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Symbolic construction of GR(1) contracts for systems with
full information

Ioannis Filippidis and Richard M. Murray

Abstract— This work proposes a symbolic algo-
rithm for the construction of assume-guarantee
specifications that allow multiple agents to coop-
erate. Each agent is assigned goals expressed in a
fragment of linear temporal logic known as gener-
alized Streett with one pair, GR(1). These goals
may be unrealizable, unless each agent makes
additional assumptions, about the behavior of
other agents. The algorithm constructs a contract
among the agents, in that only the infinite be-
havior of the given goals is constrained, known
as liveness, not the finite one, known as safety.
This defers synthesis to a later stage of refine-
ment, modularizing the design process. We prove
that there exist GR(1) games that do not admit
any refining GR(1) contract. For this reason, we
formulate contracts with nested GR(1) properties
and auxiliary communication variables, and prove
that they always exist. The algorithm’s fixpoint
structure is similar to GR(1) synthesis, enjoying
time complexity polynomial in the number of
states, and linear in number of recurrence goals.

I. INTRODUCTION

The design and construction of a large system
relies on the ability to divide the problem into
smaller ones. Each subproblem involves a subset
of the system, and may itself be refined further
into smaller problems. The subsystems that result
from the smaller problems are considered as modules
of the larger system. In many cases, the modules
interact with each other, either physically, or as
software, or both. For this reason, the interaction
between modules needs to be constrained, to ensure
that they can perform their operation as intended.

A representation with precise syntax and seman-
tics, or specification, is desirable to describe each
module, and its interaction with other modules.
Broadly, the system designer is faced with two
problems. First, to specify the modules, with detail
sufficient to allow for implementation, preferably
automated. Second, to look at each module’s speci-
fication, construct an implementation, and assemble
the results.

In this work, we are interested in automating the
first step, modularization of a design that has been
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partially specified by a human. Note that human
input is necessary, in one form or another, because
the algorithm cannot know what the modules are
intended for. These primitive specifications may not
yield a coherent system. Starting from these, the
proposed algorithm constructs a collection of new
specifications for the modules, a contract [1], [2].
Each new specification is implementable, and, to-
gether, they refine the original intent.

A common refinement is synthesis, whereby the
immediate behavior of all modules is designed at
once. We want to avoid doing so, because such refine-
ment is premature. Instead, we want to restrict only
the infinite behavior of the system. We work under
the assumption that the modules can observe all
variables in the problem, known as full information.
To this, we are motivated by the undecidability of
distributed synthesis [3], [4], except for restrictions
of the communication architecture [5], the desired
behaviors [6], or the search space [7].

The paper is organized as follows. Sec. II reviews
preliminaries on logic and games, where we formulate
concepts for multi-player games, in an interleav-
ing logic representation. Contracts are defined in
Sec. III, and our purpose to find realizable module
specifications high in the refinement hierarchy. We
want contracts as Streett(1) specifications, but prove
in Sec. ITI-B that these do not exist in general. For
a restricted case, this limitation is lifted in Sec. IV,
where we introduce nested GR(1) specifications, and
an algorithm to construct them. In the presence of
multiple recurrence goals, we prove in Sec. IV-B
that auxiliary variables must be introduced, and thus
define a distributed scheme of switching between
nested GR(1) games, one for each recurrence goal.
Examples are given in Sec. V, relevant work and
conclusions are discussed in Sec. VI.

II. PRELIMINARIES
A. Temporal logic and p-calculus

Linear temporal logic (LTL) [8] can be used to
describe sets of infinite sequences. Let V be a set
of variable symbols p,q,... that take integer or
Boolean values in D £ N U {TRUE, FALSE}, where
N £ {0,1,...}. Denote with [A — B] the set of



functions with domain A and range a subset of B
(notation from [9, p.48]). Let V £ [V — D] be
the set of assignments of values to variables. For
a sequence w € Q = [N — V], let w[i...] denote
the subsequence w[ijw[i+1].... Besides the Boolean
operators “and” A, “or” V, “not” -, LTL includes
the future operators “next” p’ (prime), “always”
Op, “eventually” p, and “until” pUq, and past
operators “weak previous” @p and “historically” Elp.
The semantics of LTL [8], [10] defines whether a word
w is a model of a formula ¢ at position ¢, denoted by
(w, 1) = ¢, as follows:

o (w,i) = iff (w,(i+1)) o

o (w,i) EoUYiff Ik e N: (w,(i+k)) ¢ and

VjieNoy: (w,(i+)) o

and O 2 TUp and Qg 2 = .

o (wi)E@piffi=0o0r (w,(i—1) E¢

o (w,i) EBeiff Vj € Ngi: (w,(i—j)) = o

Given a first-order formula ¢ over variables in V,
define the set of models [¢]y £ {u € V : u = ¢}.
Given an LTL formula v, define the set of models
[vly & {w € Q : (w,0) | ¢}. For readability,
occasionally we refer to a set [f] by mentioning f.
With the Cantor topology over 2 [11], if a formula
describes an open (closed) set, then it is called a
liveness (safety) property [12]. For example, OOp
describes liveness, and (J(p’ = —p) safety. Properties
of the form O p are known as recurrence, and $Op
as persistence [13].

The modal p-calculus [14] extends modal logic
with a least (greatest) fixpoint operator p (v). For
example, if [S] is a set of system states, and [f(S5)]
the set of states that can be reached in one time
step from some state in [S], then [uX : IV f(X)]
is the set of states that are inside, or reachable in
a finite number of time steps, starting from within
the set [I]. For comparison, [uX : f(I) VvV f(X)]
contains states that are reachable in a finite (non-
zero) number of time steps, and [uX : f(X)] = 0.
For a formal definition, we refer to [15], [16].

B. Games

1) Representation: The behavior of a collection of
n modules can be represented as a game with mul-
tiple players. Here, we consider turn-based games,
where a single player moves at each change of state
[17]. The game is synchronous, in that players move
in a fixed order that repeats. Define the (finite) set
&X; of variables controlled by player j. By x; we
will denote both the tuple of symbols in X}, as well
as a tuple of values assigned to those symbols. Let
r 2 (20,%1,...,T,_1) be the aggregate state. Let
Z; denote (either a tuple of, or an assignment to)

variables in UZ;& kzj k- We assume full informa-
tion, meaning that each player can observe all the
variables. Let ¢ be an auxiliary variable that signifies
which player should move next, V = {i} U U;:Ol X;.

We use an interleaving representation of the game
in temporal logic, with one player moving in each
time step. The assignments in V' can be regarded as
game “nodes”. The partition V; C V contains nodes
with i = j, and V; £ V\V;. Player j moves only from
nodes in Vj, by assigning values to variables in z;,
and incrementing 7. The transition relation of player
J is an action formula p;(z,z}) (Boolean-valued
formula over primed and unprimed variables) [18]. In
an interleaving representation of a synchronous turn-
based game, the transition relations are p;(z, sc;», i) =
ite(i # j, o} = x;, p; A (I = i@, 1)), p;(x,T),1) =
Nj Pr(z, 2, 7), where a @ b £ (a+b) mod ¢, and
ite(a, b, c) the ternary conditional connective (if a
then b else c¢).

2) Winning: A play is an infinite sequence of
nodes in V' that a game visits, as players move. Given
a play w, and a set W; called winning condition for
player j, if w € Wj, then player j is a winner in
the play w. In practice, a temporal logic formula
@, is used to describe the winning condition W;.
Any LTL winning condition ¢; can be represented
as a conjunction of a safety with a liveness formula
[18], [12]. The complexity of solving a game depends
on the liveness formula, as captured by its Rabin
index [11], [13], [15]. Each Rabin index is associated
with a syntactic fragment of LTL, with normal forms
those of Streett A(OC VvV &O) (conjunctive), and
Rabin \/(OO AO). Each formula OO VOO (A) is
called a Streett (Rabin) pair. A generalized pair has
the form (/" OO) v AY OO, Games with a single
generalized Streett pair (generalized reactivity(1) or
GR(1)) [19] can be solved with O(NM |V|?) control-
lable predecessor operations [16, Thm.3].

Let the set M; C N with [M;| < oo be a finite
amount of memory. A (deterministic) strategy for
player j is a function T} € T; £ [V; x M; — V; x Mj].
Let 7, £ [1xz; T For a node u € V, define the set
Plays(u, To, ..., Tn—1) C Q of all the plays possible
if, for each j < n, player j uses strategy 71;. For
deterministic strategies, Plays(u,Tp,...,Th—1) is a
singleton. Let a realization from u be L(j,u,T;) =
UTjeﬁ Plays(u, Ty, . .., Tn—1) [20]. Given a property
, define the winning set of player j as [Win(j, ¢)] £
{ueV:3T €T, :L(juT)C [¢]}. For the games
we consider, playing against arbitrary, but finite,
strategies, and against arbitrary input sequences
coincide [21, p.619]. So, the above definition is not
restrictive. The notion that no player should violate



their allowed transitions before any other player can
be expressed using past LTL [16]. Here, we define
this precedence in an interleaving representation, as

Definition 1: Let p., ps be action, W,, W, liveness
formulae. Define the strict implication operator >
as (Dpe A We) > (Dps A Ws) £ D((@E‘pe) = ps) A
((Dpe/\we) = Ws) = (Dpe) = (Dpe/\(ws = We))-
We are interested in games with winning conditions
that have favorable complexity, in particular

Definition 2 (Generalized Streett(1) [19]):
Assume that, for all £ € Ncoy,r € Noyy,
Pji(z,i), Rjr(x,i) are assertions (Boolean formulae
over unprimed variables). Then, the LTL formula
v; = (0p;) > (Op; A (N, OOPj = A\, OCR;))
describes a GR(1) property for player j.

III. CONTRACTS

We are interested in a method for constructing
assume-guarantee specifications for a set of modules.
The resulting specifications must be realizable [20],
i.e., for some common initial condition(s), for each
module, there should exist a strategy that imple-
ments its specification. In the context of full infor-
mation, we can directly construct a strategy for each
module, and thus solve this problem. Informally, a
realization does not contain any quantification — it
has all been removed by this point. At the cost of
restricting the temporal property far beyond what
is necessary. We do not want to do so. Instead, we
want to refine the given specifications, in a way that
fewer behaviors be removed.

In particular, a deterministic strategy defines a
property that, for each input sequence, contains at
most one play. Still, for each input sequence, there
remain infinitely many plays that, by this point,
have been excluded from the temporal property. We
want to preserve these plays as admissible behaviors.
Thus, we obtain a temporal property that contains
more behaviors.

For the following discussion, we will need some def-
initions. As specification language, we choose LTL.
We call specifications also properties, and define

Definition 3: Given n players, a contract is a par-
tition of variables among players that defines which
player controls each variable, together with an initial
condition set [I] # 0, and a tuple of properties
{¢0,- -+ ¢n-1), such that = I = A, Win(j, ¢;).

A GR(1) contract contains GR(1) properties.

Definition 4: Let ¢(V),1¥(W) be two properties
over variables in V. W. If [¢]vuw C [¥]vuw, then
the property ¢ refines (or implements) v [20].
Given ¢, synthesis from uw € V is the construction
of a realization v from u that refines . Synthesis is
refinement. Not any refinement is synthesis.

The designer requires that the collective behavior
of the players satisfy /\j (V). If, for some I, p £
(00, .-+, Pn—1) is a contract, then we are done. Oth-
erwise, we want to find a tuple ¥ = (g, ..., ¥, _1)
that refines the given intent, defined as [/ ; Y]y C
[A; #jlv- In addition, we do not want 1 to restrict
the finite behavior (safety) of the players more than
. The limits of any finite behavior contained in a
property P form its closure Cx(P) = {w € [N —
[K—=>D]]:VkeN:Joe P:wl0...k] =0[0...k]}
[22], [23]. Therefore, the requirement to preserve
in ¢ any finite behavior allowed by ¢ (thus avoid
synthesizing) can be expressed as C([A\;¥;]v) =
C([A; #jlv)- This extends to team games the notion
of least restrictive safety assumption [23]. A contract
(V) with the previous two properties refines the
tuple (V) (safety-preserving refinement over V).

Problem 5: Given a GR(1) tuple ¢(V), does there
exist a GR(1) contract ¢ (V) that refines ¢?

In the following sections, we consider Problem 5 for
incrementally larger classes of behaviors.

A. Safety
Assume that, for each player j, a safety property
w; = [p; is given as design intent. If a single

player —1 controlled all variables in V), then let the
cooperatively winning set C = Win(—1, /\; ¢;)- Note
that [C] = 0 implies that [A; Win(j, ;)] = 0, so no
contract exists in that case. A necessary condition
for the existence of a contract is that [C] # 0, i.e., ¢
must be cooperatively winning. Define the existential
predecessors of F as Pre;(F) £ Xz : X : (i =
J) A 3l py(w,al) A F|w;/wj (Zj,25,j ©n 1), where
x’;/x; signifies substitution of z/ for z;. Denote
Pre(F) £ V; Pre;(F), and the iterated predecessors
Pre*(F) £ uX : F V Pre(X). Given ¢, [C] can be
computed as the greatest fixpoint vZ : Pre*(Z) [19].

By extension of results for two-player games [23,
Thm.7], the closure C([/A\;¢;]) contains exactly
those plays that do not exit C'. This can be required
from player j with the formula pc ; 20N C|$3/xj.
Let pc,; = /\k#j pc.k- For safety formulae p; = Opy,
the specifications v; £ (O(p; A pe,y)) =& Op; A
pc,;), with I £ (O, form a contract that refines
the tuple ¢. An analogous result ensures that the
safety component of properties with recurrence goals
OG- can be ensured by computing v 7 : /\j vZj:
Z NN, Pre* (Gj, APre(Z;)), as we prove in [24].
B. Recurrence

We consider now tuples ¢ with ¢y = Opo AOOG
and, for j > 0, ¢; = Op;. Unlike safety in Sec. I1I-A,

we prove that for a single recurrence GG, GR(1)
liveness assumptions over V may not exist.



Proposition 6: ASSUME: Define the transition re-
lations pg, p1 by the game graph of Fig. 1, the set of
nodes V £ {sg,...,s7}, and the goal [G] = {s¢} of
player 0. PROVE: For all sets [P] C V, with ¢; =
(@po) > (Op1 AOOP) and 4o = (Op ADOP) =
(Opo AOOG), it is [Win(0,40)] N [Win(1,41)] = 0.

PrOOF SKETCH: For any P that does not intersect
{s0,...,83}, player 1 cannot win, because player
0 can force, and keep, the play outside of P. For
similar reasons, P should intersect each of {sg,s1}
and {so,s3}. If P intersects {sg,s1} and {s3,ss3},
then player 1 can win by always moving from sy to
s1, when the play comes to s4. This forces a visit to
either both sy and sy, or both sy and s3. So, for no
P do both players have a winning strategy. A formal
[25] proof can be found in [24].

By adding the edge s5As) to Fig. 1, lack of liveness
assumptions for the goal (JCG can be proved for
each player. In this game, if a GR(1) contract refines
O s6, then it contains (0 s (or the equiv. sgV s7)
as goal for at least one player. Therefore, a GR(1)
contract that refines ¢ A 1 does not exist.

Also, Proposition 6 implies that, even if a problem
is cooperatively realizable, existing approaches for
constructing GR(1) assumptions [26], [27], [28] may
find only assumptions that constrain safety.

One may wonder why we didn’t consider (J<s4 as
antecedent in 1)y, since with [P] = {s5}, this may
seem to work. The problematic aspect in Fig. 1 is
that, in GR(1), O ss would also have to be con-
joined into the consequent of ¥y, to tell player 0 to do
so. Player 0 can violate its liveness goals, thus (< s4,
as long as that falsifies the antecedent (J< P of )y,
in accord with Definition 2. This is known as trivial
realizability [23], [16], [29]. In other words, there is
circularity of dependencies for the liveness properties
[30], [31], [32], [22] that each player needs to assume
about the other. In Sec. IV, we propose an algorithm
that constructs nested GR(1) specifications, which
enjoy complexity properties similar to GR(1) games.

IV. NESTED GR(1) GAMES

A. Single recurrence

In Sec. III-B we proved that Problem 5 can fail
to have a solution. To overcome this limitation, we
extend the class of properties to

Definition 7: If, in syntax, ¢; = Op; => (I:ij A
/\m D((Pm/\/\kZm, 1 Doﬁnkl) = OQm)AD(Qm =
N D<>_‘£ml)), and, in semantics, [Pn-1] C
[[Qm]] - [[Pmﬂ>[[77ml]] - [[Pm A ﬁCx?mﬂ and [[fmlﬂ c
[Qwl, [&mi] € [—Pm-1], then we call ¢; a nested
GR(1) property for player j.

§ Attro(G)

Attry (85 V 86)

©
Fig. 1: Game where a liveness assumption realizable
by player 1, and sufficient for player 0, does not exist.
Player 0 (player 1) moves from disks (boxes).

IfaCbC .- Cec, then the sets a,b,...,c form a
chain. A nested GR(1) property can be regarded as
a request-response chain, in analogy to Rabin and
Streett chains (parity) [33, p.13] [34]. Note though
that synthesis for a nested GR(1) property is similar
to GR(1), whereas for parity games it is unknown
whether a polynomial time algorithm exists.

A nested GR(1) property enables to isolate con-
ditional assumptions, by partitioning the game into
smaller ones. Each conjunct game becomes active
in P,,, it has its own assumptions <., and
the reachability goal @Q,,, tighter than the games
with larger m, on which it depends. This prevents
circularity of liveness dependencies. The assumptions
O M are unconditional. Assumptions that them-
selves depend on other liveness assumptions become
objectives in their own game. The approach of nested
games is reminiscent of McNaughton’s recursive al-
gorithm for solving parity games [35].

We propose Algorithm 1, which computes a stack
of nested games that cover the cooperatively winning
set [C], and define a contract. So, a later visit to
G is always possible, from any node in C. Define
the controllable predecessors of F for player j as
CPre;(F) £ Az @ \i : Z;é ((k = ) A =*7732),
pr(z, z)) A —|k¢jF|w;€/wk (T, @)y, k Dy 1)). The attrac-
tor Attr;(F) £ puX : F V CPrej(X) [36] contains
those nodes from where player j is in, or can force a
future visit, to F'. Define the controlled-escape subset
of S as Trap,(S, E) £ vX : EV(CPrej(X)AS) that
contains those nodes, from where player j can force
either to remain inside Trap;(S, E), or move to E,
or is already in F.

Theorem 8: ASSUME: A cooperatively realizable
tuple ¢ = (po,...,Pn-1) With @9 = Opo A OOG
and Yk > 0 : ¢ = Ope. PROVE: After O(n|V[?)
calls to CPre;, the call GAMESTACK(0, G, C,s) in
Algorithm 1 returns in list s a contract of nested
GR(1) properties that refines ¢, with I = C.

PRrROOF SKETCH: Function UNCONDASM finds the
largest set r from where player j can keep the play
inside the k-attractor of the j-attractor of goal g,
as shown in Fig. 2. This yields an unconditional
assumption that player 7 makes about player k.
Tteration [ of L3 produces an assumption (<> —1,,; of



Fig. 2: Predicates computed by UNCONDASM, Algo-
rithm 1.

player j, with n = trap = r, which is also a guarantee
OO —Em by player k, with &,,,; = trap. The fixpoint
v p for computing r in UNCONDASM has alter-
nation depth 1 [37], so it invokes CPre; O(|V]) times.
Due to determinacy [11], [21], and the definition of
the cooperatively winning set C, for every n nested
calls at L15, at least one call to UNCONDASM at
L5 removes a node from uncovered. So, GAMESTACK
makes O(n |V|*) calls to CPre;. A formal proof can
be found in [24].

Algorithm 1 can be applied also to games where
the players do not move in a fixed order, because
those can be described in GR(1). Concurrent [17] and
asynchronous [38] games are special cases of games
with partial information, which are not determined,
so the inductive argument does not hold in that case.

Note that searching for fewer assumptions, in-
ducing a smaller winning set, can be exponentially
expensive, as proved for syntactic recurrence formu-
lae in [27]. Conceptually, the nesting of games has
common elements with modular game graphs [39]
and open temporal logic [40].

Example 1: Let us revisit the example of Fig. 1,
to observe the algorithm’s execution. Player 0 wants
OOG. The first call to GAMESTACK will call UN-
CONDASM. Player 0 can force a visit to sg from the
attractor A = Attrg(sg) = s5 V sg. Player 1 can
force A from B = Attri(A) = s4 V s5 V sg. But
r = 1, because player 1 can escape to s;. So, a nested
game is constructed over sg V s1 V s2V s3V s4, with
player 1 wanting <(s5 V sg). In the nested game,
A = Attri(ss V sg) = 84V 85V sg. The attractor
B = Attro(ss V s5 V sg) = T, and player 0 can keep
player 1 in there, until player 0 visits s4V s5V sg. So,
in the nested game, player 1 makes the assumption
OO (so V 81V sa V s3). This covers the cooperative
winning set, in this example the entire game graph.

B. Conjoined recurrence

Let us consider Problem 5 again, this time for any
GR(1) tuple ¢. The difference with Sec. IV-A is that
there may be more than one recurrence goals in ¢.
In this case, we prove with the counterexample of
Fig. 3 that a GR(1) assumption may not exist. This
includes any GR(1) assumption, not only those that
preserve safety. In other words, no transitions can

Algorithm 1 Construction of nested GR(1) specifi-
cation, for a single recurrence goal G.

1: def GAMESTACK(j, G, uncovered, stack)
2: trap <— T, goal < G, stack < set()
> Create unconditional assumptions 7,,;

3: while [trap] # 0 : > until stuck
4: for k#j:
5: attr, trap < UNCONDASM(j, k, goal)
6: goal < attrV trap
7: assumptions.add ((k, <O ~trap))
8: if [trap] #0 :
9: break
10: game < (j, goal, G, assumptions)
11: stack.append(game)
12: uncovered < uncovered A —goal
> Covered cooperatively winning set?
13: if [uncovered] =0 :
14: return
> Construct a nested game
15: GAMESTACK(j ®, 1, goal, uncovered, stack)

16: def UNCONDASM(j, k, g)

17: A+ Attr;(g)

18: B« Attry, (A)

19: r < =ANA B A Trap,;(B, A)
20: return A, r

G2 Gl

E—L O

Fig. 3: No GR(1) assumption exists for this example.

be removed, and no additional recurrence goals can
produce two GR(1) properties that both players can
realize from the same initial set.

Proposition 9: ASSUME: Define the transition re-
lations po, p1 as in Fig. 3, and goals G; = {s¢}, G2 =
{s0} of player 0. PROVE: For all properties P such
that 1, = (Opo) *> (Dp1AP) and ¢y = (Op1AP) >
(Opo AOOG1 AOOG2) be GR(1) properties, it is
[[Win(oa ¢0)]] N [[Win(la ¢1)]] =0.

A proof can be found in [24]. The reason for
this limitation is that auxiliary variables are needed
for coordination between players, to ensure they
play the same nested GR(1) game. This relates to
the requirement for memory in strategies for GR(1)
games [36], [16]. Each player can have their own
memory, but if these local memories are not coor-
dinated, the situation is similar to one player with
two independent memories over a partition. In other
words, additional common memory is required.

However, Problem 5 does not apply any more,
because 1); will be defined over W, which is V aug-



mented with auxiliary variables. Given a property
P over variables W 2O K, define projection on K
as mc(P) £ {w € N = [K — D] : 3o €
P :Vk € N : wlk] = olk] N[ — D]}. Define
closure preservation over the original variables V as
™ (Cw(IA; idw)) = Co([A;¢5lv). TEY €W,
Y(W) is a contract, [A\;¢;lw C [A;¢jlw and
closure is preserved over V, then contract (W)
refines tuple @ with memory W\ V.

Problem 10: Does there exist a class of contracts
that admit synthesis in polynomial time, such that,
given a GR(1) tuple ¢(V), there always exists a
contract (W) that refines ¢ with memory W\ V?

First, the transition relations should be restricted
to ensure closure (safety component), as in Sec. I1I-
A. As shown in Sec. IV-A, each recurrence goal
can be reached from anywhere in the cooperatively
winning set C, by using nested GR(1) properties for
the players. Therefore, playing consecutively games
that cycle through all the tuples of nested GR(1)
properties, one for each recurrence goal, ensures that
the play repeatedly visits each recurrence goal.

For this purpose, we introduce the auxiliary
counter variables g; € N<y;, where N; the number
of recurrence goals G, of player j. Each counter is
used to indicate a recurrence goal of player j that
is actively pursued by the players, each one using
the strategy for the nested GR(1) game that corre-
sponds to that goal. The behavior of the counters
is described by the formulae A, O((g; =) =
ite(Gjr, ¢ = g; +1, gj = 95)),0((g; = Nj) =
ite(©(9j@,1 = Njo,1 — 1) A (gj@.1 = Njs,1), g5 =
0, gj = N;)) with initial conditions (go = 0) A (Vk >
0: g = Ng). The game with index r is activated by
using (g; = r) as requests in ¢; of Definition 7.

V. EXAMPLES

The proposed algorithms have been implemented
[41] in PYTHON, using our packages omega [42], [43],
for symbolic solution of games, and dd, for binary
decision diagrams (BDD) [44], [43]. dd offers both
a pure PYTHON implementation, and an identical
interface via CYTHON to the C library CUDD [45],
for demanding applications. They are available under
a BSD license. The predicates in the constructed
temporal properties are represented by BDDs.

1) Grid world: The first example involves two
robots A, B that are moving in a narrow passage,
and need to cross each other. Their discrete world
is described by cells, as in Fig. 4a, and moves are
possible between adjacent cells. Define variable a
(b) as the cell that robot A (B) currently is in.
Each robot can remain stationary, and shall not
move from, or to, a cell where another robot is, e.g.,

O(a # b # a’) for A. Robot A (B) can move from
cel0»1—-2—-3—-24—-5—~00—~5—4~
3—=2—1—0,and 2~ 6+— 2, and 0 — 7 — 0). In
other words, robot A (B) moves (counter)clockwise,
and A cannot go to cells 7 and 6.

The construction of a contract for the property

tuple ¢ £ (4, p) with 0, £ Opy A OO(a = 4)
and o, £ Opy. starts with the closure C([eq A @b]),
as discussed in Sec. ITI-A. This removes nodes of
the game graph that are unsafe for OO (a = 4).
For example, (a = 3) A (b = 4) is such a node,
because there is no way for A to go to a = 4
from there, even if both A, B were controlled by
one player. The relation pc ;, computed to ensure
that both robots remain in the cooperatively winning
set C, removes only transitions that “cross” the
boundary from C to —C, as in [23]. For example,
node u £ (a = 3)A(b=5)A (i = 1)is in C, but
ve(a=3)A(b=4)A(i =0)is not (recall that i
signifies who should move next, with 0 for a and 1
for b). The transition from u +— v satisfies Op, AO P,
but violates Odp, AOps AL (@ = 4). In the following,
Pa, py are constrained with pc 4, pcp.

Secondly, Algorithm 1 runs. It produces the spec-
ification ¢, with Py = C, Qo = (a = 4) A (b €
{0,...3,6,7}) and one assumption 7y = ((a =
DA((be{2,..5)Vvb=0Ai=1)V(b=
6Ai=1)))V((a=5)A(be{0,1})V(b=TNi=
1))). Recall from Definition 7 that v, includes the
conjunct D((Po AOOm) = OQO). So, robot
A has to eventually reach [Qo] € [a = 4] from
any node in [Pp]. Suppose that the system is at
(a=0) A (b=3). In order for A to reach 4, B must
come to 6, then A cross it, and continue to reach 4.
Without any liveness assumptions, A cannot do so,
because B can forever stay in 3. If B continues to
sit at 3, it satisfies pc . In order to force B to move
with a safety constraint, we would have to remove
transitions (namely, the self-loop of B at cell 3). This
would happen when applying distributed synthesis,
and it would restrict the movement of B, every time
it visits 3. We do not want to do so.

The generated assumption O 70,0 makes it possi-
ble to force B to leave cell 3, and eventually come to
cell 6. Robot A “enters” [ng o] by going to a = 1. It
waits there, and the only way for B out of [ o] is to
eventually move to 6. Note that, at 6, B exits [ o]
as soon as A’s turn comes, i.e., (a = 1)A(b=6)A(i =
1) is in 19,0, but (@ = 1) A (b = 6) A (i = 0) is not. So,
A cannot force violation by B of the v, guarantee
OO —Eo,0 with &0 = 10,0. B can keep staying at 6,
until A decides to move to 2.

It is important to observe that the contract
preserves infinitely many behaviors for each robot.
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Fig. 4: Examples where liveness assumptions are
constructed for cooperation of the modules.

This allows further design for each robot to continue
independently, for example by different teams. If
we synthesized directly controllers for each robot,
then those would constrain the exact step-by-step
behavior. This would require us to consider the exact
details of both robots at once, which is not a modu-
lar approach. For example, robot B may be solar-
powered, so it’s movement depends on batteries,
weather conditions, and other factors. How these
factors interact and affect the choice of motors and
batteries should concern the team that designs robot
B. The team that designs A need not worry about
those details, as long as team B can implement
its side of the contract. Thus, this approach avoids
to constrain the irrelevant details prematurely. It
decomposes the design, so that individual compo-
nents can be refined (or decomposed) further. If
one of the robots fails later, then any replacement
that fits the contract works. The contract 1 allows
greater freedom for choosing replacements, without
constraining irrelevant details about their step-by-
step behavior. Similarly, a contract allows more
choices of solutions from off-the-shelf components.
Also, we didn’t have to come up with assumptions
manually, a challenging and error prone task.

2) Landing gear: We consider now a simplified
modular avionics system for landing gear control
[46], [47]. There are two modules, as shown in Fig. 4b,
one representing the (auto)pilot and flight control
module, another for landing gear control, which runs
two independent control applications, one for control
of the gear g (retracted: 0, moving: 1, fully extended:
2), another for control of the gear doors d (closed:
0, moving: 1, open: 2). The (auto)pilot controls air-
speed s € {0,...,1000} km/h and absolute altitude
h € {0,...,100} 100m, and the mode m (landing:
0, cruise: 1, takeoff: 2). The safety specification for
all components requires that gear be fully extended
below 300m O((g # 2) = (h > 3)), doors be closed
above 300 km/h [O((s > 300) = (d = 0)), doors be
open if gear not retracted, Od((g # 0) = (d = 2)),
gear be extended on ground, d((h = 0) = (g = 2)),

the flight control module cannot enter landing mode,
unless the gear is fully extended O((m =0) = (g =
2)), and the gear must be retracted during cruise
O((m = 1) = (g = 0)). The (auto)pilot’s goal is to
be able to enter all modes A;_, O (m = k).

For the goal (0 (m = 0) three levels of nesting are
constructed. At the bottom one, the doors assume
that the pilot will eventually reduce the speed below
300 km/h. If so, the doors open, leading to (g0 for
the doors, which is Py o for the gear. When the doors
are open, the landing gear can start moving, and
eventually extend fully. This leads to Qg4,0, which is
P, 0, from where the flight control module can switch
to landing mode. To enter cruise mode, O (m =
1), the nesting is different. At the bottom, the gear
control assumes that eventually the height is above
300m, to retract. Then, the doors close, leading to
the autopilot’s attractor of cruise mode.

VI. RELATED WORK AND CONCLUSIONS

Synthesis has been applied widely to robotic and
multiagent systems [48], [49], [50], [51]. The ap-
proach we proposed investigates construction of non-
constraining properties, instead of synthesis. Most
relevant to the work presented here are approaches
for constructing GR(1) and LTL assumptions [26],
[27], [28], [23], and for analyzing unrealizable specifi-
cations [52], [53], [54]. The syntactic methods in [26],
[27] are enumerative in nature, in that a counter-
strategy is iteratively synthesized, and consider only
non-circular dependencies between modules. The se-
mantic approach proposed here is symbolic (using
BDDs), automated, and addresses circularity. The
construction of safety assumptions before liveness
is based on [23]. The assume-guarantee framework
originates from [55], [56] that evolved to [57], [58],
[59], [2]. Ideas about temporal proof lattices [31]
and temporal well-founded induction [30] led to Al-
gorithm 1. The nonexistence of memoryless GR(1)
contracts is related to the need for auxiliary variables
in constructing refinement maps [60].
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