula A ⇒ G describes one component,
without describing an intended environment. Two formulas A
and A ⇒ G can describe two components. Our notion of
contract refers to a collection of component specifications, and
for the case of two specifications corresponds in descriptive
capability to a pair of assertions as contract [53], [55], [66].
Also, we view a contract as an agreement that binds multiple
components, whereas a pair of assertions in contract theories
is an agreement that binds one component. Methodologically,

in contract theories one checks that an assumption formula is
fulfilled by another component’s guarantee [67], whereas in
our approach the conjoined component specifications should
imply the desired overall specification.

The theory of synchronous relational interfaces [67] is an
approach that allows expressing safety contracts, and rea-
soning about composition, refinement, and component substi-
tutability. The refinement calculus of reactive systems (RCRS)
[68] is a framework for describing components using mono-
tonic property transformers that operate on sets of traces,
and can describe safety and liveness properties. It is a typed
formalism that distinguishes inputs from outputs, and repre-
sents constraints on the environment in a way that can be
regarded as behavioral typing, supporting non-input-receptive
representation of systems and type inference [69], [70]. We use
an untyped logic, TLA+, and suitable forms of implication to
specify realizable open systems. Our approach is state-based,
and how realizability is required, i.e., how quantifiers affect
variables, indicates which variables are controlled by each
component. Declaration of variables does not annotate them as
inputs or outputs. Which variables are communicated to other
components is determined by the decomposition algorithm. In
our approach, (strictly) causal systems are specified using step-
wise implication (in the operators +−◃ and WhilePlusHalf ).
Acausal specifications are unrealizable with our definition of
realizability. RCRS is aimed mainly at verification and bottom-
up synchronous composition of systems and their contracts
from components, whereas in this work we are interested in
decomposing specifications of an overall system.

FOCUS is a typed formalism based on stream processing
functions [71], [72] which can express assume-guarantee spec-
ifications, open and closed systems, and supports reasoning
about system composition and refinement.

Reactive modules [73] is another formalism for hierarchi-
cal specification and verification of systems, which supports
assume-guarantee reasoning for both synchronous and asyn-
chronous systems, temporal refinement, and state hiding.

B. Synthesis of implementations
This section samples the literature on games of infinite dura-

tion. Synthesizing an implementation from a specification can
be formulated as a game between component and environment.
The type of game depends on:

• whether one or more components are being designed,
• whether components are designed in groups,
• when components change their state,
• the liveness part of specifications, and
• the visibility of variables.

Games can be turn-based or concurrent [74], [75], [76].
Inability to observe external state changes makes a game
asynchronous [22], [77]. If we want to construct a single com-
ponent, then the synthesis problem is centralized. Synchronous
centralized synthesis from LTL has time complexity doubly
exponential in the length of the formula [36], and polynomial
in the number of states. By restricting to a less expressive
fragment of LTL, the complexity can be lowered to polynomial
in the formula [14]. Asynchronous centralized synthesis does
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not yield to such a reduction [22]. Partial information games
pose a challenge similar to full LTL properties, due to the
need for a powerset-like construction [78]. To avoid this route
alternative methods have been developed, using universal co-
Büchi automata [18], or antichains [19].

If we want to construct several communicating modules
to obtain some collective behavior, then synthesis is called
distributed. Of major importance in distributed synthesis is
who talks to whom, and how much, called the communica-
tion architecture. A distributed game with full information is
in essence a centralized synthesis problem. Distributed syn-
chronous games with partial information are undecidable [23],
unless we restrict the communication architecture to avoid
information forks [79], or restrict the specifications to limited
fragments of LTL [80]. The undecidability of distributed
synthesis motivates our parametrization for finding a suitable
connectivity architecture, instead of deciding whether a given
architecture suffices. Bounded synthesis circumnavigates this
intractability by searching for systems with a priori bounded
memory [81]. Asynchronous distributed synthesis is undecid-
able [82], [83], [77]. In our approach we find interconnections
of components that suffice for implementing the component
specifications. Instead of selecting a specific interconnection,
which leads to an undecidable problem, we search for an
interconnection that suffices. This is a trade-off of decidability
for optimality, in that the resulting interconnection can involve
more information sharing between the components than may
be necessary.

Besides synthesis of a distributed implementation, the more
general notion of assume-guarantee synthesis [84] constructs
modules that can interface with a set of other modules,
as described by an assumption property. This is the same
viewpoint with the approach proposed here. A difference is
that we are interested in synthesizing temporal properties
with a liveness part, instead of implementations. In addition,
we are interested in “distributed” also in the sense that the
modules will be synthesized separately. Assumption synthesis
has been used for the verification of existing modules by
eliminating variables to abstract the modules, before reasoning
about safety properties of their composition [85].

Another body of relevant work is the construction of
assumptions that make an unrealizable problem realizable.
The methods originally developed for this purpose have been
targeted at compositional verification, and use the L⋆ algo-
rithm for learning deterministic automata [86], and imple-
mented symbolically [87]. Later work addressed synthesis by
separating the construction of assumptions into safety and
liveness [88]. The safety assumption is obtained by property
closure, which also plays a key role in the composition
theorem presented in [42]. Our work is based on this separate
treatment of safety and liveness. Methods that use opponent
strategies [89] to refine the assumptions of a GR(1) specifica-
tion, searching over syntactic patterns were proposed in [90],
[91]. The syntactic approach of [91] was used in [92] to refine
assume-guarantee specifications of coupled modules. How-
ever, that work cannot handle circularly connected modules,
thus neither circular liveness dependencies. Another approach
is cooperative reactive synthesis, where a logic with non-

classical semantics is used, and synthesis corresponds to this
semantics [93].

Our work uses parametrization, based on ideas of ap-
proximating asynchronous with GR(1) synthesis [22], [16].
Another form of parametrization studied in the context of
synthesis is that of safety and reachability goals [94]. Instead
of hiding specific variables, an alternative approach in the
context of verification [95] identifies predicates that capture
essential information for carrying out proofs with less cou-
pling between processes. Also relevant is the separation of
GR(1) synthesis into the design of a memoryless observer
(estimating based on current state only) and of a controller
with full information [21]. Identifying what variables provide
information essential for realizability (Sec. V) relates to work
on synthesizing probabilistic sensing strategies [96]. A hier-
archical approach where an observer for the continuous state
is designed separately from synthesizing a discrete controller
from temporal logic specifications [97], and decomposition of
properties for synthesizing implementations have been studied
in the context of aircraft management systems [98]. Layering
as a method for structuring system design has been applied in
the context of the DisCo method, which is based on TLA [99],
[100], [5].

The Quine-McCluskey minimization method, which takes
exponential amount of space and time and so is impractical,
has been used before for simplifying Boolean logic expres-
sions in manuals [101], robot path planning among planar
rectangles [102] and recently for simplifying enumerated robot
controllers [103]. In the context of synthesis, prime implicants
(used here for minimal covering) have been used for refining
abstractions [17], and have been mentioned in the context of
debugging specifications [104]. For theories more general than
propositional logic there has been work on deriving prime
implicants in the context of SMT solvers [105].

III. PRELIMINARIES
A. Predicate Logic and Set Theory

We use the temporal logic of actions (TLA+) [10], with
some minor modifications that accommodate for a smoother
connection to the literature on games. At places, we also use
“raw” TLA+, which is a fragment that allows stutter-sensitive
temporal properties (stutter invariance is defined below) [106,
§4], [107, p. 34]. The motivation for choosing TLA+ is
its precise syntax and semantics, the use of stuttering steps
and hiding as a refinement mechanism, and the structuring
of specifications, by using modules, and within modules by
definitions and planar arrangement of formulas.

TLA+ is based on Zermelo-Fraenkel (ZF) set theory [10,
p. 300], which is regarded as a foundation for mathematics
[108]. Every entity in TLA+ is a set (also called a value).
A function f is a set with the property that, for every
x ∈ DOMAIN f , we know what value f [x ] is. Functions can
be defined with the syntax

f
∆
= [x ∈ S (→ e(x )],

where e(x ) is some expression [10, p. 303, p. 71]. If a value f
equals the function constructor that maps values in DOMAIN f
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to the values obtained by function application, then it is a
function

IsAFunction(f )
∆
= f = [x ∈ DOMAIN f (→ f [x ]],

For any x /∈ DOMAIN f , f [x ] is some value, unspecified by
the axioms of TLA+. The collection of functions with domain
S and range R ⊆ T forms a set, denoted by [S → T ].

Operators are defined to equal some expression, with no
domain specified. Unlike functions, which are sets, operators
are a syntactic mechanism for naming. All occurrences of
operators are syntactically replaced by their definitions before
semantic interpretation takes place. Parentheses instead of
brackets distinguish an operator from a function, for example
g(x ) ! x defines the operator g to be the identity mapping.
Unnamed operators are built with the construct LAMBDA
[109]. A first-order operator takes as arguments operators with-
out arguments (nullary). An operator that takes a first-order
operator as argument is called second-order. For example,
the expression F (x ,G( )) denotes an operator F that takes
as arguments a nullary operator x and a unary operator G
[10, §17.1.1]. TLA+ includes [10, §16.1.2] Hilbert’s choice
operator [110], [111]. If ∃x : P(x ), then the expression
CHOOSE x : P(x ) equals some value that satisfies P(x ).
Otherwise, this expression is some unspecified value that can
differ depending on P .

The operator ∧ denotes conjunction, ∨ disjunction, ¬ nega-
tion. Conjunctions and disjunctions can be written vertically,
for example

∧ x = 1 A conjunct
∧ y > x another conjunct

Vertical lists of this kind can also be nested. Nat denotes the
set of natural numbers [10, §18.6, p. 348], and for i , j ∈ Nat
the set of integers between i and j is denoted by

i ..j
∆
= {n ∈ Nat : i ≤ n ∧ n ≤ j}.

A function with domain 1..n for some n ∈ Nat is called a
tuple and denoted with angle brackets, for example ⟨a, b ⟩.

There are two kinds of variables: rigid and flexible. Rigid
variables are also called constants. They are unchanged
through steps of a behavior (behaviors are defined below).
Rigid quantification can be bounded, as in the formula
∀x ∈ S : P(x ), or unbounded, as in ∀x : P(x ). The former
is defined in terms of the latter as

∀x ∈ S : P(x )
∆
= ∀x : (x ∈ S ) ⇒ P(x ).

So the “bound” is an antecedent. Substitution of the expression
e1 for occurrences of the identifier x in the expression e
is written as the formula LET x ! e1 IN e . A string is a
sequence of characters, for example “ab”. The expression f [“r”]
is also written f .r , for any string “r”.

B. Semantics of Modal Logic
Temporal logic serves for reasoning about dynamics, be-

cause it is interpreted over sequences of states (for linear
semantics). A state s is an assignment of values to all
variables. A step is a pair of states ⟨s1, s2 ⟩, and a behavior σ

s0 s1 s2

⟨s0, s1⟩ s2!x " = 5

state

step behavior

value of variable x at state s2

Fig. 3: Semantic concepts of the temporal logic TLA+.

operator name

initial condition primed variable

may take steps that satisfy this action

what may

what should change
must take such steps

recurrence (“always eventually”)

safety

liveness

conjunction

remain unchanged

(value of x in next state)

formula

formula

Fig. 4: Elements of formula and operator definition in TLA+.

is an infinite sequence of states, i.e., a function from Nat to
states. An action (state predicate) is a Boolean-valued formula
over steps (states). Given a step ⟨s1, s2 ⟩, the expressions x and
x ′ denote the values s1!x " and s2!x ", respectively. We will
use the temporal operators: ✷ “always” and ✸ “eventually”.
A behavior σ satisfies the formula ✷f , denoted σ |= ✷f , if
every “tail” of σ satisfies f . More precisely, if

∀n ∈ Nat : σ[n..] |= f

where σ[n..] ! [i ∈ Nat (→ σ[i + n]].
For example, if formula f is TRUE in every state of behavior

σ, then σ |= ✷f is TRUE. The formula ✸f is TRUE if f is
TRUE at some state of a behavior, i.e., ✸f ! ¬✷¬f . Formal
semantics are defined in [10, §16.2.4].

A property is a collection of behaviors described by a
temporal formula. An example formula is shown in Fig. 4,
which includes actions within temporal operators, and a state
predicate as initial condition. If a property ϕ cannot distinguish
between two behaviors that differ only by repetition of states,
then ϕ is called stutter-invariant. Stutter-invariance is useful
for refining systems by adding lower-level details [11]. In
TLA+ the constructs [48, Prop. 2.1]

[A]v
∆
= A ∨ (v ′ = v),

⟨A⟩v
∆
= ¬[¬A]v = A ∧ (v ′ ̸= v),

where A is an action, are used to ensure stutter-invariance.
So, ✷[x ′ = x + 1]x is satisfied by a behavior whose each
step either increments x by one, or leaves x unchanged. TLA+

allows writing ✷[A]v and ✸⟨A⟩v , but not the above constructs
alone, neither an action A outside them. The raw logic does
not impose these requirements, so there we can write ✷A. We
use the constructs [A]v and ⟨A⟩v also as shorthands for the
formulas that define them. Boolean (and other) operators can
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be applied between any expressions, for example if A and B
are actions, then the formula A ∧ B is an action.

If every behavior σ that violates property ϕ has a finite
prefix that cannot be extended to satisfy ϕ, then ϕ is a safety
property. If any finite behavior can be extended to satisfy ϕ,
then ϕ is a liveness property [112], [35, p. 49]. A property of
the form ✷✸p (✸✷p) is called recurrence (persistence) [113].

We briefly mention a few more concepts that we will
use later. An informal definition is sufficient to follow the
discussion, and a formal one can be found in the semantics
of nonconstant operators [10, Ch.16.2]. The thick existential
quantifier ∃∃∃∃∃∃ denotes temporal existential quantification over
(flexible) variables. The main purpose of temporal quantifica-
tion is to “hide” variables that represent details internal to a
subsystem. The expression ENABLED A is true at states from
where some step could be taken that satisfies the action A.
Using enabledness, weak fairness is defined as

WFv (A)
∆
= (✸✷ENABLED ⟨A⟩v ) ⇒ ✷✸⟨A⟩v

C. Synthesis of implementations

Synthesis is the algorithmic construction of an implementa-
tion that satifies the specification of a component, given as
a temporal formula Phi(x , y), where variable y represents
the component, and variable x its environment. The purpose
of an implementation is to produce the desired behavior for
y , for example the output of a circuit with input x . An
implementation (or realization) of Phi(x , y) is formally a
function f that changes y (so decides y ′), depending on the
current values of x , y , in a way that satisfies Phi(x , y). In
addition, an implementation can include “memory”, which is
internal state used to store useful information. If the variable
mem represents this memory, then the function f depends
on mem , and the implementation includes a function g that
changes mem (so mem ′), depending on x , y ,mem . A tempo-
ral property Phi(x , y) is called realizable if an implementation
exists.

The notion of realizability [114], [115], [36] can be for-
malized [116] as shown in Fig. 5, which is based on a note
by Lamport [8] (see also [12, p. 221]). Fig. 5 corresponds to
realizability in the literature on synthesis [117, §4, pp. 46–47],
[118, §2.3, pp. 914–915].

The operator Realization describes a temporal property
satisfied by behaviors where the variables mem, y start from
mem0, y0 and change according to the functions f (for
externally visible behavior) and g (for internal behavior). The
expression IsRealizable(Phi) means that the property Phi is
implementable (feasible), in that f , g , y0,mem0 exist such
that f , g have finite domains, and any behavior of x , y that
satisfies Realization also satisfies the given property Phi .

Later in our discussion we mention realizability with respect
to different sets of variables. Formally this corresponds to
writing different versions of Fig. 5, with for example y1, y2

and x 1 in one version, y1, y2, y3 and x 2, x 3 in another, etc.
Instead, we write IsRealizablex1;y1,y2(Phi) to make explicit
the variable names (see also Remark 18).

IsAFiniteFcn(f )
∆
= ∧ IsAFunction(f )

∧ IsFiniteSet(DOMAIN f )

Realization(x , y , f , g , y0, mem0)
∆
=

∃∃∃∃∃∃mem :
LET v

∆
= ⟨mem, x , y⟩

A
∆
= ∧ y ′ = f [v ]

∧mem ′ = g [v ]
IN ∧ ⟨mem, y⟩ = ⟨mem0, y0⟩

∧✷[A]v ∧ WF⟨mem, y⟩(A)

IsRealizable(Phi( , ))
∆
=

∃ f , g , y0, mem0 :
∧ IsAFiniteFcn(f ) ∧ IsAFiniteFcn(g)
∧ LET R(u, v)

∆
= Realization(

u, v , f , g , y0, mem0)
IN ∀∀∀∀∀∀ x , y : R(x , y) ⇒ Phi(x , y)

Fig. 5: A definition of realizability. The operator IsFiniteSet
requires finite cardinality [10, p. 341].

Tractable liveness: A formula described by the schema

StreettPair
∆
=

∨
j∈1..m✸✷P j ∨

∧
i∈1..n✷✸Ri

defines a liveness property categorized as generalized
Streett(1), or GR(1) [14]. A formula of this form is useful for
expressing the dependence of a component on its environment.
Rewriting the above as

(
∧

j∈1..m✷✸¬P j ) ⇒
∧

i∈1..n✷✸Ri

emphasizes this use case. Usually, the formulas ¬P j express
recurrence properties that the component requires from its
environment in order to be able to realize the properties Ri . If
the environment lets the behavior satisfy ✸✷P j , then the com-
ponent cannot and so is not required to satisfy the properties
✷✸Ri . An example that simplifies the landing gear example of
Sec. VIII is ✷✸(DoorsOpen) ⇒ ✷✸(ExtensionRequest ⇒
GearExtended). As a specification for the gear subsystem of
an aircraft, this property requires that the gear respond to any
request to extend under suitable conditions.

Conjoining k Streett pairs yields a liveness property called
GR(k ), which can be regarded as a modal conjunctive normal
form [22], [113]. Synthesis of a controller that implements a
GR(k ) property has computational complexity factorial in the
number of Streett pairs k [15]. This is why GR(1) properties
are preferred to write specifications for synthesis. An imple-
mentation that satisfies a GR(1) property can be computed by
applying the controllable step operator (defined in Sec. III-D)
m×n×S 3 times, where S is the number of states (in the worst
case exponential in the number of variables) [118], [119],
[120]. When a symbolic implementation is used the runtime
is in practice much smaller than the upper bound S 3, because
the state space is much “shallower” than the number of states.

A controller that implements a generalized Streett property
can require additional state (memory) as large as 1..n . There
are properties that admit memoryless controllers, but searching
for them is NP-complete in the number of states [121], so
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exponentially more expensive than GR(1) synthesis [14]. For
this reason GR(1) synthesis algorithms unconditionally add a
memory variable that ranges over 1..n .

D. Elements of synthesis algorithms

Fixpoint operators: Reasoning about open systems in-
volves computing from which states a controller exists that
can guide the system to a desired set of states (destination).
The set of states from where such a controller exists is called
an attractor, and results from iteratively solving a “one-step”
control problem [75]. The “one-step” control problem involves
finding from which states the system can reach a Target
in one step that satisfies the action SysNext , assuming that
the environment satisfies the action EnvNext . With x (y) a
variable representing the environment (controller), the one-step
control problem is described by the controllable step operator

Step(x , y , Target( , ))
∆
= ∃ y ′ :

∧ SysNext(x , y , y ′)
∧ ∀ x ′ : EnvNext(x , y , x ′) ⇒ Target(x ′, y ′)

(commonly denoted as CPre, see also Remark 9 on page 33).
A state satisfies Step if x , y take values in that state such that
the controller can choose a next value y ′ allowed by SysNext ,
and any next environment value x ′ that EnvNext allows leads
to a state that satisfies Target . The above definition of Step is
for specifications where in each step at most one component
can change its state in multiple ways. An operator for the
general case is given in Remark 13 on page 33.

The set of states (attractor) from where a controller ex-
ists that can guide the system to some state that satisfies
Goal(x , y) (destination) in at most k steps results by applying
the Step operator k times. This computation is formalized
as the operator kStepAttractor in Fig. 6 [120], [119], where
m “counts” down from k to 0, and the applications of Step
are “chained” together. The fixpoint that results from applying
Step is formalized as the operator Attractor in Fig. 6.

Another computation we use later is finding the largest
subset of a set of states Stay such that the component can
either keep the behavior forever within Stay , or eventually let
the behavior enter the set of states Escape. This computation is
formalized as the operator Trap in Fig. 6, and can be thought
of as finding a “waiting” area from where the environment can
“service” the component’s request.

Symbolic implementation: Game solving involves rea-
soning about sets of states. Symbolic methods using binary
decision diagrams (BDDs) [24] are used for compactly repre-
senting sets of states, instead of enumeration. To use BDDs
for specifications in untyped logic we need to identify those
(integer) values that are relevant, a common requirement
that arises in automated reasoning [122]. This information is
declared as type hints [123] to enable automatically rewriting
the problem in terms of newly declared variables, so that all
relevant values be Boolean (instead of integer), thus enabling
use of BDDs. This process is called bitblasting and bears
similarity to program compilation.

Remark 1: The presentation here is in terms of TLA+. The
approach and results are applicable also to other frameworks,

kStepAttractor(x , y , Goal( , ), k)
∆
=

LET RECURSIVE F ( , , )
F (u, v , m)

∆
= IF m = 0

THEN Goal(u, v)
ELSE LET Target(a, b)

∆
= F (a, b, m − 1)

IN ∨ Target(u, v)
∨ Step(u, v , Target)

IN F (x , y , k)

Attractor(x , y , Goal( , ))
∆
=

LET
Attr(u, v , n)

∆
= kStepAttractor(u, v , Goal , n)

r
∆
= CHOOSE k ∈ Nat : ∀ u, v :
Attr(u, v , k) ≡ Attr(u, v , k + 1)

IN
Attr(x , y , r)

kStepSafe(x , y , Stay( , ), Escape( , ), k)
∆
=

LET RECURSIVE F ( , , )
F (u, v , m)

∆
= IF m = 0

THEN TRUE
ELSE LET Safe(a, b)

∆
= F (a, b, m − 1)

IN ∨ Escape(u, v)
∨ ∧ Stay(u, v)

∧ Step(u, v , Safe)
IN F (x , y , k)

Trap(x , y , Stay( , ), Escape( , ))
∆
=

LET
Safe(u, v , n)

∆
= kStepSafe(u, v , Stay , Escape, n)

r
∆
= CHOOSE k ∈ Nat : ∀ u, v :

Safe(u, v , k) ≡ Safe(u, v , k + 1)
IN

Safe(x , y , r)

Fig. 6: Operators used for solving games to implement a
specification that involves interaction with an environment.

for example other logics with linear-time semantics, with
suitable adaptation. "

IV. CONTRACTS

A. Assume-guarantee contracts between components

The purpose of a contract is to represent the assumptions
that each component in an assembly makes about other
components, and the guarantees that it provides when these
assumptions are satisfied. The assignment of obligations to
components should be balanced. It is unreasonable to specify
an assumption by one component that is infeasible by any
other component. So the specifications should suffice for
ensuring that the assembly behaves as desired, and also not
overconstrain any of the components. We can view these
requirements as placing a lower and an upper bound on
component specifications. The lower bound ensures that each
component is implementable, and the upper bound ensures that
the assembled system operates correctly.
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ψ1

ψ2

ϕ

ψ1

ψ2

ϕ

Decomposition

Composition: ∧

“global” property

component 1 component 2

ϕ

ψ1 ∧ ψ2

|= (ψ1 ∧ ψ2) ⇒ ϕ

Fig. 7: Each component is specified by a property that may
allow behaviors that violate the desired global property. These
undesired behaviors would be caused by arbitrary behavior
of other components. Nonetheless, the conjoined component
specifications imply the global property, because of mutual
fulfillment of assumptions between components.

These requirements are formalized with the following defi-
nition. A contract [124] for implementing a property Phi is a
collection of n temporal properties, described by the operators

A( , . . . ), . . . ,W ( , . . . ),

and a partition of variables x , . . . , z among n components,
such that

∧ IsRealizable1(A) ∧ · · · ∧ IsRealizablen(W )
∧

(
A(x , . . . ) ∧ . . . ∧W (. . . , z )

)
⇒ Phi(x , . . . , z )

where IsRealizablei refers to a rewriting of Fig. 5 according
to what variables represent component i (Remark 18 on
page 33), the symbol represents operator arity [10, §17.1.1]
(Remark 19). The properties A(x , . . . ), . . . ,W (. . . , z ) can
depend on different subsets of variables. In other words, a
contract is a collection of realizable properties that conjoined
imply the desired behavior for the system assembled from
components that implement these properties. Each property
(A, . . . ) is described by a temporal formula that incorporates
an assumption and a guarantee in a suitable implication (log-
ical implication for the liveness part, stepwise implication for
the safety part). Thus, each property is of an assume-guarantee
form. For example, if the formula (✷✸P) ⇒ ✷✸Q specifies
component F and ✷✸P component H, then we can informally
call ✷✸P a guarantee of H (towards F), and an assumption
of F about H. The notion of composition of properties is
illustrated in Fig. 7.

Remark 2: The above notion of contract describes the obli-
gations that bind each component (in analogy to an agreement

EXTENDS Integers
VARIABLES spot 1, spot 2, free x , free y , free,

req , pos x , pos y , occ, turn
station vars

∆
= ⟨spot 1, spot 2, free x , free y , free⟩

robot vars
∆
= ⟨req , pos x , pos y⟩

vars
∆
= ⟨station vars, robot vars, occ, turn⟩

StationStep
∆
= ∧ turn = 1

∧ (req = 0) ⇒ (free ′ = 0)
StationNext

∆
=

∧ spot 1 ∈ 0 . . 1 ∧ spot 2 ∈ 0 . . 1 ∧ free ∈ 0 . . 1
∧ free x ∈ 0 . . 18 ∧ free y ∈ 0 . . 18
∧ ∨ (free = 0)

∨ (free x = 1 ∧ free y = 1 ∧ spot 1 = 0)
∨ (free x = 2 ∧ free y = 1 ∧ spot 2 = 0)

∧ (free = 1) ⇒ ∧ spot 1 = 0 ⇒ occ ̸= 1
∧ spot 2 = 0 ⇒ occ ̸= 2

∧ StationStep ∨ UNCHANGED station vars

RobotNext
∆
=

∧ pos x ∈ 1 . . 15 ∧ pos y ∈ 1 . . 15 ∧ req ∈ 0 . . 1
∧ ((req = 1 ∧ req ′ = 0) ⇒ ∧ free = 1

∧ free x = pos x ′

∧ free y = pos y ′)
∧ (turn = 2) ∨ UNCHANGED robot vars

OthersNext
∆
= (occ ∈ 1 . . 3) ∧ (occ′ = occ)

SchedulerNext
∆
= ∧ turn ∈ 1 . . 2

∧ (turn = 1) ⇒ (turn ′ = 2)
∧ (turn = 2) ⇒ (turn ′ = 1)

Env
∆
= ∧ turn ∈ 1 . . 2 ∧ occ ∈ 1 . . 3

∧✷[OthersNext ∧ SchedulerNext ]vars
∧✷✸⟨SchedulerNext⟩turn

Init
∆
= ∧ spot 1 = 0 ∧ spot 2 = 0

∧ free x = 0 ∧ free y = 0 ∧ free = 0
∧ pos x = 1 ∧ pos y = 1 ∧ req = 0

Next
∆
= StationNext ∧ RobotNext

L
∆
= ✷✸(req = 0) ∧✷✸(req = 1)

Assembly
∆
= Init ∧✷[Next ]vars ∧ L

Phi
∆
= Env ⇒ Assembly

Fig. 8: Assembled-system specification for the charging station
example (i.e., before decomposition).

among them). The above notion relates in two ways to a
notion of contract as a pair of an assumption and a guarantee
[55], [53], [54], [66]. The case of two properties above, e.g.,
A,B , can be thought of as describing an environment and
a component, separately, and so to correspond to a pair of
properties. On the other hand, each property above (A, . . . )
incorporates an assumption and a guarantee using a suitable
form of implication, thus it has the nature of an agreement
that binds one component. "

Example 1: As an example used throughout the paper,
consider a charging station for mobile robots that has two
charging spots, and a robot that requests a spot for charging.
The robot is represented by its coordinates on the plane
pos x , pos y . The charging station has two charging spots,
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with coordinates 1,1 and 2,1.
The charging station keeps track of which spots are taken

(variables spot 1, spot 2, 0 if a spot is free), and sets the
variables free x , free y to the coordinates of the spot that
becomes available for docking, and notifies the robot by setting
the variable free = 1. The robot can request docking by setting
the variable req . When free = 0, the variables free x , free y
do not communicate information and can take other values.

Not all spots are free. One other spot can be occupied
by another robot, which forms part of the environment of
the charging station and the robot. This spot is indicated
by the variable occ ∈ 1..3 (3 means that the other robot is
away from charging spots). To keep the example small, occ
remains unchanged through time. So the occupied spot does
not change, but neither the station nor the robot control which
spot this is. Otherwise, assumptions about how occ can change
need to be included, for example to prevent occ from changing
to the same spot that the station has assigned to the first robot.
The variable turn is used to express the assumption that in
each step either variables that represent the robot change and
variables that represent the station remain unchanged, or vice
versa. The specification of the entire system is shown in Fig. 8.
This specification can be extended by adding more spots at
different coordinates, for example a third spot with coordinates
10,12.

We wrote the property Phi using implication. In general,
the operator Unzip (defined in Sec. IV-B) or a variant should
be used instead of implication. Nonetheless, in this case the
environment can realize Env independently of the two compo-
nents, so we can simply use implication (and defer discussing
how open systems should be defined to Sec. IV-B). An alterna-
tive would be to let Phi be the conjunction Env ∧Assembly
(a closed system). In that case, we would have to consider
components for the scheduler and other robots. Note that
the property Assembly defines synchronous and interleaving
changes to the components.

A contract between the charging station and the robot
has the form of two properties, described by the operators
PhiS ,PhiR, such that

∧ IsRealizable1(PhiS )
∧ IsRealizable2(PhiR)
∧ ∨ ¬∧ PhiS (spot 1, spot 2, free x , free y , free,

req , occ, turn)
∧ PhiR(req , pos x , pos y ,

free x , free, turn)
∨ Phi

We write the operators PhiS ,PhiR with arguments to indicate
the dependence on variables that we will obtain in Sec. VI-D
(see also Remark 20 on page 34).

Considering the liveness part of PhiS and PhiR, one choice
would be ✷✸((req = 1) ⇒ (free = 1∧ turn = 2)) for PhiS ,
and ✸✷(free = 0∧req = 1)∨

(
✷✸(req = 0)∧✷✸(req = 1)

)

for PhiR. Examples of the properties PhiS and PhiR are
given in later parts of this running example, as we incremen-
tally describe the stages of automated decomposition. "

WhilePlusHalf (A( , ), G( , ), x , y)
∆
=

∀∀∀∀∀∀ b : ∨ ¬ ∧ b ∈ BOOLEAN ∧✷[b′ = FALSE]b
∧ ∃∃∃∃∃∃ u, v : ∧A(u, v)

∧✷ ∨ b ̸= TRUE
∨ ⟨u, v⟩ = ⟨x , y⟩

∨ ∃∃∃∃∃∃ u, v : ∧G(u, v) ∧ (v = y)
∧✷ ∨ b ̸= TRUE

∨ ⟨u, v⟩ = ⟨x , y⟩
∧✷[(b = TRUE) ⇒ (v ′ = y ′)]⟨b, v , y⟩

Unzip(P( , ), x , y)
∆
=

LET Q(u, v)
∆
= P(v , u) swap back to x , y

A(u, v)
∆
= WhilePlusHalf (Q , Q , v , u) swap to y, x

IN WhilePlusHalf (A, P , x , y)

Fig. 9: The operator Unzip defines an open system from a
closed system. The operator WhilePlusHalf describes step-
wise implication for the safety part of A,G , and implication
for the liveness part.

B. Open systems
1) Defining an open system: Usually the components we

build rely on their environment in order to operate as intended.
Such a component that interacts with an environment is called
an open system [47], [117, §3.1], [106, §9.5.3]. For example,
a laptop should be able to connect to the Internet, but this
is impossible in absence of a wired or wireless network
compatible with the laptop’s interface (ports or other). If we
describe the laptop as a system that is able to connect to
the Internet, our specification is fictitious, because it wrongly
predicts that the laptop will be online in the middle of a
desert. We could augment the specification by adding that
there is a wireless network, and that the laptop connects
to it. In this attempt we are overspecifying, by promising
to deliver both a laptop and a wireless network. Laptops
are usually designed separately from the buildings that host
wireless networks. What we should instead do is to guarantee
a connection to the Internet assuming that a wireless network
is available. In absence of a network, the laptop is free to
remain disconnected.

The notion of an open system can be defined mathematically
by whether arbitrary behavior is allowed for any of the
variables. Let x be a variable and P(x ) a temporal property.
If P(x ) implies that x remains in some fixed set S throughout
a behavior, then P(x ) describes a closed system, i.e.,
IsAClosedSystem(P( ))

∆
= ∃S : ∀∀∀∀∀∀ v : P(v) ⇒ ✷(v ∈ S )

IsAnOpenSystem(P( ))
∆
= ¬IsAClosedSystem(P)

Note that IsAnOpenSystem(P) is equivalent to ∀S : ∃∃∃∃∃∃ v :
P(v) ∧ ✸(v /∈ S ). So the possibility of diverging behavior
characterizes a system as open. In other words, a property
P defines a closed system if it implies a type invariant that
bounds all the variables that occur in P . Therefore, closed
systems can be defined using ∆0 formulas [125, p. 161].
Diverging behavior is also the main concept in how initial
conditions affect realizability [116, Lemma 6, p. 12].

2) Specifying interaction with an environment: A compo-
nent’s specification should not constrain its environment, but
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RawWhilePlusHalf (Init( , ),
EnvNext( , , ), SysNext( , , ),
Next( , , , ), Liveness( , ), x , y)

∆
=

∧ ∃ u : Init(u, y)
∧ ∨ ¬∃ v : Init(x , v)

∨ ∧ Init(x , y)
∧✷(Earlier(EnvNext(x , y , x ′))

⇒ ∧ Earlier(Next(x , y , x ′, y ′))
∧ SysNext(x , y , y ′))

∧ (✷EnvNext(x , y , x ′)) ⇒ Liveness(x , y)

Fig. 10: Expressing the WhilePlusHalf operator in raw TLA+

with past operators.

constrain the system as long as the environment behaves as
assumed in the intended application [41], [12], [42], [64], [65].
This form of requirement is expressible with a formula that
spreads implication incrementally over a behavior [42], [65],
[126], [48], [64], [41] (stepwise implication). The operator
WhilePlusHalf in Fig. 9 takes two temporal operators A,G .
The property A(x , y) that can be thought of as describing what
we assume about the environment (assumption), and G(x , y)
what we require of the system (guarantee). WhilePlusHalf
can be thought of as being true of a behavior σ if every finite
prefix of σ that can be extended to a behavior that satisfies A
can also be extended, starting with a state that satisfies v = y ,
to a behavior that satisfies G (see also Remark 16). Specifying
liveness using G , with A describing a safety property is not
restrictive, similarly to +−◃ [42, §5.1].

We can use WhilePlusHalf to specify how an open system
should behave. Writing a closed-system specification P for
how component and environment should behave when assem-
bled is typically easier than reasoning about how to split this
into two properties A,G . One reason is avoiding realizability
due to an unintended reason, a form of vacuity. Vacuity can
arise if x is not constrained by G as much as it is in A.
Another motivation for writing a closed-system specification
is that we can then utilize liveness to simplify the specification
(writing specifications that are not machine-closed [127]).

The operator Unzip serves this purpose, by taking a closed
system described by P , and using it as G , whereas it passes
as A a (safety) property weaker than G . So Unzip takes a
closed-system property and yields an open-system property,
and roughly means

While the environment does not take any step that
definitely blocked the assembly (P ), the compo-
nent’s next step should not definitely block the
assembly, and the assembly should not have been
blocked in the past.

Blocking the assembly means violating the safety part of P ,
by changing the values of some variables in a way that P
can no longer be satisfied. When using more variables, we
write Unzipx1,x2;y1 to signify changes analogous with those
for IsRealizablex1,x2;y1(Phi) (Sec. III-C).

3) Synthesis from open system properties: For the synthesis
of implementations for properties specified using Unzip, relat-
ing this operator to existing results about synthesis from GR(1)

properties is useful [118]. This is possible by turning temporal
quantification (∃∃∃∃∃∃ ) to rigid quantification (∃), using the operator
RawWhilePlusHalf defined in Fig. 10. The second conjunct
expresses “stepwise implication”, so that if at some step the
environment violates the assumed action EnvNext , then the
system is not obliged to satisfy the action SysNext in later
steps and the action Next in that step and later ones. The
operator Earlier abbreviates the composition of the past LTL
operators WeakPrevious and Historically [128].

It can be shown that if P ≡ Init ∧✷[Next ]⟨x ,y ⟩∧L, where
L a GR(1) liveness property, and the pair of properties Init ∧
✷[Next ]⟨x ,y ⟩,L is machine-closed (meaning that L does not
constrain the safety in the property Init ∧✷[Next ]⟨x ,y ⟩ [42]),
then an implementation synthesized for the property

RawWhilePlusHalf (Init , [∃y ′ : Next ]x , [∃x ′ : Next ]y ,
[Next ]⟨x ,y ⟩,L, x , y)

using existing algorithms [118] also realizes Unzip(P , x , y).
Remark 3: Open systems can be defined also in other ways,

for example using game graphs together with liveness for-
mulas [117], game structures, alternating-time temporal logic
formulas [74], or modules [129]. The property P corresponds
to the graph and liveness in a game graph description. "

Remark 4 (Related operators): The operator
WhilePlusHalf is a slight variant of how the “while-
plus” operator +−◃ can be defined within TLA+ [10, p. 337],
[48, p. 262] ( +−◃ is defined by TLA+ semantics [10, p. 316]).
How Unzip is defined is reminiscent of how +−◃ is defined for
safety properties in terms of −◃ [48, p. 262], [126, Prop. 1,
p. 501]. The operator RawWhilePlusHalf is a modification
of [65] to avoid circularity [124], [64, §5, ◃ on p. 59]. "

Remark 5 (Symmetry): Dijkstra requires symmetry from
solutions to the mutual exclusion problem [130, item (a)]. The
approach we follow asserts that all components are imple-
mented as “Moore machines” (the functions f and g in Fig. 5
are independent of primed variable values). Alternatives are
possible where one component is Mealy and its environment
Moore [118], [89]. Specifying such components in a way
that avoids circular reasoning leads to using more than one
operators for defining open-systems, which is asymmetric. In
the presence of multiple components, a spectrum of Moore
to Mealy machines needs to be considered, not unlike typed
components [75]. "

Example 2: The specification of the robot in the charging
station example can be defined using the operator Unzip by
first defining a closed-system property that describes the robot
together with its environment P ∆

= Env ∧ Assembly and
let Unzip(P , spot 1, . . . , turn, req , pos x , pos y) specify the
robot (the number of arguments has been adapted, as in similar
remarks above). In the next section, we will see how some of
these external variables can be eliminated to define a property
for the robot that mentions fewer details about the rest of the
system. "

The concept of interleaving means that in each step the state
of at most one component changes [10, p. 137]. If there are
only two components, represented by the variables x and y ,
then property Phi(x , y) is interleaving if it implies that x and
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y do not both change at once [42, p. 514], [48], [116, §5,
p. 22] (in TLA+ Phi(x , y) ⇒ ✷[(x ′ = x ) ∨ (y ′ = y)]⟨x ,y ⟩)

Phi(x , y) ⇒ ✷((x ′ = x ) ∨ (y ′ = y))

We can relax interleaving to allow multiple components to
change their state in one step, but multiple changes be possible
for at most one. This relaxed notion is useful for including a
scheduler that changes in a unique way in each (nonstuttering)
step. We consider specifications that are interleaving in this
way, allowing in each step non-unique changes for at most one
component. Components move in a fixed order that repeats,
so the resulting interaction can be viewed as a turn-based
game between the components. Each variable is controlled by
a single component throughout time, thus the specifications
are disjoint-state [10, p. 144].

V. PARAMETRIZED HIDING OF VARIABLES
A. Motivation and overview

Precision is essential for specification, but adding details
makes a specification less manageable by both humans and
machines. Decomposition in general involves as much com-
putation as solving the problem in a monolithic way [7].
Structuring the specification hierarchically to defer introducing
lower-level details is a solution in the middle. Hierarchy
corresponds to how real systems are designed, for example
airplanes. The deferred details should be irrelevant to the
higher-level design, and specific to subsystems only. Some
internal component details may be relevant to the higher levels,
and be mentioned before decomposition of a specification to
component specifications. Mentioning these details can make
writing the specification easier, or these details may concern
the interaction of some components, but not others.

We want to remove irrelevant details from the specification
of each component. We do so by detecting which variables
can be eliminated from a component’s specification. The
specification that results after the selected variables have been
eliminated should be realizable, otherwise no component that
implements that specification exists.

Let P(x 1, . . . , y1, . . . ) be a closed-system property
of the form Init ∧ ✷[Next ]vrs ∧ Liveness , where
Liveness is a GR(1) property, and ϕ(x 1, . . . , y1, . . . ) !
Unzipx1,...;y1,...(P , x 1, . . . , y1, . . . ). We are interested in
finite-state specifications, i.e., P allows x 1, . . . , y1, . . . to
take values from a finite set. So ϕ is an open-system
GR(1) property. We assume that the specification includes
a scheduler that ensures turn-based interleaving changes
for other components, as discussed earlier, and that the
variable that represents the scheduler remains visible to the
components.

Problem 1 (Hiding variables): Assume that ϕ (defined
above) is realizable by an implementation that can read the
variables x 1, . . ., i.e., IsRealizablex1,...;y1,...(ϕ). Find those
subsets of variables xa , x b , . . . such that ϕ remain realizable
by an implementation that can read only xa , x b , . . . , y1, . . .,
i.e., IsRealizablexa ,xb ,...;y1,...(ϕ).

Exactly solving Problem 1 is computationally hard, because
it requires reasoning about realizability of implementations

with partial information about their environment. For this rea-
son, in this section we develop a sound approach for selecting
which variables to hide, i.e., we may select more xa , x b , . . .
than the minimal mumber necessary. We parametrize the
selection of which variables to hide, by modifying the control-
lable step operator, which is used in later sections to construct
a property ϕ that is realizable.

Synthesis of component implementations with partial infor-
mation is computationally hard, so we eliminate the hidden
variables from ϕ, using universal quantification, and express
the component specifications with formulas in which hidden
variables do not occur.

Problem 2 (Expressibility): Given a temporal operator ϕ as
in Problem 1, the set of variables xa , . . . from x 1, . . ., and the
remaining of those variables as xp , . . ., express the formula
∀∀∀∀∀∀ xp , . . . : ϕ(x 1, . . . ) as a quantifier-free formula.

This step requires quantifier elimination. Realizability re-
mains unchanged, due to how xa , . . . are selected above. The
resulting specification ψ is realizable with full information
because it mentions variables xa , . . . and does not mention
xp , . . ..

In Sec. V-C we discuss the abstraction from the controllable
step operator for specific variables, and in Sec. V-D we
parameterize the choice of which variables to hide. We start
by considering the safety part of the specification in Sec. V-B.

B. Preventing safety violations
The starting point is a specification for the assembled system

of the form

Assembly
∆
= Init ∧✷[Next ]vrs ∧ Liveness

where the conjunct Liveness is a conjunction of recurrence
properties, for example ✷✸Goal1 ∧ ✷✸Goal2. The property
Liveness can impose safety constraints when conjoined to the
property SM ! Init ∧ ✷[Next ]vrs . If this is not the case,
then the pair of properties SM ,Liveness is called machine-
closed [131, p. 261], [42, p. 519]. We decompose the
safety and liveness parts of the specification separately. After
decomposition, each component specification will contain only
“pieces” of liveness constraints. So the safety part should be
strong enough to prevent any component from “straying away”
to an extent that would violate the property Liveness .

The property SM may be too permissive to ensure that
Liveness will be satisfiable in the future. We need to
strengthen SM . The weakest safety property W that suffices is
the strongest safety property implied by Assembly , i.e., such
that

|= Assembly ⇒ W .

The property W is known as closure of the property
Assembly [132, p. 120], [42, p. 518], [48, pp. 261–262],
[133, Fig. 2] due to topological considerations [112] (see also
Remark 17 on page 33). If W is written in the form

W ≡ Init ∧✷[Next ]vrs ∧✷Inv ,

then the invariant Inv defines the largest set of states that can
occur in any behavior that satisfies the property Assembly .
The weakest invariant yields also the (unique) weakest safety
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assumption necessary in turn-based games with full informa-
tion (set of cooperatively winning states) [88], [124, §III-A].

Computing Inv for recurrence properties is straightforward
[25], [26] and shown for completeness in Algo. 11. The
case of GR(1) liveness is similar [14]. Let vars be a set of
variable names. Let init ,next be BDDs that represent the
state predicate I and the action N , which depend on only
primed and unprimed vars . Let goals be a tuple of BDDs
for the state predicates G1, . . . ,Gn . Let Goals ! ∧

j✷✸G j .
Let R ! Init ∧ ✷N ∧ Goals . The procedure LIVESTATES
computes the set of states from where the recurrence goals
can be repeatedly visited. The procedure REACHABLESTATES
computes the set of states that can be reached from the initial
condition. Their intersection yields the set of states that are
both reachable from initial conditions and from where the
recurrence goals can be repeatedly visited. The procedure
PRIMEIN(vars, u) substitutes primed for unprimed identifiers
in u , for each (unprimed) identifier in vars . The procedure
UNPRIMEIN performs the reverse operation. The procedure
PRIME(vars) returns the set resulting from priming each
(unprimed) identifier in vars . The procedure EXIST(vars, u)
existentially quantifies the variables vars in the BDD u .

Theorem 3 (Closure): ASSUME : Let Inv be the
state predicate returned (as a BDD) from the call
CLOSURE(init ,next , goals, vars) of the procedure CLOSURE
defined in Algo. 11. PROVE : The closure of the property R
is equivalent to the property Q ! Init ∧✷Inv ∧✷N .

In the case of the property Assembly from above, the action
N is [Next ]vrs .

Example 3: Fig. 12 illustrates the state predicate Inv that
results from closure with respect to the liveness goal ✷✸(s3∨
s7), and with node s1 as initial condition. The recurrence goal
is attainable from the nodes s1, s2, s3, s6, s7, but not from
the nodes s4, s5 [133, Fig. 2]. So s4, s5 are not included in
Inv . Even though s3 ∨ s7 can be repeatedly visited starting
from nodes s6, s7, these nodes are unreachable from the initial
condition, thus not included in Inv . "

Example 4: For the charging station example, the assembly
invariant Inv (when Env holds) is

∧ turn ∈ 1 . . 2 ∧ free ∈ 0 . . 1
∧ free x ∈ 0 . . 18 ∧ free y ∈ 0 . . 18 ∧ occ ∈ 1 . . 3
∧ pos x ∈ 1 . . 15 ∧ pos y ∈ 1 . . 15
∧ spot 1 ∈ 0 . . 1 ∧ spot 2 ∈ 0 . . 1
∧ ∨ ∧ (free x = 1) ∧ (free y = 1) ∧ (occ ∈ 2 . . 3)

∧ (spot 1 = 0) ∧ (spot 2 = 1)
∨ ∧ (free x = 2) ∧ (free y = 1) ∧ (occ = 1)

∧ (spot 1 = 1) ∧ (spot 2 = 0)
∨ ∧ (free x ∈ 1 . . 2) ∧ (free y = 1) ∧ (occ = 3)

∧ (spot 1 = 0) ∧ (spot 2 = 0)
∨ (free = 0)
∨ ∧ (free x = 2) ∧ (free y = 1) ∧ (occ = 3)

∧ (spot 2 = 0)

This invariant was symbolically computed, and the resulting
BDD was then converted to a minimal formula in disjunctive
normal form, with constraints on integer variables as con-
juncts. "

Algo. 11: Computing the closure of a temporal logic formula
of the form I ∧ ✷N ∧

∧
j ✷✸Gj . lambda y can be thought

of as an “anonymous” procedure that takes y as argument.

def CLOSURE(init ,next , goals, vars) :
r : = REACHABLESTATES(init ,next , vars)
z : = LIVESTATES(next , goals, vars)
return z ∧ r

def LIVESTATES(next , goals, vars) :
operator : = lambda y : PREIMAGE(y ,next , vars)
z : = TRUE
zold : = CHOOSE r : r ̸= z
while z ̸= zold :
zold : = z
zpre : = operator(zold)
for goal ∈ goals :

target : = zpre ∧ goal
z : = z ∧ LEASTFIXPOINT(operator , target)

return z

def REACHABLESTATES(init ,next , vars) :
operator : = lambda y : IMAGE(y ,next , vars)
return LEASTFIXPOINT(operator , init)

def LEASTFIXPOINT(operator , target) :
y : = target
yold : = CHOOSE r : r ̸= y
while y ̸= yold :
yold : = y
y : = y ∨ operator(y)

return y

def IMAGE(source, action, vars) :
u : = source ∧ action
u : = EXIST(vars, u)
return UNPRIMEIN(vars, u)

def PREIMAGE(target , action, vars) :
primed target : = PRIMEIN(vars, target)
u : = action ∧ primed target
qvars : = PRIME(vars)
return EXIST(qvars, u)

Goal

s2s1 s3

s4

Inv resulting from closure

s5

Goal

s6 s7

reachable but not live live but unreachable

Init

Fig. 12: An example of the state predicate Inv that results
from closure with respect to the recurrence goal ✷✸(s3 ∨ s7).
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A component’s action should constrain the next values of
only variables that the component controls. In addition, the
component should be constrained to preserve the invariant Inv .
The property W can be written as WInit ∧ ✷[WNext ]vrs ,
where [106, by INV2, Fig. 5, p. 888]

WInit
∆
= Inv ∧ Init

WNext
∆
= Inv ∧Next ∧ Inv ′.

The property Unzip(W , x , y) is defined using WNext
and the following actions as arguments of the operator
RawWhilePlusHalf

EnvNext(x , y , x ′)
∆
= [∃ y ′ : WNext ]x

SysNext(x , y , y ′)
∆
= [∃ x ′ : WNext ]y

For specifications that are interleaving for all components
except a deterministic scheduler, as those we discuss are (in
general, for specifications that in each step allow multiple
alternatives for state changes for at most one component), the
Step operator with the above actions implies that WNext is
satisfied by each step. The reason is that in each step, at most
one component can change in a non-unique way.

Remark 6: In the charging station example, any nonstut-
tering step of the assembly is a nonstuttering step of the
scheduler, which is assumed to take infinitely many non-
stuttering steps. The fixpoint algorithms we develop corre-
spond to a raw TLA+ context. When transitioning to the
raw logic, after stuttering steps are removed, the property
✷✸⟨SchedulerNext ⟩turn reduces to safety, because any non-
stuttering step of the assembly changes the variable turn . "

C. Hiding specific variables
Suppose we want to hide variable h in predicate

P(h, x , y , y ′). The environment controls variables h and x ,
and the component y . If we use unbounded quantification,
∀h : P(h, x , y , y ′), then in most cases the result will be
too restrictive, or FALSE. The quantified variable h should
be bounded, so a suitable antecedent Bound is needed. Using
this bound should not permit previously unallowed values for
x and y , thus

∧ ∃ h : Bound(h, x , y)
∧ ∀ h : Bound(h, x , y) ⇒ P(h, x , y , y ′)

We will use Inv(h, x , y) as a bound on h . It will be the case
that |= Bound(h, x , y) ⇒ ∃y ′ : P(h, x , y , y ′). As defined in
Sec. III, the controllable step operator when the component
can observe the values of variables x and h takes the form (to
reduce verbosity we omit the argument Target)

Step(x , y , h)
∆
= ∃ y ′ : ∀ x ′, h ′ :

∧ SysNext(h, x , y , y ′)
∧ EnvNext(h, x , y , h ′, x ′) ⇒ Target(h ′, x ′, y ′)

The component’s decisions cannot depend on the variable h ,
leading to the modified operator

StepH (x , y)
∆
=

∧ ∃ h : Inv(h, x , y)
∧ ∃ y ′ : ∀ x ′, h ′ : ∀ h :
∨ ¬Inv(h, x , y)
∨ ∧ SysNext(h, x , y , y ′)

∧ EnvNext(h, x , y , h ′, x ′) ⇒ Target(h ′, x ′, y ′)

Algebraic manipulation yields

StepH (x , y) ≡
∃ y ′ : ∀ x ′ :

∧ ∧ ∃ h : Inv(h, x , y)
∧ ∀ h : Inv(h, x , y) ⇒ SysNext(h, x , y , y ′)

∧ ∀ h ′, h :
∨ ¬ ∧ Inv(h, x , y)

∧ EnvNext(h, x , y , h ′, x ′)
∨ Target(h ′, x ′, y ′)

If Target is independent of h ′, (which is the case in Sec. VI),
then confining universal quantification to the first disjunct
yields

StepH (x , y) ≡
∃ y ′ : ∀ x ′ :

∧ ∧ ∃ h : Inv(h, x , y)
∧ ∀ h : Inv(h, x , y) ⇒ SysNext(h, x , y , y ′)

∧ ∨ ¬∃ h, h ′ : ∧ Inv(h, x , y)
∧ EnvNext(h, x , y , h ′, x ′)

∨ Target(x ′, y ′)

By defining

SimplerSysNext(x , y , y ′)
∆
=

∧ ∃ h : Inv(h, x , y)
∧ ∀ h : Inv(h, x , y) ⇒ SysNext(h, x , y , y ′)

SimplerEnvNext(x , y , x ′)
∆
=

∃ h, h ′ : ∧ Inv(h, x , y)
∧ EnvNext(h, x , y , h ′, x ′)

we obtain

StepH (x , y) ≡
∃ y ′ : ∀ x ′ :

∧ SimplerSysNext(x , y , y ′)
∧ SimplerEnvNext(x , y , x ′) ⇒ Target(x ′, y ′)

The resulting operator StepH is schematically the same
with that for the full information case. So the open-system
specification with hidden variables can be rewritten as an
open-system specification with no hidden variables, without
changing the set of states from where the property is realizable.
The eliminated variables do not appear in the component
specification, so further work focusing on that component
can be carried out in a full information context, including
GR(1) synthesis. This soundly solves Problem 2. The action
SimplerEnvNext abstracts environment details. Abstraction
for the environment is appropriate in a refined open-system
property, because of contravariance between component and
environment (assumptions should be weakened, guarantees
strengthened) [52], [3, Eq. (4.14), p. 325].

Example 5: Consider a 3 by 2 grid, with cell coordinates
given by y ∈ 1..3 and h ∈ 1..2, where the component controls
y and the environment h , and these variables can change in an
interleaving way (in one step y may change, in the next step
h may change, and so on, as determined by variable turn ,
similarly to Fig. 8). The actions are SysNext ! (turn =
1)∧ (y ∈ 1..3)∧ (y ′ ∈ 1..3)∧ (y−1 ≤ y ′)∧ (y ′ ≤ y+1) and
EnvNext ! (turn = 2)∧ (h ∈ 1..2)∧

(
(h ′ = h)∨ (h ′ = 2)

)
.
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If the objective is ✷✸(y = 3), then the component does not
need to know the value of variable h . During the attractor
computation for reasoning about realizability, the controllable
step operator will have y = 3 as first target, then y ∈ 2..3,
and the fixpoint will be y ∈ 1..3. In this case, the variable h
can be hidden from the component.

In contrast, the objective ✷✸(y = h) is unrealizable without
variable h being visible to the component, because the choice
of y ′ depends on the value of h . "

Example 6: To demonstrate the effect of hiding variables
in the context of the charging station example, consider the
action of the charging station’s environment. Without hiding
any state from the station, the environment action is (shown
for steps that it is the robot’s turn to change)
∧ turn = 2 ∧ turn ′ = 1 ∧ free ∈ 0 . . 1 ∧ free x ∈ 0 . . 18
∧ free y ∈ 0 . . 18 ∧ occ ∈ 1 . . 3 ∧ occ′ ∈ 1 . . 3
∧ pos x ∈ 1 . . 15 ∧ pos x ′ ∈ 1 . . 15 ∧ pos y ∈ 1 . . 15
∧ pos y ′ ∈ 1 . . 15 ∧ req ∈ 0 . . 1 ∧ req ′ ∈ 0 . . 1
∧ spot 1 ∈ 0 . . 1 ∧ spot 2 ∈ 0 . . 1
∧ ∨ ∧ (free = 1) ∧ (free x ∈ 0 . . 1) ∧ (occ = 3)

∧ (occ′ = 3) ∧ (pos x ′ = 1) ∧ (pos y ′ = 1)
∨ ∧ (free = 1) ∧ (free x ∈ 2 . . 18) ∧ (occ ∈ 2 . . 3)

∧ (occ′ = 3) ∧ (pos x ′ = 2) ∧ (pos y ′ = 1)
∨ ∧ (free = 1) ∧ (occ ∈ 1 . . 2) ∧ (occ′ = 1)

∧ (pos x ′ = 2) ∧ (pos y ′ = 1) ∧ (spot 2 = 0)
∨ ∧ (free = 1) ∧ (occ ∈ 1 . . 2) ∧ (occ′ = 2)

∧ (pos x ′ = 1) ∧ (pos y ′ = 1) ∧ (spot 1 = 0)
∨ (occ = 1) ∧ (occ′ = 1) ∧ (req = 0)
∨ (occ = 1) ∧ (occ′ = 1) ∧ (req ′ = 1)
∨ (occ = 2) ∧ (occ′ = 2) ∧ (req = 0)
∨ (occ = 2) ∧ (occ′ = 2) ∧ (req ′ = 1)
∨ (occ = 3) ∧ (occ′ = 3) ∧ (req = 0)
∨ (occ = 3) ∧ (occ′ = 3) ∧ (req ′ = 1)

∧ InvH

After hiding the robot’s coordinates pos x , pos y , the envi-
ronment action is simplified to
∧ turn = 2 ∧ turn ′ = 1 ∧ free ∈ 0 . . 1
∧ free x ∈ 0 . . 18 ∧ free y ∈ 0 . . 18
∧ occ ∈ 1 . . 3 ∧ occ′ ∈ 1 . . 3
∧ req ∈ 0 . . 1 ∧ req ′ ∈ 0 . . 1
∧ spot 1 ∈ 0 . . 1 ∧ spot 2 ∈ 0 . . 1
∧ ∨ (free = 1) ∧ (occ = 1) ∧ (occ′ = 1)

∨ (free = 1) ∧ (occ = 3) ∧ (occ′ = 3)
∨ ∧ (free = 1) ∧ (occ ∈ 1 . . 2) ∧ (occ′ = 2)

∧ (spot 1 = 0)
∨ (occ = 1) ∧ (occ′ = 1) ∧ (req = 0)
∨ (occ = 1) ∧ (occ′ = 1) ∧ (req ′ = 1)
∨ (occ = 2) ∧ (occ′ = 2) ∧ (req = 0)
∨ (occ = 2) ∧ (occ′ = 2) ∧ (req ′ = 1)
∨ (occ = 3) ∧ (occ′ = 3) ∧ (req = 0)
∨ (occ = 3) ∧ (occ′ = 3) ∧ (req ′ = 1)

∧ InvH

Details about safe positioning of the robot have been sim-
plified, because they are not necessary information for the
station’s operation. These expressions have been obtained by
using the invariant as a care predicate for the minimal covering
problem that yields the DNF. In particular

InvH
∆
=

∧ turn ∈ 1 . . 2 ∧ free ∈ 0 . . 1
∧ free x ∈ 0 . . 18 ∧ free y ∈ 0 . . 18
∧ occ ∈ 1 . . 3 ∧ spot 1 ∈ 0 . . 1 ∧ spot 2 ∈ 0 . . 1
∧ ∨ ∧ (free x = 1) ∧ (free y = 1) ∧ (occ ∈ 2 . . 3)

∧ (spot 1 = 0) ∧ (spot 2 = 1)
∨ ∧ (free x = 2) ∧ (free y = 1) ∧ (occ = 1)

∧ (spot 1 = 1) ∧ (spot 2 = 0)
∨ ∧ (free x ∈ 1 . . 2) ∧ (free y = 1) ∧ (occ = 3)

∧ (spot 1 = 0) ∧ (spot 2 = 0)
∨ (free = 0)
∨ ∧ (free x = 2) ∧ (free y = 1) ∧ (occ = 3)

∧ (spot 2 = 0)

The concept of a care predicate will be described in Sec. VII.
"

D. Choosing which variables to hide
Which variables can we hide without sacrificing realiz-

ability? We could enumerate combinations of variables to
hide, and check realizability for each one. This is inefficient
(there are exponentially many combinations to enumerate).
Instead, we parametrize which variables are hidden or not.
We redo Sec. V-C, but now the choice of hidden variables is
parametric. For each variable, a mask constant m is introduced
that “routes” the variable to take a visible or hidden value

Mask(m, v , h)
∆
= IF (m = TRUE) THEN h ELSE v

The rigid variable m models the availability or lack of
information. Following Sec. V-C, we replace h with the
selector expression to define a controllable step operator with
parametrized hiding as follows (where variable v is h for the
case that m = FALSE, meaning h visible)
MaskedInv(h, v , x , y , m)

∆
= LET r

∆
= Mask(m, v , h)

IN Inv(r , x , y)
PrmInv(v , x , y , m)

∆
= ∃ h : MaskedInv(h, v , x , y , m)

R(v , x , y , m)
∆
=

∃ y ′ : ∀ x ′, v ′ : ∀ h :
LET r

∆
= Mask(m, v , h)

IN ∨ ¬Inv(r , x , y)
∨ ∧ SysNext(r , x , y , y ′)

∧ ∨ ¬EnvNext(r , x , y , v ′, x ′)
∨ Target(v ′, x ′, y ′, m)

PrmStep(v , x , y , m)
∆
=

∧ PrmInv(v , x , y , m)
∧ R(v , x , y , m)

An important point is that we can “push” the substitution in-
wards, to obtain a controllable step operator over parametrized
actions
PrmStep(v , x , y , m) ≡

LET
MskInv(h)

∆
=

LET r
∆
= Mask(m, v , h)

IN Inv(r , x , y)
PrmInv

∆
= ∃ h : MskInv(h)

MskSysNext(h, y ′)
∆
=

LET r
∆
= Mask(m, v , h)
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IN SysNext(r , x , y , y ′)
PrmSysNext(y ′)

∆
=

∧ PrmInv
∧ ∀ h : MskInv(h) ⇒ MskSysNext(h, y ′)

MskEnvNext(h, v ′, x ′)
∆
=

LET r
∆
= Mask(m, v , h)

IN EnvNext(r , x , y , v ′, x ′)
PrmEnvNext(v ′, x ′)

∆
=

∃ h : MskInv(h) ∧MskEnvNext(h, v ′, x ′)
IN
PrmStep(v , x , y , m)

∆
= ∃ y ′ : ∀ x ′, v ′ :

∧ PrmSysNext(y ′)
∧ PrmEnvNext(v ′, x ′) ⇒ Target(v ′, x ′, y ′, m)

The LET expressions can be implemented either with syn-
tactic substitution of bitvector formulas (provided the variables
v and h can take the same values, and compatible type
hints are declared for them to aid bitblasting), or existential
quantification. We use existential quantification. The operator
PrmStep can be rearranged to obtain an equivalent result with
new actions and the full information Step, as in Sec. V-C. The
assumption that Target does not depend on v ′, which enables
that rewriting, holds only for m = TRUE, so this rewriting
takes place for specific variables, after the parametrization has
been used to select what variables to hide, as described in
Sec. VI. The above approach soundly solves Problem 1.

The parametrization is separate for each component. Fresh
mask constants are declared for this purpose. These masks in-
crease the number of Boolean-valued variables in the symbolic
computation, but are not quantified during controllable step
operations, and are Boolean-valued, whereas the variables they
mask are integer-valued. With n components and k (integer-
valued) variables in total (over all components), (n − 1)k
Boolean mask variables are introduced. These are parameters,
so the number of reachable states remains unchanged, and
thus the same number of controllable step operations will be
applied, and realizability fixpoints take the same number of
iterations, similar to arguments developed for parametrized
synthesis [94]. The number of components n involved in each
individual decomposition step is expected to not be large, so
that the design specification be understandable by a human.

The masks parametrize the interconnection architecture
between components, and allow for computing symbolically
those architectures that allow for decomposing the high-level
specification into a contract. We can think of the above scheme
as a sensitivity analysis of the problem with respect to the
information available to different components.

VI. DECOMPOSING A SYSTEM INTO A CONTRACT

A. Overview

The decomposition algorithm takes an (open or closed)
system specification and produces open-system specifications
for designated components. Each component is represented
by a collection of variables, whose behavior is specified by a
temporal property that can mention also other variables that
represent the component’s environment. We assume that the
specification allows components to stutter when variables from

other components change. So component interaction is syn-
chronous, in that nonstuttering environment steps are noticed
by the component implementation, but the components are
not required to react immediately to changes. This assumption
is useful for transitions between interconnection architectures
(Sec. VI-G3).

We describe the algorithm incrementally, starting with the
main idea. The first description neglects hidden variables and
complicated cases. We then add these details to obtain the
algorithm’s skeleton. The main idea is reasoning backwards
about goals to create a chain of dependencies of which
component is going to wait until which other component does
what. These obligations can be sketched roughly as follows

Component 1 : L1
∆
= ✷✸R1

Component 2 : L2
∆
= ✸✷P2 ∨✷✸R2

Component 3 : L3
∆
= ✸✷P3 ∨✷✸R3,

where the chaining is established by the implications

(R1 ⇒ ¬P2) ∧ (R2 ⇒ ¬P3).

Conjoining the above specifications, we can deduce the recur-
rence properties

L
∆
= ✷✸R1 ∧✷✸R2 ∧✷✸R3.

Each liveness property listed above should be ensured by
the designated component implementation. So property L1

is a guarantee from the perspective of component 1, and an
assumption from the perspective of component 2. From the
perspective of component 3, property L2 is an assumption,
and property L3 is a guarantee.

There is no notion of a “liveness assumption” in the context
of a single component specification. Viewing liveness only as
a “guarantee” agrees with real world practice: there is no point
in a behavior where we can decide that the liveness assumption
“has been violated” [42], [126]. Liveness “assumptions” are
meaningful in the context of multiple components, specified by
multiple temporal properties, a situation similar to possibility
properties [134], [10, §8.9.3]. The liveness part of a property
defined by the Unzip and WhilePlusHalf operators has no
distinct place that could be regarded as “assumption” (notably,
if G is a safety property, then F +−◃ G is a safety property [48,
§5.2, p. 261]).

A simple but necessary property of the specifications
L1,L2,L3 is the acyclic arrangement of the reasoning that de-
rives L [38], forming a proof lattice [44]. Mutual dependence
of safety properties is admissible due to how implication is
spread in a “stepwise” fashion over a behavior, as with the
operator WhilePlusHalf (Fig. 9). So what appears circular
for safety properties is a well-founded chain of implications
crisscrossing between components. Unlike safety properties,
liveness properties allow arbitrary deferment of obligations to
the future. This deferment is what allows circularity to arise
when liveness properties are mutually dependent. Thus, in
order to obtain sound conclusions about liveness properties of
an assembly, there should be no cycles of dependence among
liveness properties guaranteed by different components [49].

All the discussion that follows focuses on liveness and omits
the safety part of specifications. Safety is addressed by closure
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Goal

A ! Attractor1(Goal)

Trap
Unti

lA

Attractor1(A ∨ TrapUntilA)

Fig. 13: The basic idea of the approach.

and computation of component actions as described in Sec. V
(see also Appendix B). In the computations, safety is taken
into account in the Step operator within the Attractor and
Trap operators.

B. The basic algorithm
Consider two components 1 and 2. Suppose that we want

their assembly to satisfy the property L ! ✷✸Goal . We
want to find liveness properties L1,L2 for each component
that are realizable and conjoined imply L. If L is realizable
by component 1 alone, then we can let L1 be L and L2 be
TRUE. The interesting case is when accomplishing L requires
interaction between components. The basic idea is shown in
Fig. 13. For the objective Goal , the set

A
∆
= Attractor1(Goal)

contains those states from where component 1 can controllably
lead the assembly to the Goal . Component 1 cannot ensure
that Goal will be reached from outside A. So we need to
relax the requirement ✷✸Goal on component 1, by disjoining
another liveness property. Suppose that we could find a set
TrapUntilA from where component 2 can reach A and
component 1 can keep the assembly inside TrapUntilA until
A is reached. We can then write the liveness specifications

L2
∆
= ✷✸¬TrapUntilA

L1
∆
= ✸✷TrapUntilA ∨✷✸Goal

Property L2 is realizable by component 2 (because it can reach
A, which is outside TrapUntilA). If the set

C
∆
= Attractor1(A ∨ TrapUntilA)

covers all of the assembly’s initial conditions, then the property
L1 is realizable by component 1 from these initial conditions.
Realizability ensures that L1 and L2 are implementable. As-
sembling the implementations specified by L1 and L2, we can
deduce that the assembly satisfies L1 ∧ L2, and by

L1 ∧ L2 ⇒ ✷✸Goal

the assembly will operate as desired.
We could have simply found Attractor2(A) (from where

component 2 can lead the assembly to A), and continued
alternating among players, until a fixpoint is reached. The

Goal

A ! Attractor1(Goal)

T ! Trap1
(B ,A) ∧

¬A

B ! Attractor2(A)

Fig. 14: How traps are constructed (simple case).

resulting specifications would be chains of nested implica-
tions between recurrence goals, so not in GR(1) [124]. The
construction described can be regarded as subtracting goals
from each other, in order to avoid nested dependency.

We did not say how traps are computed, which we do now.
Two attributes characterize a trap:

• Component 2 should be able to ensure that the behavior
reaches A.

• Component 1 should be able to ensure that the behavior
remains within the trap until A is reached.

The largest set that satisfies the first attribute is the attractor

B
∆
= Attractor2(A).

The trap should be a subset of B . The largest subset of B that
satisfies the second attribute can be computed as the greatest
fixpoint

C
∆
= Trap1(B ,A).

The above is a shorthand for the trap operator defined in
Sec. III-D, with B corresponding to Stay and A to Escape.
The subscript 1 signifies that component 1 is existentially
quantified within the controllable step operator. By definition
of a trap,

(C ⇒ B) ∧ (A ⇒ C ).

So the desired trap set is

T
∆
= C ∧ ¬A.

These sets are illustrated in Fig. 14. Letting TrapUntilA ! T ,
we obtain realizable properties L1,L2 (the full specifications
include safety, initial conditions, and are defined using Unzip,
but this section focuses on the liveness parts).

The basic decomposition problem we are interested in, in
the presence of full information, is the following (we use
two variables for brevity, the statement generalizes to multiple
variables). A more detailed statement that includes safety and
an environment is given in Appendix B.

Problem 4: Let variable x represent component 1, and
variable y component 2. Let P(x , y) be a (satisfiable) closed-
system property with ✷✸Goal(x , y) as liveness. Assume that
P in each step allows non-unique changes to at most one of
x , y .
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Algo. 15: Basic algorithm for decomposing a recurrence goal,
in the presence of full information. Components 1 and 2 are
Player ,Team , respectively.

def DECOMPOSEGOAL(G ,Player ,Team) :
Traps : = list()
Y : = G
Yold : = CHOOSE r : r ̸= Y
while Y ̸= Yold :
Yold : = Y
A,T : = MAKEASSUMPTION(Y ,Player ,Team)
Traps.append(T )
Y : = A ∨ T

return Y ,Traps

def MAKEASSUMPTION(Goal ,Player ,Team) :
A : = Attr(Goal ,Player)
B : = Attr(A,Team)
T : = Trap(B ,A,Player) ∧ ¬A
return A,T

Find temporal properties ψ1,ψ2 with GR(1) liveness
such that IsRealizabley;x (ψ1) ∧ IsRealizablex ;y(ψ2) and(
ψ1(x , y) ∧ ψ2(x , y)

)
⇒ P(x , y).

Theorem 5: ASSUME : Algo. 15 returns a Y such that Inv ⇒
Y , and Inv is satisfiable, where Inv as in Sec. V.

PROVE : The properties ψ1(x , y),ψ2(x , y), with liveness
(✷✸Goal(x , y))∨

∨
i✸✷T i(x , y) and

∧
i✷✸¬T i(x , y), re-

spectively, solve Problem 4, where T i are the traps returned
by Algo. 15.

The above result can be applied also to other approaches
(e.g., based on raw TLA+ or LTL), with suitable changes to
IsRealizable and the safety part of specifications.

This algorithm derives from an earlier version for the case
without hidden variables [124], [135]. Covering all initial
conditions of the assembly is not possible in general [124, §III-
B], unless either safety is restricted [136, §V], or a syntactic
fragment larger than GR(1) is used [124, §IV-A], which is
equivalent to using auxiliary variables hidden by temporal
quantification. Although possible, in this paper we do not
apply any of these modifications to the specification, because
the cases that require them [124, Prop. 6] indicate that it is
better for the specifier to reconsider the specification.

C. Finding assumptions in more cases
Forming a trap is the key step for constructing liveness

assumptions. But the approach of Sec. VI-B can fail to find a
trap, even in cases when our intuition suggests otherwise. The
reason is too small a set B causing Trap1(B ,A) to be empty.
We use an example to explain why, and then a solution.

Example 7: Consider the graph shown in Fig. 16. Compo-
nent 1 chooses the next node when at a disk, and component 2
when at a box. A trap is found for Fig. 16, because component
2 can reach A from both nodes s3 and s4. Fig. 17 shows a
modification with the edge ⟨s3, s2 ⟩ added. No trap is found in
this case, because B∧¬A contains only node s4, so component

Goal

B ! Attr2(A)
A ! Attr1(Goal)

s2

s1

s3 s4 s5 s6

T ! Trap1(B ,A) ∧ ¬A

Fig. 16: An example where a trap is found.

Goal

B ! Attr2(A)

A ! Attr1(Goal)

s2

s1

s3 s4 s5 s6

escaping edge
edge that causes B
to shrink too much

Escape set
|= FALSE ≡ Trap1(B ,A) ∧ ¬A

Fig. 17: The simple approach cannot find a trap in this
example. Compared to Fig. 16, the failure is due to the edge
⟨s4, s3⟩.

2 can move “backwards” from s4 to s3. So a larger B is
needed, but why did B shrink compared to Fig. 16?

The set B shrunk because component 2 can no longer reach
A from node s3. Nevertheless, this inability is irrelevant in
the context of constructing a persistence goal for component
1. While pursuing the persistence goal T that we are about
to construct, component 1 is not going to move backwards
(s3 to s2), because it would interrupt its attempt to remain
forever within T . It is this behavior that the specifier’s intuition
suggests. But component 2 is unaware of this premise, and
neither can it depend on what component 1 will do, in order
to avoid circularity (remember that we are discussing about
liveness properties).

Enlarging B by the successors of states from where com-
ponent 2 can “escape” out of B can avoid the issue described
above. The result is shown in Fig. 18. Let the state predicate
Escape mean that the current node is s3. Define

Basin
∆
= B ∨ Escape

We seek a trap within Basin , so a trap T that satisfies the

Goal

Basin ! B ∨ Escape

A ! Attr1(Goal)

s2

s1

s3 s4 s5 s6

T ! Trap1(D ,A) ∧ ¬A

D ! Attr2(A ∨ ¬Basin) ∧ Basin ∧ ¬A

Fig. 18: Including the states where component 2 can escape
allows finding the trap suggested by the specifier’s intuition.
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A ! Attr1(Goal)

Goal

Basin := Attr2(A)

Escape

Holes := Basin ∧ Step2(Out)

Holes

Escape := Image(Holes) ∧Out

Out := ¬Basin

Fig. 19: Collecting escapes that can cause a trap set to not
form.

implication
T ⇒ Basin

If component 1 can escape outside of Basin , then it can escape
outside T too, by the contrapositive

(¬Basin) ⇒ ¬T

Thus, there is no loss in relaxing the goal A to A ∨ ¬Basin
for component 2. The corresponding attractor is

D
∆
= Attr2(A ∨ ¬Basin) ∧ ¬(A ∨ ¬Basin)

and accounts for the intent of component 1 to remain forever
inside the trap T that is about to be computed. This relaxation
of objective is shown in Fig. 18. The larger attractor D enables
a trap to form; the set of states

T
∆
= Trap1(D ,A) ∧ ¬A

is nonempty. Moreover, Attr1(T ∨ A) covers all nodes. So
the components can realize the properties

Component 2 : L2
∆
= ✷✸¬D

Component 1 : L1
∆
= ✸✷T ∨✷✸Goal

Instead of an empty trap, we obtained a contract, because T ⇒
D , so L2 ⇒ ✷✸¬T . The issue discussed in this section does
arise in practice; for instance in the landing gear example of
Sec. VIII. "

The above discussion referred to individual states. A sym-
bolic approach relies on manipulating collections of states.
Fig. 19 illustrates how what we described above is symbol-
ically implemented. The Basin is initialized as (the symbol
: = indicates that the identifier Basin is going to change value
during the algorithm’s execution, in later sections)

Basin : = Attr2(A).

The states from where component 2 can force a step that exits
the Basin are those in the set

Holes : = Basin ∧ Step2(¬Basin).

Steps from Holes to the exterior of Basin lead to the set

Escape : = Out ∧ Image(Holes)

where Image is the existential image operator (all unprimed
flexible variables are existentially quantified), defined as

Algo. 20: Extended algorithm that finds decompositions in
more cases. The procedure DECOMPOSEGOAL is the same
with Algo. 15 and is not shown here.

def MAKEASSUMPTION(Goal ,Player ,Team) :
A : = Attr(Goal ,Player)
Basin : = Attr(A,Team)
Escape : = TRUE
while (¬ |= Escape ≡ FALSE) :
Out : = ¬Basin
Holes : = Basin ∧ Step(Out ,Team)
Escape : = Out ∧ Image(Holes ∧ Inv ,Team)
Basin : = Basin ∨ Escape
TeamGoal : = A ∨ ¬Basin
D : = Attr(TeamGoal ,Team) ∧ Basin
T : = Trap(D ,A,Player) ∧ ¬A

return A,T

Image(x , y , Source( , ), Next( , , , ))
∆
=

∃ p, q : Source(p, q) ∧Next(p, q , x , y)

The resulting Basin is used for computing D : = Attr2(A ∨
¬Basin) ∧ Basin ∧ ¬A and Trap1(D ,A) ∧ ¬A. If the latter
is nonempty, then we have found a trap. Otherwise, the above
computation is iterated using the larger Basin as described in
the following sections.

Theorem 6: Algo. 20 solves Problem 4, similarly to Theo-
rem 5, in more cases than Algo. 15.

Fig. 18 is a problem where Algo. 20 returns a decomposi-
tion, whereas Algo. 15 does not.

D. Taking observability into account

So far we ignored that each component observes different
information. What information is available depends on the pa-
rameter values (Sec. V). Each component specification should
be expressed using only variables that it observes, which is not
the case in previous sections. In order to ensure this property,
we use the following operators. The operator Maybe takes a
state predicate P(r , x , y) and if r is hidden, then Maybe is
true at states that could possibly satisfy P (if r is visible,
then Maybe is equivalent to P ). The parameter m determines
whether r is visible or not. The operator Observable describes
states that could possibly satisfy the state predicate Inv (with
respect to hidden variables), and at which it is possible to
observe whether we are inside P provided that we are inside
R.

Maybe(v , x , y , m, P( , , ))
∆
=

∃ h : LET r
∆
= Mask(m, v , h)

IN P(r , x , y)

Observable(v , x , y , m, P( , , ),
R( , , ), Inv( , , ))

∆
=

∧Maybe(v , x , y , m, Inv)
∧ ∀ h : LET r

∆
= Mask(m, v , h)

IN R(r , x , y) ⇒ P(r , x , y) P is observable within R
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Some operator arguments are omitted in the discussion below.
Expressing specification objectives using only visible variables
allows for using the Step operator with suitably parametrized
component and environment actions (Sec. V-C). Thus, we
can apply the Attractor and Trap operators. The sets of
states when observability is taken into account are shown
in Fig. 21. The indices correspond to components, with the
mask parameters that correspond to each of them. The main
difference with Sec. VI-C is that observability is required when
alternating between components. Specifically,

• Goal is replaced by G ! Obs1(Goal) for computing A
• A is replaced by U ! Obs2(A) for computing D
• D is replaced by Stay ! Obs1(D) for computing T .

The next theorem establishes the connection between these ob-
jectives of components 1 and 2. The theorem is stated without
mentioning the parameters, but applies also to parametrized
computations.

Theorem 7 (Soundness): ASSUME : The sets of states D and
T are computed as in Fig. 21. PROVE : The property

P
∆
= ✷✸¬D

is realizable by component 2. The property

Q
∆
= ✷ ∨ ¬(T ∨A)

∨ (✸✷T ) ∨✸A

is realizable by component 1. The implication holds

|= (T ∧ Inv) ⇒ D

A detailed proof can be found in the appendix.

PROOF SKETCH: By its definition, D is contained in Basin ∧
¬U , so (U ∨ Out) ⇒ ¬D . States in D are contained in the
attractor of U ∨Out , so the property ✷(D ⇒ ✸(U ∨Out)) is
realizable by component 2. Thus, ✷(D ⇒ ✸¬D) is realizable
by component 2, and this property is equivalent to ✷✸¬D .
This proves the first claim.
From the trap Z ! Trap1(Stay ,A), component 1 can either
eventually reach A or remain forever within Z ∧ ¬A, where
(Z ∧¬A) ≡ T . By definition of T , it follows that (T ∨A) ⇒
Z . So from any state in T ∨ A, component 1 can realize
✸A ∨✸✷T . This proves the second claim.
By definition of T , T ⇒ Stay . By definition of Stay , (Stay∧
Inv) ⇒ D . Thus, (T ∧ Inv) ⇒ D . QED

Theorem 7 implies that component 1 cannot prevent com-
ponent 2 from reaching ¬D . So it ensures that component 1
cannot stay forever within T , and that if the behavior exits
T , then component 1 can ensure A is reached. As component
2 moves towards ¬D , the behavior does exit T . Therefore,
progress of component 2 can be utilized by component 1 for
progress towards its recurrence objective A. Theorem 7 is
the building block for computing more complex dependencies
of objectives. For a single recurrence goal of component 1,
multiple traps may be needed to cover the desired set of
states (for which we use the global invariant Inv ). If the
procedure MAKEPINFOASSUMPTION computes A,T ,D , then
by iterating this procedure until a least fixpoint is reached, we
can find several traps, such that the corresponding persistence

G ! Obs1(Goal)

Goal

A ! Attr1(G)
U ! Obs2(A)

Basin

D ! ∧ Attr2(U ∨Out)
∧ Basin ∧ ¬U

Stay ! Obs1(D)

T ! Trap1(Stay,A) ∧ ¬A
Out ! ¬Basin ∧Maybe2(Inv)

Fig. 21: Accounting for observability when computing as-
sumptions.

objectives suffice in order to eventually reach the Goal . This
use is illustrated by the pseudocode

Y : = Observable1(Goal)
Yold : = CHOOSE r : r ̸= Y
while Y ̸= Yold :
Yold : = Y
A,T ,D : = MAKEPINFOASSUMPTION(Y , . . . )
(* . . . store D *)
Y : = A ∨ T

The procedure MAKEPINFOASSUMPTION is defined in
Sec. VI-F. This computation is in analogy to the least fixpoint
computed for one goal in a GR(1) game [118].

Problem 8: Let variables x 1, . . . represent component 1 and
variables y1, . . . represent component 2, and turn a scheduler.
Let P(x 1, . . . , y1, . . . , turn) be a (satisfiable) closed-system
property, with ✷✸Goal(x 1, . . . , y1, . . . , turn) as liveness. As-
sume that P in each step allows non-unique changes to at most
one of the components, in a turn-based way via the scheduler.

Find those subsets of variables xa , . . . and yp , . . ., and prop-
erties ψ1(x 1, . . . , yp , . . . , turn),ψ2(xa , . . . , y1, . . . , turn)
with GR(1) liveness that depend on only the variables
shown, such that IsRealizablex1,...,turn;yp ,...(ψ1) ∧
IsRealizablexa ,...,turn;y1,...(ψ2), and(
ψ1(x 1, . . . , yp , . . . , turn) ∧ ψ2(xa , . . . , y1, . . . , turn)

)
⇒

P(x 1, . . . , y1, . . . , turn).
Algo. 22 soundly solves Problem 8, as follows.
Theorem 9: Let the parameters m take values that corre-

spond to making variables xa , . . . visible to component 2, and
yp , . . . to component 1. If Algo. 22 returns a Y such that for
those m values Maybe1(Inv) ⇒ Y , and Inv is satisfiable,
then the properties ψ1,ψ2 with liveness

✷✸G(x 1, . . . , yp , . . . , turn)∨
∨

i✸✷T i(x 1, . . . , yp , . . . , turn)

and ∧
i✷✸¬D i(xa , . . . , y1, . . . , turn),

respectively (and safety as in Sec. V) solve Problem 8.
Example 8: In the charging station example, for the recur-

rence goal ✷✸(req = 0) the trap that is computed when the
robot can observe the variables free, free x , turn is
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T
∆
=

∧ turn ∈ 1 . . 2 ∧ free ∈ 0 . . 1 ∧ free x ∈ 0 . . 18
∧ pos x ∈ 1 . . 15 ∧ pos y ∈ 1 . . 15 ∧ req ∈ 0 . . 1
∧ ∨ (turn = 1) ∧ (free x ∈ 1 . . 2) ∧ (req = 1)

∨ (free = 0) ∧ (req = 1)

The goal ✸✷T ∨✷✸(req = 0) can be understood as follows.
The robot issues a request for recharging by setting req = 1. It
cannot set req = 0 unless it has reached the position indicated
as free by free = 1. The robot is allowed to wait while
free = 0 (the station has not indicated any spot as available),
or until free = 1 and the station has indicated an available
spot, and it is not the robot’s turn (turn = 1, not 2). The
disjunct that involves turn = 1 appears in order to allow the
charging station to satisfy the generated recurrence goal ¬D
(given below). If turn = 1 was absent from that disjunct, then
the robot could raise a request (req = 1), and then simply
ignore that the station did react by offering a spot (free = 1),
and idle, without responding by reaching the spot, in order to
be able to set req = 0. In other words, such a larger T would
have relaxed the objective ✸✷T ∨✷✸(req = 0) too much.

The trap T corresponds to the recurrence objective ✷✸¬D
that is generated for the charging station provided it observes
the variables req , occ, turn

D
∆
=

∧ turn ∈ 1 . . 2 ∧ free ∈ 0 . . 1
∧ free x ∈ 0 . . 18 ∧ free y ∈ 0 . . 18 ∧ occ ∈ 1 . . 3
∧ req ∈ 0 . . 1 ∧ spot 1 ∈ 0 . . 1 ∧ spot 2 ∈ 0 . . 1
∧ req = 1
∧ ∨ ∧ (turn = 1) ∧ (free x = 1) ∧ (free y = 1)

∧ (occ ∈ 2 . . 3) ∧ (spot 1 = 0) ∧ (spot 2 = 1)
∨ ∧ (turn = 1) ∧ (free x = 2) ∧ (free y = 1)

∧ (occ = 1) ∧ (spot 1 = 1) ∧ (spot 2 = 0)
∨ ∧ (turn = 1) ∧ (free x = 2) ∧ (free y = 1)

∧ (occ = 3) ∧ (spot 2 = 0)
∨ ∧ (turn = 1) ∧ (free x ∈ 1 . . 2) ∧ (free y = 1)

∧ (occ = 3) ∧ (spot 1 = 0) ∧ (spot 2 = 0)
∨ (free = 0)

This recurrence objective requires from the station to react by
indicating some spot as free, and also make sure that the spot is
not taken (as indicated by the variables spot 1, spot 2). The
above expressions were computed from BDDs by using the
approach described in Sec. VII, and the conjunct req = 1 was
factored out of the disjuncts for brevity of the presentation.

"

E. Multiple recurrence goals

The results of Sec. VI-D are about one recurrence goal.
By repeating the computation for different recurrence goals,
for example ✷✸R1 and ✷✸R2 for component 1, suitable
realizable properties can be found, for example ✸✷P1∨✷✸R1

and ✸✷P2∨✷✸R2. However, conjoining these two properties
would not yield a GR(1) property. Instead, a GR(1) property
can be formed by a suitable combination described below, pro-
vided that ✷✸¬P1∧✷✸¬P2 are implemented by components
that can realize them irrespective of how component 1 behaves
(unconditionally).

Relaxing a property preserves realizability. More precisely,
if a property P is realizable, and P implies Q , then Q is
realizable.

Proposition 10 (Relaxation): ASSUME : TEMPORAL P ,Q
PROVE : (IsRealizable(P) ∧ (P ⇒ Q)) ⇒ IsRealizable(Q).

For what we are interested in, let

L
∆
= ∧ ✸✷P1 ∨✷✸R1

∧ ✸✷P2 ∨✷✸R2

Q
∆
= ∨ ✸✷P1 ∨✸✷P2

∨ ✷✸R1 ∧✷✸R2

It is the case that L ⇒ Q , so if a component can realize L,
then it can realize Q . The reverse direction does not hold in
general. Nonetheless, if a behavior σ satisfies

σ |= ¬(✸✷P1 ∨✸✷P2)

and σ arises when using a component that implements Q ,
then it follows that σ |= ✷✸R1 ∧ ✷✸R2. This establishes
the reverse direction in the presence of other components that
implement ✷✸¬P1 and ✷✸¬P2. This reasoning leads to the
following theorem.

Theorem 11: Let Q ∆
= ∨ ✸✷T 1 ∨✸✷T 2

∨ ✷✸R1 ∧✷✸R2

ASSUME : IsRealizable1(Q) ∧ ∧ ¬D1 ⇒ ¬T 1

∧ ¬D2 ⇒ ¬T 2

PROVE : ∀f : ∨ ¬ ∧ IsARealization1(f ,Q)
∧ Realization1(f ,Q)
∧ ✷✸¬D1 ∧✷✸¬D2

∨ ✷✸R1 ∧✷✸R2
where IsARealization is the modification of IsRealizable that
results from making f , g , y0,mem0 arguments. To emphasize
the main points, we have simplified the notation, lumping
all these arguments as f , and letting the subscript 1 indicate
component 1. The discussion above generalizes to more than
two recurrence properties in an analogous way.

F. Detecting solutions in the presence of parametrization
The implementation of the computation described in

Sec. VI-D is shown in Algo. 22. The controllable step operator,
fixpoint and other computations are parametrized with respect
to the communication between the components, as described
in Sec. V. The parameters are indexed by component and
current recurrence goal, which is the purpose of passing Team
and Player as arguments. Player corresponds to component
1 and Team to component 2 in earlier sections. The renaming
is in anticipation of discussing the case of more than two
components in Sec. VI-G2.

Iteratively enlarging the Basin does not necessarily lead
to a monotonic behavior of the trap ηplayer . To see why,
consider the effect of increasing Basin to the computation
within the procedure MAKEPAIR, when T is empty. The
TeamGoal shrinks, so Attr(TeamGoal ,Team) may shrink
(not necessarily), but Basin ∧ ¬TeamGoal becomes larger.
Thus, D may become larger, leading to a larger Stay , thus
possibly to a nonempty T . This is possible, but not necessarily
the case. The largest Basin is TRUE, and corresponds to the
basic case of Sec. VI-B, which can fail as demonstrated by
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Algo. 22: Algorithm for constructing contracts of recurrence-
persistence pairs.

def MAKEPINFOASSUMPTION(Goal ,Player ,Team) :
The player can observe its own variables.
Some team variables are hidden from the player,
as determined by parameters. Vice versa for the team.
So the parametrizations express different perspectives.

G : = Observable(Goal ,Player)
A : = Attr(G ,Player)
TeamGoal : = Observable(A, Inv , Inv ,Team)
Basin : = Attr(TeamGoal ,Team)
Escape : = TRUE
Converged : = FALSE

L1 while (¬ |= Escape ≡ FALSE) :
Complement within team state space.

L2 Out : = ¬Basin ∧Maybe(Inv ,Team)
Holes : = Basin ∧ Step(Out ,Team)
Escape : = Out ∧ Image(Holes ∧ Inv ,Team)

L3 Escape : = Maybe(Escape,Team)
∧Out ∧ ¬Converged

L4 Basin : = Basin ∨ Escape
ηplayer , ηteam : = MAKEPAIR(

A,Basin,Player ,Team)
Converged : = Converged

∨NonEmptySlices(ηplayer )
return A, ηplayer , ηteam

def MAKEPAIR(A,Basin,Player ,Team) :
TeamGoal : = ∨Observable(A, Inv , Inv ,Team)

∨ ¬Basin ∧Maybe(Inv ,Team)
D : = Attr(TeamGoal ,Team)

∧Basin ∧ ¬TeamGoal
Stay : = Observable(D , Inv , Inv ,Player)
T : = Trap(Stay ,A,Player) ∧ ¬A
return T ,D

Fig. 17. So enlarging the Basin after a trap forms can lead
(back) to an empty trap.

To avoid regressing to an empty trap, as soon as a trap
set is found, the iteration should terminate. In absence of
parameters this is a straightforward check whether ηplayer
is nonempty. However, this does not apply to parametrized
computations. Each parameter valuation defines a “slice” of
the state-parameter space, as shown in Fig. 23. A different
number of iterations can be necessary for a trap to form in
each slice. For this reason, as soon as a trap is found for some
parameter values, those are “frozen” in further iterations, as
illustrated in Fig. 24. The variable Coverged is used for this
purpose. The operator NonEmptySlices(ηplayer ) ! ∃vars :
ηplayer abstracts the variables of all players, in order to find
the parameter values such that ηplayer is not FALSE. This
approach ensures that traps are recorded when found, and that
the iteration terminates.

Theorem 12 (Termination): ASSUME : A finite number of

{}
{“x”}

{“y”} {“x”, “y”}

Visible variables

Fig. 23: Slices of the state space that correspond to different
assignments of values to the parameters.

Parameter assignments

Iteration 1 Iteration 2 Iteration 3

converged, no trap
converged, traps found

has not converged yet

The slices that have converged are frozen in later iterations.

Fig. 24: In iterations of non-monotonic operators that depend
on parameters, when a solution is found for some parameter
values (a slice), then no further iterations should occur for
those values.

states satisfies the global invariant Inv . PROVE : Algo. 22
terminates in a finite number of iterations.
A proof is given in Appendix C.

1) Characterizing the parametrization: Parameters are
TLA+ constants, also known as rigid variables [10].
Parametrization has a “static” effect: the controllable step
operator quantifies over only (primed) flexible variables, so
the number of quantified variables remains unchanged. Each
“slice” obtained by assigning values to parameters has di-
ameter (the farthest two states can be apart in number of
transitions) no larger than the state space of the assembly
without any parametrization.

So the number of iterations until reaching fixpoints in
attractor and other computations is the same with and without
parametrization (because the case of no hidden variables
corresponds to a parameter valuation). Similar observations
have been made for the case of parametrized reachability
goals [94, pp. 69, 80].

One difference with parametrization of goal sets is that
those can be encoded directly with existing game solvers
(by letting the parameters be flexible variables constrained to
remain unchanged [106, Note 16]), whereas the parametriza-

22



tion of information studied here requires using substitution
(equivalently, rigid quantification) and quantification in order
to hide the selected variables in the component actions (the
resulting parametrized actions can still be used with the usual
controllable step operator).

G. Other considerations
1) Covering the global invariant: The selection of inter-

connection architecture (possibly different for each recurrence
goal) is constrained to ensure that the “root” component (com-
ponent 1 in the preceding sections) can realize its recurrence
goals from all states that satisfy the global invariant Inv .
The assumption that specifications do not force immediate
component reactions ensures that when each recurrence goal
is reached, a nonblocking step is possible in transition to
pursuing the next recurrence goal. So if the states that satisfy
the fixpoint Y in Sec. VI-D cover the invariant Inv from the
viewpoint of the component, then the generated specification
is realizable, in particular

|= Maybei(Inv) ⇒ Y ,

where i indicates the component under consideration. This
constraint is required in order to restrict the parameter values
that constitute admissible solutions. An alternative formulation
is possible, where an outermost greatest fixpoint is computed
in order to find the largest set of states from where the
root component can realize its goals, as a function of the
parameters. Nonetheless, if this set of states does not cover the
global invariant, this indicates that the assembly specification
may need modification, in order to ensure that the assembled
system can work from all states that it is expected to, based
on the assembly specification before decomposition.

2) Systems with more than two components: By applying
Theorem 7 hierarchically in an acyclic way, we can deduce
properties of the assembled implementations from the com-
ponent specifications. The previous sections were formulated
in terms of two components. The same approach applies to
multiple components, as follows. The components are parti-
tioned into a “root” component, and the rest form a “team”.
The decomposition algorithm is applied to two players: the
root component and the team. In this step, the team is treated
as if it was a single player. The specification that is generated
for the team needs to be decomposed further. This is achieved
by applying the same algorithm recursively, using as goal the
generated ¬D . In other words, what is generated as ¬D for the
team at the top layer becomes the Goal for one of the team’s
components at a lower layer of decomposition. Components
are removed, until the team is reduced to a singleton. We
will see an example of this kind with three components in
Sec. VIII.

When the procedure MAKEPAIR of Algo. 22 is called for
decomposing a subsystem, the set of states Stay can result
smaller than intuition suggests. The reason is that when we
write specifications by hand, we reason “locally”, i.e., under
the condition that we are constructing a specification for the
team to reach Goal , so we implicitly condition our thinking
in terms of ¬Goal ∧ Inv . This condition can be applied to the

algorithm in order to improve observability. This modification
is obtained by the replacement

Stay : = Observable(D ,Within ∧ Inv , Inv ,Player),

where Within is the set of states within which the constructed
objectives are needed. The trade-off is that the resulting per-
sistence goal can “protrude” outside the set of states Within .
What needs to be checked in that case is that the intersection
of the persistence goal with ¬Within is outside sets where
other components depend on that component (for example,
the root component), or otherwise subsumed by some other
persistence goal of the same component.

3) Switching interconnection architecture: Different recur-
rence goals can be associated to different interconnection
architectures between components. To progress towards each
goal with the generated specifications, the system should
switch between the different interconnections. This switching
is controlled by the root component, which is component 1 at
the first stage of decomposition. In each interconnection mode,
different variables are communicated between components.
The root component switches between interconnections when
it observes that the current recurrence goal has been reached.
Each interconnection is signified by the value of a variable
controlled by the root component (an additional field in the
record discussed below). If this variable is visible to all
other components, then switching occurs in a single step.
Otherwise, the change of mode is propagated from component
to component along a fixed spanning tree over the components
(by copying the value of the mode variable), starting from
the root component, and takes multiple steps to complete.
In configurations that occur intermediately while transitioning
from one interconnection to another, if a component has insuf-
ficient information to change its state (because its neighboring
components have not yet all switched to the new mode), then
the component takes a stuttering step, which is allowed by its
specification, as assumed earlier.

Each component is required to not violate the shared
invariant Inv (via closure of the overall specification), so
no change of another component would lead outside that
invariant. The decomposition algorithm ensures that for each
interconnection, the components can satisfy the corresponding
liveness objective from within this invariant.

The information available to each component is a pre-
requisite for realizability of its objectives. In the case of
more than one interconnections, the goals of components are
conditioned on the corresponding interconnection mode. For
example, let cnct ∈ 1..2 represent the current interconnec-
tion mode. If in mode 1 decomposition yields the liveness
objective ✸✷P ∨ ✷✸G for a component, then this becomes
✸✷(P ∧ (cnct = 1)) ∨ ✷✸((cnct = 1) ⇒ G). This can
be regarded as a component assuming that if it provides
enough information to its environment, then it can request
reactions that become feasible for the environment when that
information is available. While information availability does
not match any interconnection mode, a component can stutter,
because its liveness requirements are “turned off”.

To model the switching between different interconnection
architectures in TLA+, we formalize the interface between
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each pair of components by using a variable that takes records
as values. A record is a function with a finite set of strings
as domain [10, p. 49]. For example, if x , z are variables that
model component 1, then these are not declared as variables
in the specification of component 2, because doing so would
make them uninterruptedly visible to component 2. Instead,
a record-valued variable vars1 ∈ [SUBSET {“x”, “z”} → Val ]
models the communication channel from component 1 to
component 2. In different interconnection modes, the variable
vars1 takes values with different domain, thus making differ-
ent variables of component 1 visible to component 2.

VII. GENERATING MINIMAL SPECIFICATIONS

We use binary decision diagrams [24], [137] for the sym-
bolic computations described in previous sections. BDDs are
typically used in symbolic model checking for verifying that
a system has certain properties [26], [25], in synthesis of
controllers [138], [139] (e.g., as circuits), and in electronic
design automation [140], [141]. These applications are di-
rected from user input to an answer of either a decision
problem (yes/no), or some construct (e.g., a circuit) to be
used without the need for a human to study its internal
details. When more details are needed, for example if the
input needs to be corrected, then in many cases the interaction
between human and machine becomes enumerative, by listing
counterexamples, satisfying assignments, and other witnesses
that demonstrate the properties under inspection.

The BDDs in our approach represent specifications, so we
want to read them. BDDs themselves are not a representation
that humans can easily inspect and understand. For example,
the global invariant of the charging station example was gen-
erated from the BDD shown in Fig. 25. A simple alternative
would be to list the satisfying assignments for this BDD. How-
ever, there are 3.9 million satisfying assignments, so inspection
of a listing would not be very helpful for understanding what
predicate the BDD corresponds to. An additional difficulty
is that we work with integer-valued variables, and these are
represented using Boolean-valued variables (“bits”) in the
BDD. We are used to reading integers, not bitfields.

We are interested in representing the answer (a specification)
in a readable way. A canonical form for representing Boolean
functions is in disjunctive normal form (DNF). Having to
read less usually helps with understanding what a formula
means, so we formulate the problem as that of finding a DNF
formula with the minimal number of disjuncts necessary for
representing a given Boolean predicate. The next question is
how the disjuncts should be written. In the propositional case,
each disjunct is a conjunction of Boolean-valued variables.
We are interested in integer-valued variables, so we choose
conjunctions of interval constraints of the form x ∈ a..b. In
the context of circuit design the problem of finding a minimal
DNF is known as two-level logic minimization [142], [143],
[144], [27]. Logic minimization is useful for reducing the
number of physical elements used to implement a circuit, thus
the circuit’s physical area. The problem of finding a minimal
DNF for a given Boolean function can be formulated as a
minimal set covering problem, and is NP-hard. Algorithms for

Fig. 25: The binary decision diagram from which the formula
of the global invariant was generated for the charging station
example in Sec. V-B. The variable names shown are the “bits”
that are used to represent the integer-valued variables. A BDD
is not very suitable to help a human understand what Boolean
expression it represents.

logic minimization are typically based on a branch-and-bound
search.

We implemented an exact minimal covering algorithm [27]
that is based on a branch-and-bound search, together with
symbolic computation of the essential prime implicants and
cyclic core (primes that are neither essential nor dominated
by other primes) during the search [145], [146], [147], [148].
The original algorithm was formulated for the general case
of a finite (complete) lattice, and symbolically implemented
for the case of the Boolean lattice. As remarked above,
we use integer-valued variables, so we are interested in the
lattice of integer hyperrectangles. The propositional minimal
covering algorithm is not suitable for the case of integer
variables, because the minimization is in terms of constraints
on individual bits, ignoring the relation between the bits that
are part of the same bitfield. This leads to awkward expressions
that are difficult to understand. In other words, the “palette”
of expressions available when working directly with bits is
not easy to understand, as opposed to constraints of the form
x ∈ a..b, where x is an integer-valued variable. For this
purpose, we implemented the exact symbolic minimization
method for the lattice of integer orthotopes (hypperrectangles
aligned to axes). The implementation is available as part of the
Python package omega [149]. Briefly, the problem of finding
a minimal DNF formula of the form we described can be
expressed as in Fig. 26, where f is the Boolean function that
is represented as a BDD and a formula is to be found. The
Domain in our approach is a Cartesian product of integer
variable ranges.

A useful feature of the approach is the possibility of defining
a care predicate (that defines a care set). A care set can
be thought of as a condition to be taken as “given” by the
algorithm when computing a minimal DNF. For example,
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EXTENDS FiniteSets, Integers
CONSTANTS Variables, Domain, CareSet
Assignments

∆
= [Variables → Int ]

ASSUME
∧ (Domain ⊆ Assignments) ∧ (CareSet ⊆ Domain)
∧ IsFiniteSet(Domain) ∧ IsFiniteSet(Variables)
∧ (CareSet ̸= {}) ∧ f ∈ [Domain → BOOLEAN ]

EndPoint(k)
∆
= [1 . . k → Domain]

IsInOrthotope(x , a, b)
∆
= ∀ var ∈ Variables :

(a[var ] ≤ x [var ]) ∧ (x [var ] ≤ b[var ])
IsInRegion(x , p, q)

∆
= ∃ i ∈ DOMAIN p :

IsInOrthotope(x , p[i ], q [i ])
SameOver(f , p, q , S )

∆
= ∀ x ∈ S :

f [x ] ≡ IsInRegion(x , p, q)
p, q define a cover that contains k orthotopes

IsMinDNF (k , p, q , f )
∆
=

∧ {p, q} ⊆ EndPoint(k)
∧ SameOver(f , p, q , CareSet)
∧ ∀ r ∈ Nat : ∀ u, v ∈ EndPoint(r) :

∨ ¬SameOver(f , u, v , CareSet) not a cover, or
∨ r ≥ k u, v has at least as many disjuncts as p, q

Fig. 26: The roblem of finding a minimal DNF formula.

consider the formula

∨ (x ∈ 1..5) ∧ (y ∈ 3..4)
∨ (x ∈ 1..2) ∧ (z ∈ 1..3) ∧ (y ∈ 3..4)

Using the care set defined by Care ! y ∈ 3..4, the above
formula can be simplified to

∧ ∨ (x ∈ 1..5)
∨ (x ∈ 1..2) ∧ (z ∈ 1..3)

∧ y ∈ 3..4

This transformation is a form of factorization, where the care
predicate is used as a given conjunct. When working with
specifications, such factorization allows using other parts of
the specification (e.g., an invariant), or other versions (e.g.,
a predicate before it is modified) to simplify the printed
expressions. Minimization is performed with respect to a given
care predicate.

Besides reading the final result of a symbolic computation,
we have found the method of decompiling BDDs as minimal
DNF formulas over integer-valued variables an indispensable
aid during the development of symbolic algorithms. Symbolic
operations are implicit: the developer cannot inspect the values
of variables as readily as for enumerative algorithms. It is
highly unlikely that any symbolic program works on first writ-
ing. Bugs will usually be present, and some debugging needed.
Being able to print small expressions for the BDD values of
variables in symbolic code has helped us considerably during
development efforts. Another area of using the algorithm is
for inspecting controllers synthesized from temporal logic
specifications.

Example 9: We show the usefulness of decompiling BDDs
by revisiting the charging station example from Sec. V-B.
Fig. 25 shows the BDD that results from computing the

(Auto)pilot &

Landing gear subsystem

Radar altimeter

Gear control gear Door control door

aircraft behavior

Air data
Flight control
module mode

height

speed
mode gear , door

gear

door

Fig. 27: Landing gear avionics. Arrows that enter the dashed
boundary are connected to both modules inside it.

invariant of the assembly in that example (the bits with names
starting with i encode the variable turn). This BDD was
obtained after reordering the bits using a method known as
sifting [150], whose purpose is to reduce the number of nodes
in the BDD. Attempting to decipher what the BDD means
is instructive, but not an efficient investment of time. By
applying the minimal covering algorithm described above, we
obtain the following minimal DNF formula. The meaning of
this formula are all those states from where the robot can
repeatedly request a spot for charging, and the station can
respond by communicating which spot it has reserved for the
robot to use.

∧ turn ∈ 1 . . 2 ∧ free ∈ 0 . . 1
∧ free x ∈ 0 . . 18 ∧ free y ∈ 0 . . 18 ∧ occ ∈ 1 . . 3
∧ pos x ∈ 1 . . 15 ∧ pos y ∈ 1 . . 15
∧ spot 1 ∈ 0 . . 1 ∧ spot 2 ∈ 0 . . 1
∧ ∨ ∧ (free x = 1) ∧ (free y = 1) ∧ (occ ∈ 2 . . 3)

∧ (spot 1 = 0) ∧ (spot 2 = 1)
∨ ∧ (free x = 2) ∧ (free y = 1) ∧ (occ = 1)

∧ (spot 1 = 1) ∧ (spot 2 = 0)
∨ ∧ (free x ∈ 1 . . 2) ∧ (free y = 1) ∧ (occ = 3)

∧ (spot 1 = 0) ∧ (spot 2 = 0)
∨ (free = 0)
∨ ∧ (free x = 2) ∧ (free y = 1) ∧ (occ = 3)

∧ (spot 2 = 0)

That the minimization is performed directly for formulas
over integer variables distinguishes this result from what a
propositional approach would yield in terms of bitfields. "

VIII. EXAMPLE

The example we consider concerns the subsystems in-
volved in controlling the landing gear of an aircraft [124],
[151]. Three modules (components) are involved, as shown in
Fig. 27. The autopilot controls the altitude, flight speed, and
mode of the aircraft. The gear module positions the landing
gear, which can be extended, retracted, or in some transitory
configuration. The third module operates the doors that seal the
gear storage area. The input to the decomposition algorithm
is the overall system specification described below, together
with which variables represent each component. The output are
the specifications for each component and the interconnections
between components, as described below.
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The variables take integer values, with appropriate units that
can be ignored for our purpose here. We specify the following
main properties collectively for these modules:

• If the gear is not retracted, then the doors shall be open.
• If airspeed is above threshold speed , then the doors shall

be closed.
• If the aircraft is flying at or below threshold height , then

the gear shall be fully extended.
• On ground the gear shall be fully extended.
• In landing mode the gear shall be fully extended.
• In cruise mode the gear shall be retracted and the doors

closed.
• The autopilot shall be able to repeatedly enter the landing

and cruise modes.
The specification of the assembled system is given in Fig. 28
in TLA+.

For brevity, we will let mode ∈ 0..2 in the discussion
below. The components change in a way interleaving amongst
them, based on the value of the variable turn . The scheduler
changes its state in every vars-nonstuttering step, So the
scheduler changes in a noninterleaving way with respect
to the other components. As in Remark 6, the scheduler
is required to take infinitely many nonstuttering steps, i.e.,
✷✸⟨SchedulerNext ⟩turn , which allows fixpoint algorithms
where the variable turn changes in each step. The specification
has constant parameters max height , . . . that define the range
of values that the variables height , speed , door , gear can take.
Increasing the values of these constants produces instances of
the specification with more states reachable.

The first operation is to restrict the assembly specification in
order to ensure that it is machine-closed. The weakest invariant
that ensures machine-closure is computed as the states from
where the specification ✷[Next ]vars ∧ Recurrence can be
satisfied. For the constants max height = 100,max speed =
40, door down = 5, gear down = 5, threshold height =
75, threshold speed = 30, the resulting invariant is
Inv(door , gear , turn, height , mode, speed)

∆
=

∧ turn ∈ 1 . . 3 ∧ door ∈ 0 . . 5
∧ gear ∈ 0 . . 5 ∧ height ∈ 0 . . 100
∧mode ∈ 0 . . 2 ∧ speed ∈ 0 . . 40
∧ ∨ ∧ (door = 0) ∧ (gear = 0)

∧ (height ∈ 76 . . 100) ∧ (mode ∈ 1 . . 2)
∨ ∧ (door = 5) ∧ (gear = 5)

∧ (mode = 0) ∧ (speed ∈ 0 . . 30)
∨ ∧ (door = 5) ∧ (gear = 5)

∧ (mode = 2) ∧ (speed ∈ 0 . . 30)
∨ ∧ (door = 5) ∧ (height ∈ 76 . . 100)

∧ (mode = 2) ∧ (speed ∈ 0 . . 30)
∨ ∧ (gear = 0) ∧ (height ∈ 76 . . 100)

∧ (mode = 2) ∧ (speed ∈ 0 . . 30)

From these states a centralized controller would be able to
repeatedly enter landing and cruise mode, while taking vars-
nonstuttering steps that satisfy the action Next .

We next examine the actions of the components. The result
of applying the minimal covering method of Sec. VII is
AutopilotStep(door , gear , turn, height , mode, speed ,

height ′, mode ′, speed ′)
∆
=

EXTENDS Integers
VARIABLES mode, height , speed , door , gear , turn
CONSTANTS max height , max speed , door down,

gear down, threshold height , threshold speed

mode 0, 2, 1 used below
Modes

∆
= {“landing”, “intermediate”, “cruise”}

Autopilot
∆
= ⟨height , mode, speed⟩

AutopilotTurn
∆
= turn = 1

DoorTurn
∆
= turn = 2

GearTurn
∆
= turn = 3

Init
∆
= ∧ (mode = “landing”) ∧ (height = 0)

∧ (speed = 0) ∧ (door = door down)
∧ (gear = gear down) ∧ (turn = 1)

AutopilotNext
∆
=

∧mode ∈ Modes ∧ height ∈ 0 . . max height
∧ speed ∈ 0 . . max speed
∧ (gear ̸= gear down) ⇒ (height > threshold height)
∧ (mode = “landing”) ⇒ (gear = gear down)
∧ (mode = “cruise”) ⇒ ((gear = 0) ∧ (door = 0))
∧ (height = 0) ⇒ (gear = gear down)
∧ AutopilotTurn ∨ UNCHANGED ⟨height , mode, speed⟩

DoorNext
∆
=

∧ door ∈ 0 . . door down
∧ ((speed > threshold speed) ⇒ (door = 0))
∧DoorTurn ∨ UNCHANGED door

GearNext
∆
=

∧ gear ∈ 0 . . gear down
∧ (gear ̸= 0) ⇒ (door = door down)
∧GearTurn ∨ UNCHANGED gear

SchedulerNext
∆
=

∧ turn ′ = IF turn = 3 THEN 1 ELSE turn + 1
∧ turn ∈ 1 . . 3

Next
∆
= ∧ AutopilotNext ∧GearNext

∧DoorNext ∧ SchedulerNext
vars

∆
= ⟨mode, height , speed , door , gear , turn⟩

Recurrence
∆
= ∧✷✸(mode = “landing”)

∧✷✸(mode = “cruise”)
Spec

∆
= Init ∧✷[Next ]vars ∧ Recurrence

Fig. 28: Assembled-system specification for the landing gear
example.

∧ turn = 1 ∧ door ∈ 0 . . 5 ∧ gear ∈ 0 . . 5
∧ height ∈ 0 . . 100 ∧ height ′ ∈ 0 . . 100
∧mode ∈ 0 . . 2 ∧mode ′ ∈ 0 . . 2
∧ speed ∈ 0 . . 40 ∧ speed ′ ∈ 0 . . 40
∧ ∨ ∧ (door = 0) ∧ (height ′ ∈ 76 . . 100)

∧ (mode ′ ∈ 1 . . 2)
∨ (gear = 5) ∧ (height ′ ∈ 0 . . 75)
∨ (gear = 5) ∧ (mode ′ = 0)
∨ ∧ (height ′ ∈ 76 . . 100) ∧ (mode ′ = 2)

∧ (speed ′ ∈ 0 . . 30)
The two conjuncts below were used as care predicate.

∧ Inv(door , gear , 1, height , mode, speed)
∧ (∃ door , gear :

Inv(door , gear , 2, height , mode, speed))′
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The action AutopilotStep applies to steps that change the
autopilot. The action that constrains the autopilot is

AutopilotNext(door , gear , turn, height , mode, speed ,
height ′, mode ′, speed ′) ≡

∧ Inv(door , gear , turn, height , mode, speed)
∧ ∨ AutopilotStep(

door , gear , turn, height , mode, speed ,
height ′, mode ′, speed ′)

∨ UNCHANGED ⟨height , mode, speed⟩
Note that only variables that represent the autopilot appear
primed in the action AutopilotStep.

Suppose that we have selected to hide the variable door .
For this choice of variable, the invariant with door abstracted
is

InvWithDoorHidden
∆
= ∃ door : Inv(

door , gear , turn, height , mode, speed)

Compared to the general case ∃h : Inv(h, x , y),
• door corresponds to h
• gear , turn to x
• height ,mode, speed to y

Writing InvWithDoorHidden is simple, but mysterious with-
out recalling the definition of Inv . We cannot define the iden-
tifier InvWithDoorHidden twice, but we can write another
expression that is equivalent to it. Define

InvH
∆
=

∧ turn ∈ 1 . . 3
∧ gear ∈ 0 . . 5 ∧ height ∈ 0 . . 100
∧mode ∈ 0 . . 2 ∧ speed ∈ 0 . . 40
∧ ∨ ∧ (gear = 0) ∧ (height ∈ 76 . . 100)

∧ (mode ∈ 1 . . 2)
∨ ∧ (gear = 5) ∧ (mode = 0) ∧ (speed ∈ 0 . . 30)
∨ ∧ (gear = 5) ∧ (mode = 2) ∧ (speed ∈ 0 . . 30)
∨ ∧ (height ∈ 76 . . 100) ∧ (mode = 2)

∧ (speed ∈ 0 . . 30)

This expression was obtained by decompiling the BDD that
results after door has been existentially quantified in the
BDD representing Inv . This fact can be expressed by writing
THEOREM InvH ≡ InvWithDoorHidden . How InvH was
obtained proves this equivalence.

Note that the type hints were used as the care set in this
case, because the invariant implies them. Also, note that InvH
constrains all visible variables to be within the defined bounds.

The autopilot action that results after hiding the variable
door from the autopilot is

SimplerAutopilotStep
∆
=

∧ gear ∈ 0 . . 5 ∧ height ∈ 0 . . 100 ∧ height ′ ∈ 0 . . 100
∧mode ∈ 0 . . 2 ∧mode ′ ∈ 0 . . 2
∧ speed ∈ 0 . . 40 ∧ speed ′ ∈ 0 . . 40
∧ ∨ (gear = 5) ∧ (height ′ ∈ 0 . . 75)

∨ (gear = 5) ∧ (mode ′ = 0)
∨ ∧ (gear ∈ 0 . . 4) ∧ (height ′ ∈ 76 . . 100)

∧ (mode ∈ 0 . . 1) ∧ (mode ′ ∈ 1 . . 2)
∨ ∧ (height ′ ∈ 76 . . 100) ∧ (mode ′ = 2)

∧ (speed ′ ∈ 0 . . 30)
∨ ∧ (height ′ ∈ 76 . . 100) ∧ (mode ′ ∈ 1 . . 2)

∧ (speed ∈ 31 . . 40)
∧ LET turn = 1 IN InvH
∧ (∃ turn, gear : InvH )′

where again we used the invariant as care set, in order to
structure the resulting formulas more clearly, and modularize
the covering problem. The operator SimplerAutopilotStep
defines the autopilot action by letting

SimplerAutopilotNext(gear , turn, height , mode, speed ,
height ′, mode ′, speed ′)

∆
=

∧ InvH
∧ ∨ (turn = 1) ∧ SimplerAutopilotStep

∨ UNCHANGED ⟨height , mode, speed⟩
We chose to structure the autopilot action in this way because
we already knew that the specification has an interleaving
form. Hiding did not change the interleaving, but it did change
how the autopilot is constrained when turn = 1. The envi-
ronment action SimplerEnvNext is obtained after existential
quantification of door and door ′ from the environment action.
The scheduler remains the same, changing turn in each step.
In the gear module’s turn (turn = 3), the action is

SimplerGearModuleNext
∆
=

∧ gear ∈ 0 . . 5 ∧ gear ′ ∈ 0 . . 5
∧ height ∈ 0 . . 100 ∧mode ∈ 0 . . 2
∧ speed ∈ 0 . . 40
∧ ∨ (gear ∈ 0 . . 4) ∧ (gear ′ = 0)

∨ (gear ∈ 1 . . 5) ∧ (gear ′ = 5)
∨ ∧ (height ∈ 76 . . 100) ∧ (mode = 2)

∧ (speed ∈ 0 . . 30)
∧ LET turn

∆
= 3 IN InvH

∧ (LET turn
∆
= 1

IN ∃ height , mode, speed : InvH )′

This action includes primed values of both gear module and
scheduler, because both form part of the autopilot’s environ-
ment. The invariant has been used to define the care predicate
(the last two conjuncts), which allowed for a simpler formula
to be found.

The next step is the construction of the liveness parts of
component specifications. Writing liveness specifications in
this example is not as simple as it may appear. If we were
to write these specifications by hand, a naive first attempt
could be to assert that whenever the autopilot requests that
the doors open and the landing gear is extended, the door and
gear modules react accordingly. Such a specification would
be incorrect, because it is too strong an assumption by the
autopilot module, and too strong a guarantee for the door
module. The door module cannot realize this requirement,
because the autopilot is allowed to require this reaction while
keeping the airspeed above threshold speed . This would pre-
vent the doors from opening, thus the door module cannot
realize this objective. Errors of this kind cannot result from
the contract construction algorithm, because the way that it
finds the module specifications ensures that each module can
realize its own specification.

For constructing liveness specifications, we start with the
autopilot as the “root” module, and the door module and gear
module lumped into a “team”. The basic algorithm described
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Fig. 29: The reason why the algorithm of Sec. VI-C is useful
in the landing gear example. This description is simplified,
in that it corresponds to a specification with the constraint
(mode = “cruise”) ⇒ (gear = 0) in AutopilotNext .

in Sec. VI-B cannot find a trap set, which demonstrates why
the algorithm described in Sec. VI-C is needed. The reason is
illustrated in Fig. 29, when the current goal of the autopilot
is to enter cruise mode. The autopilot can enter cruise mode
from the intermediate mode when the gear is retracted (up).
The gear can retract when extended, but it could also idle,
leading to the node on the bottom left (each node corresponds
to several states). In that node, it is the autopilot’s turn, and
the autopilot could idle, or change the height to less than
or equal to threshold height . This would prevent the gear
from retracting. Therefore, the bottom left node is not in the
team’s attractor of A (the autopilot’s attractor of cruise mode).
This leads to an empty trap when the basic algorithm is used.
By using the approach of Sec. VI-C, the Basin is enlarged
to incorporate the bottom left node, and a weaker goal is
generated for the gear. This goal takes into account that the
gear should reach either A, or the top left node. The autopilot
has a choice to not go backwards, thus it can keep the behavior
within the two bottom left nodes, until the gear does retract.

Algo. 22 produces specifications for the autopilot and the
lumped door and gear modules. Different mask parameters are
used for each recurrence goal, thus different interconnection
architectures. The goal that is generated for the lumped
modules is used as the goal in a recursive call to Algo. 22. This
recursive call refines the interconnection architecture further,
by generating separate specifications for the gear module and
the door module. We show next the generated specifications
for when the goal of the autopilot is to enter cruise mode. The
autopilot trap is

AutopilotTrap
∆
=

∧ turn ∈ 1 . . 3 ∧ door ∈ 0 . . 5 ∧ height ∈ 0 . . 100
∧mode ∈ 0 . . 2 ∧ speed ∈ 0 . . 40
∧ ∨ ∧ (turn = 2) ∧ (height ∈ 76 . . 100)

∧ (mode = 2) ∧ (speed ∈ 0 . . 30)
∨ ∧ (door ∈ 1 . . 5) ∧ (height ∈ 76 . . 100)

∧ (mode = 2) ∧ (speed ∈ 0 . . 30)

and the resulting persistence objective ✸✷(AutopilotTrap ∧

(cnct = 0)). As expected, the autopilot is allowed to keep
waiting while the doors are still open (door ∈ 1..5 in second
disjunct), and until the gear reacts, only provided the autopilot
has reached and maintains the height above the threshold
(height ∈ 76..100), and it keeps the mode to intermediate.
The last two constraints are required because height below
the threshold, or mode equal to landing would prevent the
gear from being able to retract. Notice that the autopilot does
not need to observe the gear state, only the door state, because
when the doors close, the global invariant Inv implies that the
gear has been retracted too. Therefore, the specification of the
autopilot in this interconnection mode is expressed without
occurrence of the variable gear .

The corresponding recurrence goal ✷✸((cnct ̸= 0) ∨
¬DTeam) for the door-gear subsystem is defined by

DTeam
∆
=

∧ turn ∈ 1 . . 3 ∧ door ∈ 0 . . 5 ∧ gear ∈ 0 . . 5
∧ height ∈ 0 . . 100 ∧mode ∈ 0 . . 2
∧ ∨ ∧ (turn = 2) ∧ (gear = 0)

∧ (height ∈ 76 . . 100) ∧ (mode = 2)
∨ ∧ (door = 5) ∧ (height ∈ 76 . . 100)

∧ (mode = 2)
∨ ∧ (door ∈ 1 . . 5) ∧ (gear = 0)

∧ (height ∈ 76 . . 100) ∧ (mode = 2)

While the doors are open (door = 5 in second disjunct, or
door ∈ 1..5), the subsystem is required to change by closing
the door, which implies retracting the gear. When both gear
have been retracted (gear = 0) and doors closed (door = 0),
then the subsystem needs to wait until the autopilot’s turn. The
earliest this can happen is by the gear retracting (turn = 3)
and then the doors closing (turn = 2), hence the turn = 2 in
the first disjunct.

From the subsystem’s viewpoint, both of the variables door
and gear are visible, so its specification in this interconnection
mode mentions both. Notice that there is no mention of speed ,
because it is unnecessary information for reaching cruise
mode. If the doors are already closed, then they need not
open while transitioning from intermediate to cruise mode, so
they need not know the airspeed. If the doors are currently
open, then the invariant Inv implies that the airspeed is
below the threshold, and that the autopilot will maintain this
invariant. The airspeed is unnecessary information while the
doors transition from open to closed.

The variable cnct is introduced to define the current in-
terconnection mode, and is controlled by the autopilot. When
cnct changes, the other modules are constrained to change the
information that they communicate, by changing the domains
of the record-valued variables that are used for communication
between the modules.

When the subsystem of gear module and door module is
decomposed into two separate components, using ¬DTeam
as the goal, the generated specifications are as follows. For
the gear module

Gear Trap
∆
=

∧ turn ∈ 1 . . 3 ∧ door ∈ 0 . . 5
∧ gear ∈ 0 . . 5 ∧ height ∈ 0 . . 100 ∧mode ∈ 0 . . 2
∧ ∨ ∧ (turn = 2) ∧ (gear = 0)
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Fig. 31: Communicated variables when goal is landing mode.

∧ (height ∈ 76 . . 100) ∧ (mode = 2)
∨ ∧ (door ∈ 1 . . 5) ∧ (gear = 0)

∧ (height ∈ 76 . . 100) ∧ (mode = 2)

and for the door module

D Door module
∆
=

∧ turn ∈ 1 . . 3 ∧ door ∈ 0 . . 5 ∧ gear ∈ 0 . . 5
∧ ∨ (turn = 2) ∧ (gear = 0)

∨ (door ∈ 1 . . 5) ∧ (gear = 0)

Again, these goals are conditioned using the current intercon-
nection cnct . The above specifications can be understood as
follows. The gear assumes that the doors will close, provided
the gear has retracted itself (conjunct gear = 0). The gear
cannot assume that the doors will close while the gear is still
extended, because that would be too strong an assumption. It
would be realizable by the gear, but unrealizable by the doors.
Similar to what we remarked about the autopilot earlier, this is
an error that could arise if we specified the subsystem goals by
hand, instead of generating them automatically. Provided the
gear has retracted, it is allowed to wait until the door retracts,
and also until it is the autopilot’s turn. Note that the gear does
not receive speed information in this interconnection, which
is shown in Fig. 30. For the doors, the requirement is that if
the gear has retracted (gear = 0), then the doors should not
be open (door ∈ 1..5).

The above discussion corresponds to the interconnection
architecture while the autopilot has cruise mode as its current
goal. A different interconnection architecture, shown in Fig. 31
is computed to allow the autopilot to reach landing mode.
The resulting specifications have an analogous structure with
those described above, though the direction of change for the
entire system is the opposite (the autopilot should lower the
airspeed to allow the doors to open, and also change from
cruise to intermediate mode, then the autopilot is allowed
to wait for the doors to open, and for the landing gear
to extend, then the autopilot can enter landing mode). An
interesting observation regarding the connectivity in Fig. 31

is that the gear needs to observe both mode and speed .
This requirement results because the gear module needs to
be able to observe globally that the doors are still within
D Door module , which requires information about the mode
and speed . However, we would expect this to be information
necessary only to the door module. Indeed, by using the
complement of the subsystem goal as Within to change
Stay : = Observable(D , Inv , Inv ,Player) in Algo. 22 to
Stay : = Observable(D ,Within ∧ Inv , Inv ,Player), as de-
scribed in Sec. VI-G2, the generated specification for the gear
becomes independent of mode and speed , and those signals are
removed from the interconnection architecture. The resulting
persistence goal for the gear becomes weaker. In this example,
there is one trap formed for the subsystem, so this weakening
is admissible. In problems where this is not the case, either
an interconnection architecture with more information sharing
needs to be used, or the weaker persistence goals checked
to ensure that they do not intersect with other traps, or are
contained within the persistence goal for the same component
within another subsystem trap.

The above example demonstrated the applicability of the
proposed approach to systems with multiple components, by
recursive decomposition, and by construction of intercon-
nection architectures with only necessary information shared
between components. An implementation of the algorithms
described is available in a Python package [152].

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we developed an approach for decomposing
the temporal logic specification of an assembly to open-system
component specifications that form a contract. We defined
contracts based on a formalized definition of realizability, the
notion of open-system, and defined an operator for forming
open-systems from closed-systems. The decomposition ap-
proach relies on generating liveness requirements for indi-
vidual components in a way that leads to acyclic dependen-
cies. In order to hide unnecessary external information from
each component, we parametrized contract construction with
respect to the interconnection architecture, and showed how
variables can be eliminated from component specifications.
The generated specifications were decompiled from BDDs by
using a symbolic minimal covering algorithm, adapted to the
case of integer variables. Directions for future investigation
include reducing the sharing of information further, relaxing
the scheduling assumptions (about the turn variable), gener-
ating more readable specifications, and comparing different
formalizations of contracts and synthesis.
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APPENDIX

A. General remarks

Remark 7: When we refer to “sets” of variables, these sets
are not sets in the object language (here TLA+), but in the
metatheory [153]. "

Remark 8: It is possible to define the operator Earlier
(Sec. IV-B3) by using a modified satisfaction relation |= in
raw TLA+, but we will omit this definition here. "

Remark 9: The expression ∃y ′ is ungrammatical in
TLA+ [10, p. 281, p. 110]. Instead we should write fresh rigid
variables, for example ∃v . Having said this, we continue with
∃y ′ below because it makes reading easier (see also [154,
Sec. 2.2.2 on p. 6]). "

Remark 10 (Recursive operator definitions): Recursive op-
erator definitions (as those in Fig. 6) are part of TLA+2 [109].

"
Remark 11 (Collection versus set): Not every statement in

ZF defines a set. Some statements describe collections that
are too large to be sets [10, p. 66]. In naive set theory this
phenomenon gives rise to Rusell’s and other paradoxes [108].
A collection that is not a set is called a proper class [155,
p. 20]. The semantics of TLA+ involve states that assign values
to all variable names. Any finite formula we write will omit
some variable names. For each state that satisfies the formula,
we can assign arbitrary values to variables that do not occur
in the formula, and thus obtain another state that satisfies
the same formula. Thus, the collection of states that satisfy
a formula is not a set [116, p. 65] (within the theory that
the semantics is discussed). So to accommodate for TLA+

semantics we should use the term “collection” instead of “set”.
However, to use common terminology and for brevity, we
will refer to “sets” of states, even when “collection” would
be appropriate. "

Remark 12: Realizability can be defined without design
of initial conditions for the component (y0 in Fig. 5). In
that case the component specification should not constrain the
initial condition [116, §3.3, pp. 14–16]. Initial conditions then
become part of an antecedent. In consequence, a conjunction
of realizable component specifications would not imply a
closed-system property. The choice between these different
definitions is a matter of specification style. "

Remark 13: The operator Step defined in Sec. III-D cor-
responds to specifications where in each step at most one
component can change its state in multiple ways. For more
general specifications, the corresponding Step operator is

GeneralStep(x , y , Target( , ))
∆
= ∃ y ′ :

∧ SysNext(x , y , y ′)
∧ ∀ x ′ : ∨ ¬EnvNext(x , y , x ′)

∨ ∧ AssemblyNext(x , y , x ′, y ′)
∧ Target(x ′, y ′)

The general case is mentioned for completeness. "
Remark 14: In the full information case, the assumption

that in each step at most one component can change in
a non-unique way ensures determinacy [119], which allows
for decomposition with an algorithm that extends Algo. 15
[136, Ch. 10], [124]. The algorithms we described can be

extended also to a setting without the assumption about non-
unique changes, by using the operator GeneralStep in fixpoint
computations [136, §9.5]. "

Remark 15: In Fig. 6, Goal is a first-order operator. An
attractor definition with Goal being a set is possible too [156,
§IV-A]. "

Remark 16 (Comparison of WhilePlusHalf to +−◃ ): Only
v is constrained in the first state of the suffix, thus the “half”
in the name of WhilePlusHalf . In contrast, the operator
+−◃ constrains both u and v in the first state of the suffix.
For disjoint-state specifications, this additional constraint re-
sults in unrealizability, using the definition of synthesis from
Sec. III-C. To obtain a realizable property, the property G
should be sufficiently permissive [116, §5.2.4, pp. 26–27].
Relaxing G can lead to underspecification, which motivates
defining WhilePlusHalf . "

Remark 17 (Defining closure): The closure of a temporal
property can be defined as follows [8], [48, Sec. 5.3], [64,
Sec. 2.1 on p. 52]

MustUnstep(b)
∆
= ∧ b = TRUE

∧✷[b′ = FALSE]b
∧✸(b = FALSE)

SamePrefix (b, u, x )
∆
= ✷(b ⇒ (u = x ))

Front(P( ), x , b)
∆
= ∃∃∃∃∃∃ u : P(u) ∧ SamePrefix (b, u, x )

Cl(P( ), x )
∆
= ∀∀∀∀∀∀ b : MustUnstep(b) ⇒ Front(P , x , b)

"
Remark 18: Let Phi(x 1, . . . , y1, . . . ) be a temporal prop-

erty. The notation IsRealizablexa ,xb ,...;y1,...(Phi) is a short-
hand for

Realization(xa , x b , . . . , y1, . . . , f 1, . . . , g ,

y01, . . . ,mem0)
∆
=

∃∃∃∃∃∃mem :

LET v
∆
= ⟨mem, xa , x b , . . . , y1, . . .⟩

A
∆
= ∧ y ′

1 = f 1[v ]
∧ y ′

2 = f 2[v ]
...
∧mem ′ = g [v ]

IN ∧ ⟨mem, y1, . . .⟩ = ⟨mem0, y01, . . .⟩
∧ ✷[A]v ∧ WF⟨mem,y1,...⟩(A)

IsRealizable(Phi( , . . . ))
∆
=

∃f 1, . . . , g , y01, . . . ,mem0 :
∧ IsAFiniteFcn(f 1) ∧ · · · ∧ IsAFiniteFcn(g)

∧ LET R(ua , ub , . . . , v1, . . . )
∆
= Realization(

ua , ub , . . . , v1, . . . , f 1, . . . , g ,
y01, . . . ,mem0)

IN ∀∀∀∀∀∀ x 1, . . . , y1, . . . :
R(xa , x b , . . . , y1, . . . ) ⇒ Phi(x 1, . . . , y1, . . . )

"
Remark 19: In the definition of a contract (Sec. IV-A),

we use operators A( , . . . ), . . . to specify components, and
refer to variables x , . . . ,w . Formally, a statement of the form
VARIABLES x , . . . ,w declares these variables in the current
context [10, §3.1, §17.3, §17.5.2].
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Alternatively, we can use temporal quantification, as follows

∧ IsRealizable1(A) ∧ · · · ∧ IsRealizablen(W )
∧ ∀∀∀∀∀∀ x , . . . , z :

(
A(x , . . . ) ∧ . . . ∧W (. . . , z )

)
⇒ Phi(x , . . . )

The effect of a temporal quantifier includes declaring the
variables that it bounds [10, p. 41, p. 110]. The position of each
operator argument determines the role of each variable. We
could rename the bound variables (including those bound by ∀∀∀∀∀∀
within IsRealizable) without changing the formula’s meaning.
Instead of distinguishing arguments, values can be used as
identifiers [10, §10.2], with IsRealizable defined accordingly.

"
Remark 20: In a formula of the form (as in Example 1)

∨ ¬∧ PhiS (. . . )
∧ PhiR(. . . )

∨ Phi ,

the negation applies to the entire conjunction list [10, §15.2.2
on p. 286], and the disjunction is equivalent to the implication
(PhiS (. . . ) ∧ PhiR(. . . )) ⇒ Phi , provided the operators
PhiS ,PhiR,Phi are Boolean-valued [10, §16.1.3]. "

Remark 21 (Quantifier elimination and operators): In
Sec. V-C we defined the operator SimplerEnvNext as

SimplerEnvNext(x , y , x ′)
∆
=

∃ h, h ′ : Inv(h, x , y) ∧ EnvNext(h, x , y , h ′, x ′)

When we compute a quantifier-free formula equivalent to
the above formula, by eliminating quantifiers, we should
define a new operator, for example Foo. We cannot reuse
the name SimplerEnvNext , even though we can prove that
Foo ≡ SimplerEnvNext (equivalent).

These observations arise because we cannot define the same
operator twice. A nullary operator stands for the expression on
the right hand side of its definition [10, p. 319]. For example,
the definition f ! x 2 defines the nullary operator f to be
the expression x 2. We may define g ! x × x and prove
that |= (x ∈ Nat) ⇒ (f = g) under the usual definitions
of superscript and ×, but f and g are defined to be different
expressions. The act of defining symbols, and how this act
relates to declaring symbols as constants and introducing
axioms about those symbols can be understood as extending
a formal theory by definitions [153, §74, Vol. 1, p. 405]. "

B. Detailed problem and theorem statements
Below are more detailed versions of Problem 4 and Theo-

rem 5, including an environment and details about safety. The
statement below generalizes to multiple variables.

Problem 13: Let variable x represent component 1, vari-
able y component 2, and variable z their environment. Let
P(x , y , z ) be a (finite-state) closed-system property of the
form I ∧ ✷[N ]⟨x ,y,z ⟩ ∧ ✷✸Goal(x , y , z ) that in each step
allows non-unique changes to at most one of x , y , z . Let
ϕ(x , y , z ) ! Unzipz ;x ,y(P , z , x , y) (z env) and assume that
IsRealizablez ;x ,y(ϕ).

Find temporal properties ψ1,ψ2 with GR(1) liveness
such that IsRealizablez ,y;x (ψ1) ∧ IsRealizablez ,x ;y(ψ2) and(
ψ1(x , y , z ) ∧ ψ2(x , y , z )

)
⇒ ϕ(x , y , z ).

Theorem 14: ASSUME : Algo. 15 returns a Y such that
Inv ⇒ Y (Inv is satisfiable by realizability of ϕ). Pick
x 0, y0 such that (∃w : WInit(x 0, y0,w)) ∧ ∀w : (∃u, v :
WInit(u, v ,w)) ⇒ WInit(x 0, y0,w). Let Q(u, v ,w) !
(u = x 0) ∧ (v = y0) ∧ W (u, v ,w), where Inv ,W ,WInit
as in Sec. V.

PROVE : The specifications

ψ1(x , y , z ) ! LET P1(w , v , u) !
∧ Q(u, v ,w)
∧ ✷✸Goal(u, v ,w) ∨

∨
i✸✷T i(u, v ,w)

IN Unzipz ,y;x (P1, z , y , x )

and
ψ2(x , y , z ) ! LET P2(w , u, v) !

∧ Q(u, v ,w)
∧

∧
i✷✸¬T i(u, v ,w)

IN Unzipz ,x ;y(P2, z , x , y)

solve Problem 4, where T i are the traps returned by Algo. 15.
Initial conditions x 0, y0 are selected above to ensure that

the system starts from a state that satisfies WInit , which is
possible due to realizability of ϕ, the stepwise form of Unzip,
and the assumption Inv ⇒ Y .

Remark 22: The above result can be applied also to
other approaches (e.g., based on raw TLA+ or LTL),
with suitable changes to IsRealizable and Unzip, or using
RawWhilePlusHalf . "

C. A detailed proof of Theorem 12
A structured proof style is used [157], [109].
⟨1⟩ k ∆

= CHOOSE n ∈ Nat : TRUE
⟨1⟩ SUFFICES ∨ Terminates(iter = k)

∨ EnlargesStrictly(Basin, iter = k)
BY ASSUMPTION Finitely many relevant states satisfy Basin.

⟨1⟩1.CASE At(L1, iter = k) : |= Escape ≡ FALSE
⟨2⟩1. Terminates(iter = k)

BY ⟨1⟩1, WhileGuard
⟨2⟩ QED

BY ⟨2⟩1
⟨1⟩2.CASE At(L1, iter = k + 1) : ¬ |= Escape ≡ FALSE)

⟨2⟩1. At(L2, iter = k) : |= Out ′ ⇒ ¬Basin
⟨2⟩2. At(L3, iter = k) : |= Escape ′ ⇒ Out
⟨2⟩3. At(L3, iter = k) : |= Escape ′ ⇒ ¬Basin

BY ⟨2⟩1, ⟨2⟩2
⟨2⟩4. At(L4, iter = k) :

|= (Escape ∧ Basin) ≡ FALSE
BY ⟨2⟩3

⟨2⟩5. At(L4, iter = k) : |= Escape ⇒ Basin ′

⟨2⟩6. At(L4, iter = k) :
¬ |= (Basin ′ ∧ ¬Basin) ≡ FALSE

BY ⟨1⟩2, ⟨2⟩4, ⟨2⟩5
⟨2⟩7. At(L4, iter = k) : |= Basin ⇒ Basin ′

⟨2⟩8. EnlargesStrictly(Basin, iter = k)
BY ⟨2⟩7

⟨2⟩ QED
BY ⟨2⟩8

⟨1⟩ QED
BY ⟨1⟩1, ⟨1⟩2
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D. A detailed proof of Theorem 7
Below is the proof of Theorem 7 on 20. The proof is

structured in levels [157], [109].

PROOF:
⟨1⟩1. IsRealizable2(✷✸¬D)

⟨2⟩1. IsRealizable2(✷(D ⇒ ✸(U ∨Out)))
⟨3⟩1. DEFINE Z

∆
= Attr2(U ∨Out)

⟨3⟩2. D ⇒ Z
BY DEF D

⟨3⟩3. IsRealizable2(✷(Z ⇒ ✸(U ∨Out)))
BY DEF Attr

⟨3⟩4. QED
BY ⟨3⟩2, ⟨3⟩3

⟨2⟩2. (U ∨Out) ⇒ ¬D
⟨3⟩1. D ⇒ ¬Out
⟨4⟩1. Basin ⇒ ¬Out

BY DEF Out
⟨4⟩2. D ⇒ Basin

BY DEF D
⟨4⟩3. QED

BY ⟨4⟩1, ⟨4⟩2
⟨3⟩2. D ⇒ ¬U

BY DEF D
⟨3⟩3. QED

BY ⟨3⟩1, ⟨3⟩2
⟨2⟩3. IsRealizable2(✷(D ⇒ ✸¬D))

BY ⟨2⟩1, ⟨2⟩2
⟨2⟩4. ✷(D ⇒ ✸¬D) ≡ ✷✸¬D

PROOF:

✷(D ⇒ ✸¬D) ≡ ✷ ∨ ¬D
∨ D ∧ (D ⇒ ✸¬D)

≡ ✷(¬D ∨✸¬D)

⟨2⟩5. QED
BY ⟨2⟩3, ⟨2⟩4

⟨1⟩2. IsRealizable1(✷ ∨ ¬(T ∨A)
∨ ✸A ∨✸✷T )

⟨2⟩1. DEFINE Z
∆
= Trap1(Stay ,A)

⟨2⟩2. IsRealizable1(✷(Z ⇒ ∨ ✸A
∨ ✸✷(Z ∧ ¬A)))

BY DEFS Z ,Trap
⟨2⟩3. T ≡ Z ∧ ¬A

BY DEFS T ,Z
⟨2⟩4. (T ∨A) ⇒ Z
⟨3⟩1. (T ∨ A) ⇒ ((Z ∧ ¬A) ∨A)

BY ⟨2⟩3
⟨3⟩2. (T ∨ A) ⇒ (Z ∨ A)

BY ⟨3⟩1
⟨3⟩3. (Z ∨A) ⇒ Z
⟨4⟩1. A ⇒ Z

BY DEF Z ,Trap
⟨4⟩2. QED

BY ⟨4⟩1
⟨3⟩4. QED

BY ⟨3⟩2, ⟨3⟩3
⟨2⟩5. QED

BY ⟨2⟩2, ⟨2⟩3, ⟨2⟩4

⟨1⟩3. (Inv ∧ T ) ⇒ D
⟨2⟩1. T ≡ Trap1(Stay ,A) ∧ ¬A

BY DEF T
⟨2⟩2. Trap1(Stay ,A) ⇒ (Stay ∨A)

BY DEF Trap
⟨2⟩3. T ⇒ (Stay ∧ ¬A)

BY ⟨2⟩1, ⟨2⟩2
⟨2⟩4. (Inv ∧ Stay) ⇒ D

BY DEFS Stay ,Obs1
⟨2⟩5. QED

BY ⟨2⟩3, ⟨2⟩4
⟨1⟩4. QED

BY ⟨1⟩1, ⟨1⟩2, ⟨1⟩3
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