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Abstract— We propose a methodology for abstracting
discrete-time piecewise-affine systems influenced by additive
continuous environment variables, to synthesize correct-by-
construction controllers from linear temporal logic specifi-
cations. The proposed algorithm partitions the environment
domain into polytopes, considered as modes controlled by the
environment. In each mode the environment variable is treated
as a bounded disturbance for the system. Mode polytopes
are iteratively enlarged while a strategy isomorphism between
successive system partitions can be constructed. Isomorphisms
are obtained by solving the stable marriage problem after
proving that our case admits a unique solution. This leads to
mapping high-level symbolic variables to equivalence classes
of polytopes, instead of single polytopes as in other works. We
thus avoid the need to merge partitions, which can create sliver
polytopes, causing numerical problems during reachability
computations. The approach enables using the same strategy
over partitions that have an isomorphic subgraph relevant to the
strategy. Reachability checks between neighboring partitions
are used to reduce non-determinism introduced by switching
and allow continuous restoration of discrete state. If bifurca-
tions occur that prevent strategy reuse, then switched system
game synthesis is performed, and a logic modeling formalism
proposed that avoids trivial cyclic counterexamples.

I. INTRODUCTION

As system complexity increases, modular compositional
approaches that decompose a large system into components
that can be designed and validated independently become
more attractive. Though these divide and conquer frame-
works reduce the computational complexity of the problem,
the challenge is shifted to interfacing these components
while preserving the required correctness properties. These
interface rules are known as contracts [1] and several related
methods have been proposed, including assume-guarantee
contracts [2], [3]. Satisfaction of an assume-guarantee con-
tract by a component ensures its correct behavior, under the
condition that its environment satisfies the contract’s assump-
tion. So a contract defines a set of admissible environments,
and enlarging this set makes the components implementing
it more versatile and robust to their environments. Such a
relaxation of assumptions is analogous to the concept of
weakest preconditions for algorithms [4].

A difference with the discrete case is that systems with
continuous dynamics are in continuous interaction with
their environment. Therefore exploring the set of admissible
continuous environments would require a continuous rep-
resentation of them, which is challenging and renders use
of formal methods from computer science difficult. This
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has led to a large amount of recent work on temporal
logic control of hybrid systems [5], [6], [7], [8], where the
environment is either discrete, or continuous. Finding a set of
assumptions on a discrete environment has been approached
using counterexample-guided refinement, and in the case of
games, strategy-guided refinement [9]. For continuous envi-
ronments the authors of [10], [8] lump the uncertainty into a
disturbance that is accounted for in reachability computations
performed during abstraction of dynamics. Dynamics that are
controlled only by mode switching have also been considered
[11] and are a particular instance of continuous environment,
though its influence is already abstracted there assuming an
observation map that discretizes its domain is known a priori.

Here we consider the effect that continuous environment
variables can have on the system. Lumping them into a large
disturbance can render the problem unrealizable, whereas a
refined environment abstraction can reduce the uncertainty
over each discrete time step, allowing the system to react by
observing continuous environment behavior. For the simple
schematic example of Fig. 1 the uncertainty in solar power
input can affect the functions of a smart building. The
specification can require that security-related devices never
be turned off, but appliances can be scheduled so that tasks be
eventually completed and power consumption never exceed
that available from solar collectors. Designing a controller
that achieves this for a wide range of power uncertainty can
be impossible, whereas splitting the uncertainty into smaller
intervals can be handled by synthesizing a reactive controller
that observes the currently available power.

From a contracts viewpoint, it relaxes the environment
assumptions by removing the requirement that other system
components (its environment) are accompanied by the same
discrete representation that was used when computing the
assume-guarantee contract for that particular component. A
dual viewpoint is specification relaxation [12], [13], differing
in that it concerns unrealizable specifications.

We propose computing a polytopic abstraction for the
environment, and for each polytope in it a partition for
the system. The partitioning into modes is incrementally
guided by checking whether the partitions are isomorphic
with respect to a strategy found for the first partition in
that mode. The resulting environment abstraction is closely
related to constructing the observation map assumed as given
in [11]. Forms of specification-guided synthesis have been
considered in [14], [15], but not as it is used here, where
we attempt to map the system strategy as we partition the
environment. Robust synthesis has been studied in [16], [17],
but from a discrete automata-theoretic perspective, whereas
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Fig. 1: The system dynamics are abstracted for different
environment conditions, such that the given specification
remains satisfiable, as the environment state δ changes.

here robustness is considered primarily at the continuous
level. Compared to hybridization of nonlinear to switched
piecewise-affine (PWA) systems [18], we start from a PWA
system that is open, i.e., the environment continuously influ-
ences the system and is abstracted by the derived modes.

The rest of this paper is organized as following: Logic and
game synthesis are reviewed in section II, the environment
partitioning described in section III, computation of over-
laps in section IV, isomorphic matching in section V, and
partition bifurcations in section VI. A simulation example
is presented in section VII and future work considered in
section VIII.

II. PRELIMINARIES

Let N denote non-negative integers, R real numbers, En

the n-dimensional Euclidean space, and B ! {0, 1}, Q∗ !
Q \ {0}. Index sets are denoted by subscripted I ⊂ N,
absolute value and volume by |x|.

A. Polytopic Predicates and Propositions

1) Polytopic Predicates: A predicate is any function with
codomain B. We name predicates differently depending on
their preimage π−1 ({1}), hereafter abbreviated to π−1(1). A
linear predicate is defined on En as π(x) ! (aTx+a0 ≤ 0),
where a ∈ En and a0 ∈ R [19] and π−1(1) is a half-space.
A convex polytopic predicate π(x) ! ∧

i∈I πi(x) where πi
are linear predicates and i ∈ I ⊂ N, |I| <∞, implying that
set π−1(1) is a convex polytope {x ∈ En| Ax ≤ b}, A ∈
Rr×n, b ∈ Rr, where inequality applies componentwise. A
polytopic predicate π(x) ! ∨

j∈J πj(x) where πj are convex
polytopic predicates indexed by a finite set J ⊂ N. So set
π−1(1) is a (possibly non-convex) polytope. The set of all
polytopic predicates over En is denoted by Pn. Any Boolean
formula ϕ over a finite set of polytopic predicates Π ⊂
Pn defines a subset of En which is a polytope. Hereafter
”predicate” refers to polytopic predicate. Given predicate π,
a (convex) partition Π ⊆ Pn is a cover π =

⋃
q∈Π q, ∅ /∈ Π

comprised of disjoint (convex) predicates.
2) Atomic Propositions: Define a set AP whose elements

will be called atomic propositions (symbols), intuitively
understood as symbolic variables. A valuation s of set AP
is a predicate s : AP → B assigning truth values to the
symbols a ∈ AP . ”Atomic” signifies that each a ∈ AP is
free to be mapped to any truth value in B independently of

the other symbols. In contrast, a proposition defined as a
formula over AP must be evaluated based on AP . Unlike
predicates, which are functions, symbols are set elements.

3) Polytopic (or Continuous) Atomic Propositions: The
symbols AP can be partitioned into primary APϕ, which
are part of the specification formula ϕ (section II-C), and
derived APψ , which are auxiliary, resulting from abstraction
(e.g.transitions expressed in logic, or liveness annotations
for augmented finite transition systems [20]). As part of the
problem specification, we are given a bijection f : APϕc ⊆
APϕ → Πϕ to a set of predicates Πϕ. Then for any continu-
ous state x ∈ En we can construct a valuation function sx by
defining sx : APϕc → B : a (→ sx(a) ! f(a)(x) = πi(x).
In this way each specification predicate πi is represented
at the discrete level. A partition Π′ is predicate-preserving
(symbolic) with respect to Πϕ, denoted Π′ |= Πϕ, if for
each p ∈ Π′, for all π ∈ Πϕ either p ∩ π = ∅ or p ⊆ π. The
term proposition-preserving [10] is not used here because
later symbols in APψc are mapped to equivalence classes of
predicates. Partition Π1 refines Π′, denoted as Π1 ≼ Π′, if
and only if (iff) ∀π1 ∈ Π1.∃π2 ∈ Π′.π1 ⊆ π2 [21]. Thus if
Π′ |= Πϕ (is symbolic), then so is Π1 |= Πϕ.

B. Piecewise-Affine Linear Systems

A discrete-time time-invariant polytopic piecewise-affine
(PWA) system with additive uncertainty is a finite set of
tuples W ! (πi, Ai, Bi, Ei,Ki), i ∈ Ipwa ⊂ N where πi ∈
Π ⊂ Pn, with semantics x[k] ∈ πi =⇒ x[k + 1] =
Aix[k] + Biu[k] + Eiδ[k] + ki, where x : N → X ⊆ Rn

is the continuous system state, k ∈ N is discrete-time, u :
N→ Rp is the control input, δ : N→ Rm is the disturbance,
Ai ∈ Rn×n the system matrix, ki ∈ Rn×1 a drift term, and
Bi ∈ Rn×p, Ei ∈ Rn×m. The control input is constrained
in some polytope ∀k ∈ N .u[k] ∈ U and the disturbance is
also assumed to be in some polytope ∀k ∈ N, δ[k] ∈ D . A
switched PWA system S ! ⋃

i∈Isw
{Wi}. Each Wi(D) is a

mode of S , with D determined later.

C. Linear Temporal Logic

Linear temporal logic (LTL) [22] is used to reason about
individual sequences in time. It extends the propositional
connectives negation ¬ , conjunction ∧, and disjunction ∨
by the temporal operators next ⃝ and until U , from which
eventually ♦ and always # are derived as ♦p ! (true) Up
and #p ! ¬♦¬p, p ∈ AP . Atomic propositions are the
terminal symbols of the logic. The set Φ of well-formed
LTL formulæ can be defined recursively by AP ⊆ Φ and if
ϕ,ψ ∈ Φ, then ¬ϕ,ϕ ∧ ψ,ϕ ∨ ψ,⃝ϕ,ϕ Uψ ∈ Φ [23].

D. GR(1) Fragment and Game Synthesis

A model comprises of symbolic variables in AP . By
system we refer to the set Y ⊆ AP of controlled variables,
whereas the set X ⊆ AP of uncontrolled variables is referred
to as environment. A system which reacts to inputs from its
environment by producing outputs is called open. Given an
LTL formula ϕ and a model describing what behavior is
feasible for the environment and system, reactive synthesis



produces a winning strategy represented as a Mealy machine
M [9] for manipulating the controlled variables in order to
satisfy ϕ however the environment plays. Game synthesis
for LTL is 2EXPTIME-Complete [24] in the size of the
specification, whereas for the GR(1) fragment of LTL it
is in PTIME in the number of states [25]. We assume the
specification ϕ is in GR(1) and use the gr1c solver [26].
Note that several LTL specifications can be converted to
GR(1) form by introducing auxiliary variables.

E. Transition Systems
Definition 1 (Open Finite Transition System): A labeled

graph T ! (S, S0, AP, L,Acte, Acts, T ) where
• S is a finite set of states
• S0 ⊆ S is a subset of states labeled as initial
• AP is a finite set of atomic propositions
• L : S → 2AP labels states with symbol words
• Acte, Acts are finite sets of environment and system

actions, respectively, assuming that Acte ∩Acts = ∅.
• T ⊆ S×Acte×Acts×S a transition relation, possibly

non-deterministic with respect to actions.
Let Ts, Te model the system and its environment, respec-
tively. Each transition in Def. 1 can be assigned semantics

1) # (si → ⃝ (sj ∧ acte ∧ acts)) for Ts, and
2) # (ei → acts ∧⃝ (ej ∧ acte)) for Te,

where (si, acte, acts, sj) ∈ Ts and (ei, acte, acts, ej) ∈ Te.
Note that Te knows only the previous system action [25].

III. ENVIRONMENT PARTITIONING

A. Problem Statement
The environment’s continuous domain in our case is

additive disturbance in E ⊂ Rm, though the proposed
framework can be extended to systems with parametric
uncertainty in A, using appropriate reachability and control
algorithms. We assume a GR(1) specification ϕ ∈ Φ and
a PWA system W0(E ) are given, with the disturbance δ
regarded as controlled by the environment with bounded rate
∥δ[k + 1]− δ[k]∥ℓ2 < K ∈ (0,+∞).

Problem 2 (Environment partitioning): Compute a parti-
tion ΠE ⊂ Pm of E , a switched system S and a map
g : ΠE → Isw from environment predicates to switching
modes, an abstraction TS of S , and a control strategy M on
TS such that ϕ be satisfied.
Transitions in M can then be implemented using receding
horizon control as in [8], because their feasibility is ensured
during abstraction.

B. Neigboring Partitions differ by Perturbation
The control design process comprises of two stages: firstly

the dynamics are abstracted using backward reachability
analysis as in [10], [8] to obtain a transition system between
polytopes of partitions Πi of X , then game synthesis [25] is
used. In our case different system partitions Πi are associated
to different subsets of the environment domain E .

Between bifurcations, the phase portrait of sufficiently
smooth (Lipschitz) systems with parameters varies smoothly
[27]. So we expect that polytopes from neighboring (defined
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Fig. 2: (a) Mapping an initial strategy M0 to abstraction GΠ1

corresponding to an enlarged disturbance set ρM+1 ⊇ ρM .
(b) Joint environment and system state space partitioning.

later) partitions Πi,Πj can be paired based on their Haus-
dorff distance (intersection volume used later). This obser-
vation motivates mapping Πi to Πj to track the symbolic
abstraction, utilizing metric information from the common
underlying state space X . This mapping can then be used
to isomorphically map strategies.

Initially a symbolic partition Π′ |= Πϕ is derived from the
specification predicates Πϕ ↔ APϕc . All partitions hereafter
are refinements of Π′, therefore predicate-preserving with
respect to Πϕ. The adjacency graph AΠi of a partition
Πi has edges E ! {(π, η)

∣∣π ∩ η}. A reachability digraph
GΠi is defined with edges the feasible transitions between
predicates.

The main steps of the proposed algorithm are the follow-
ing. An initial predicate ρM ∈ Pm is found by bisection
after M iterations ρ0, ρ1, . . . , ρM , such that a strategy M0

exists on an abstraction GΠ0 of W0(ρM ). Then supersets
ρM ⊆ ρM+1 ⊆ · · · ⊆ ρM−1 are computed by bisection
between ρM and ρM−1 (for which no strategy existed). For
each ρi the system dynamics are abstracted into GΠi based
on reachability computations using the algorithm of [10].

For each tuple (ρi, ρi+1) a partial bijection ri,i+1 : Ωi ⊆
Πi → Πi+1 is computed, inducing a mapping γ from
subgraphs over Ωi to subgraphs over ri,i+1(Πi). Note that
the Mealy machine M0 has states that correspond to TS
unfolded [23] with respect to the discrete variables of the
model. Therefore the (”spatial”) transitions of GΠi used by
M0 are those of its projection GM0,i ! projGΠi

(M0).
Definition 3: A strategy isomorphism ξij is an isomor-

phism of GM,i to a subgraph of GΠj , contained in the rela-
tion rij . If a ξij exists for (Πi,Πj), then we call GΠi , GΠj

strategically isomorphic, denoted by GΠi ≃M,rij GΠj .
If γ(GM0,i) ⊆ GΠi+1 , then strategy M0 can be used in
ρi+1, so ρi, GΠi can be replaced by the enlarged mode
ρi+1, GΠi+1 . When γ fails to copy the strategy, a new
predicate ρ′0 is initialized by shifting the interval in the scalar
case, and the above procedure is repeated. By neighboring
partitions we refer to Πi,Πj such that ρi ∩ ρj ̸= ∅.

The above procedure is repeated until E has been covered,
yielding a partition ΠE×X comprised of predicates πi × ρj
for πi ∈ Πj , ρj ∈ ΠE , as schematically shown in Fig. 2b.

Besides enlarging a single predicate ρi, mappings between
partitions can be utilized also for relating partitions Πi,Πj

associated to neighboring ρi, ρj , i ̸= j. In that case inter-
partition reachability must be taken into account as in



section VI-A, to find the deterministic restriction r̂ij of rij .
We can then distinguish three cases of synthesis. The first
case is when all partitions Πi are strategically isomorphic
GΠi ≃M,rij GΠj with respect to a common strategy M,
so we can treat them as a single mode at the discrete
synthesis level, applying the required ”restoration” control
actions (section VI-A) at the continuous level to remain in
identified predicates of different Πi,Πj as δ changes.

The second case concerns bifurcations between Πi,Πj ,
preventing use of a common intra-mode strategy. This re-
quires resynthesis for each Πi, to guide partitioning. In
absence of liveness assumptions on environment switching,
i.e., if the environment can remain infinitely long in any
ρi, then existence of an intra-mode strategy is a necessary
condition for the existence of a switched strategy. This
avoids deriving useless modes that would definitely render
the switched synthesis unrealizable. After partitioning is
complete, a switched system synthesis is performed.

The third case is a variant where assumptions are known
on how the environment evolves in E (e.g., we might know
that an uncertain parameter representing power consumption
reduces near zero levels during night). These translate to
mode switching constraints, which imply that switching is
essential to realizability, so intra-mode strategies might not
exist. This can be addressed by performing strategy synthesis
for the switched system as new modes are created. Then
mode enlargement will use the projection of the switched
strategy on that particular mode’s partition. More efficient
switched synthesis may utilize iterative extension, related to
patching [28], but is outside the scope of this work.

The 1-dimensional case is outlined in Algorithm 1, which
can be extended to more dimensions by using polytope
bisection. The function TRYISO attempts to find a mapping
γ (section V) with which to map the existing Mealy strategy
Mi to another partition for an enlarged interval. In general as
environment uncertainty δ is reduced, it becomes more likely
that a strategy exists. Therefore Algorithm 1 searches the ini-
tial strategy by shrinking the environment interval around the
origin. For systems with Ai parameterized by environment
variables (instead of an additive disturbance δ) this is not true
and an initial feasible point will need to either be known or
determined by sampling the domain. Nonetheless in practical
applications we are usually interested to explore the limits of
a prototype or an existing system, which provides us with an
initial feasible instance of the problem. This enlargement of
the set of admissible environments is reminiscent of weakest
preconditions [4], but on continuous environment variables.

C. Assumptions on environment about switching delays
To derive the partial bijections rij (sections IV and V)

we compute a relation between overlapping polytopes from
neighboring partitions Πi,Πj . Suppose polytope πp ∈ Πi

intersects multiple polytopes cj(πp) ! {πq ∈ Πj |πq ∩ πp ̸=
∅}. If x ∈ πp and the environment switches from ρi to ρj ,
then next

∨
π∈c(πp)

(x ∈ π). This introduces uncontrolled
nondeterminism. To alleviate this effect, we employ inter-
partition reachability checks (section VI) that determine

Algorithm 1 Partition environment disturbance domain [a, b]

1: procedure ENVPARTITION([a, b], ϵ, λ) ◃ λ ∈ (0, 1)
2: c← a, d← a+b

2
3: while (|d− c| > ϵ) and [a, b] not covered do
4: ENLARGEINTERVAL([c, d])
5: c← c+ (1− λ)(d− c) ◃ shift with λ-overlap
6: d← d+ (1− λ)(d− c)
7: if (|b− d| < ϵ) ∨ (b < d) then d← b
8: end if
9: end while

10: end procedure
11: procedure ENLARGEINTERVAL([c, d], ϵ)
12: SHRINK([c, d]) ◃ fix c, halve [c, d] until realizable
13: Πi, Gi ←DISCRETIZE(W0(D), D ! [c, d])
14: M←GR(1)-SYNTHESIS(Πi, Gi,ϕ)
15: l← c, a← d, b← 2d, c← a+b

2 , c′ ← b
16: while |c− c′| > ϵ do
17: Π′

i, G
′
i ←DISCRETIZE(W0(D), D ! [l, c])

18: M′ ←TRYISO(Mealy, (Πi, Gi), (Π′
i, G

′
i))

19: if M′ ̸= ∅ then
20: a← c, M←M′, Πi ← Π′

i, Gi ← G′
i

21: else
22: b← c ◃ Subdivide [a, b]→ [a, c]
23: end if
24: c′ ← c, c← a+b

2
25: end while
26: end procedure

whether the symbolic state s ! f−1
i (πp) ∈ APψc before

a switch can be restored by a continuous move from πq ∈
cj(πp) to fj(s) after the switch. Such a restoration action is
typically of short duration, because polytopes of neighboring
partitions are perturbed versions of each other, and requires
the assumption of sufficient settling time Tm for transients
(motivated by reasons similar to average dwell-time [29]),
before the next mode switch occurs, i.e., hysteresis.

In order to ensure a sufficiently long Tm, ΠE is con-
structed as a cover with overlapping predicates ρi. The
amount of overlap is inversely proportional to the maximal
environment speed ∥δ[k + 1]− δ[k]∥ℓ2 < K, taking into
account also the control authority on the system. For the 1-d
case this reduces to sufficient interval overlaps, as determined
by λ in Algorithm 1. It also avoids Zeno switching.

IV. BIPARTITE GRAPH OF INTERSECTION VOLUMES

Metric information can be encoded in a graph to be
utilized for constructing a mapping between two neighboring
partitions ΠA,ΠB . If initially δ[k] ∈ ρA and x[k] ∈ ai ∈ ΠA,
then after a mode switch to δ[k + 1] ∈ ρB , the system state
x[k + 1] = x[k]. So a switch can cause a transition from
polytope ai ∈ ΠA only to polytopes bj ∈ cB(ai) ⊆ ΠB , its
minimal cover from ΠB , which we need to compute.

We use this information to construct a bipartite graph
encoding volume overlaps, which is used in section V for
matching. A greedy algorithm which exhaustively checks all
possible intersections is used in [10] for merging partitions,
with time complexity O (NANB) where Ni ! |Πi|. If



NA ≈ NB this implies complexity O(N2
A). The algorithm

described next has complexity O (NA +NB), whose con-
stant is bounded by the size of the largest polytope cover,
which typically depends exponentially on the dimension n,
as the number of neighbors scales. The proposed algorithm
is close to optimal for computing all possible intersections,
because it processes all the non-empty intersections and not
more, except for the boundary of them. Let cij ! ai ∩ bj .

Proposition 4: If i ̸= j. pi, pj ∈ ΠA and wk, wr ∈ ΠB ,
then cik ∩ cjr = ∅.

Proof: By hypothesis ΠA is a partition, so pi∩pj = ∅,
so (pi ∩ wk) ∩ (pj ∩ wr) = (pi ∩ pj) ∩ (wk ∩ wr) = ∅.

The proposed algorithm proceeds by local breadth-first
search (BFS) over the spatial neighbors in order to cover
each polytope and its proof uses induction. The adjacencies
AΠA ,AΠB are needed and computed in linear time dur-
ing discretization, because partitioning iteratively subdivides
polytopes, tracking neighbor information. The algorithm
must be restarted for each connected component of X .

Given an initial polytope ai ∈ ΠA, a polytope bj ∈
ΠB such that ai ∩ bj ̸= ∅ can always be found in time
O(NB), because both ΠA,ΠB cover X . The pair (ai, bj)
seeds the algorithm. Searching for such pairs is avoided in
subsequent iterations. This search can be avoided by tracking
an overlapping pair throughout partitioning, possible because
both ΠA,ΠB refine Π′, so ΠA |= Πϕ and ΠB |= Πϕ.

Next the algorithm proceeds locally. If ai \ bj = ∅ then
ai ⊆ bj , so cB(ai) = {bj} and we can proceed with another
polytope in ΠA that remains uncovered. Otherwise ai\bj ̸= ∅
and next we cover ai without searching through all of ΠB .

This can be achieved by local breadth-first search over the
AΠB -neighbors of bj . The search is localized by ignoring any
π ∈ ΠB such that π ∩ ai = ∅. The search results are then
grouped as in Algorithm 2 into interior C̊i and boundary
Ci polytopes of the cover cB(ai). Note that computationally
interior polytopes may touch ∂ai, for which reason C̊i \∂Ci

is used when updating cover Π̂B .
The bounded search always finds a cover because AΠB

is connected and both ΠA,ΠB cover X . In other words, if
during the depth-bounded BFS ai remains uncovered, then
there exists some neighbor π ∈ ΠB with (π, η) ∈ AΠB

for some η ∈ ĉB(ai) (cover under construction) such that
π ∩ ai ̸= ∅, so π ∈ cB(ai). Hence cB(ai) will be obtained
computing ai ∩ θ only for polytopes θ with distance from
cB(ai) at most 2 in AΠB , so each cover cB(ai) can be found
in time at most |cB(ai)|∆(AΠB ) (∆ the maximal degree).

Pairing ai with yet uncovered boundary polytopes π ∈
∂cB(ai) yields new seeds (ai,π) fed to Algorithm 2, with π
as target (ΠA,ΠB are swapped). The reduction in complexity
is achieved by alternation between AΠA ,AΠB and local
confinement of the search, proceeding via 1-hop neighbors.

The covers are encoded in a weighted bipartite digraph
GΠA,ΠB over ΠA∪ΠB , called the intersection graph, where
an edge (π, ζ) exists iff π ∩ ζ ̸= ∅ and is annotated with
the volume |π ∩ ζ| and rank r(π, ζ) ∈ N∗ of ζ in c̃i(π),
which is ci(π) sorted in decreasing |π ∩ ζ| order. We make
the genericity assumption that in each c̃i(π) no ties occur.

Algorithm 2 Cover Polytope ai, seeded by bj ∩ ai ̸= ∅

1: procedure COVERPOLY((ai, bj), {Π̂k, GΠk}k∈{A,B})
2: Ci ←BOUNDEDBFS((ai, bj), GΠB , ΠA, ΠB)
3: C̊i ←FINDINTERIOR(Ci, ai) ◃ {π ∈ Ci|π ⊆ ai}
4: ∂Ci ←FINDBOUNDARY(Ci, ai, ϵ)
5: ◃ {π ∈ Ci|πϵ ! ai}, where πϵ is π shrunk by ϵ≪ 1
6: Π̂A ← Π̂A ∪ (ai, Ci) ◃ update A covers
7: Π̂B ← Π̂B ∪

⋃

π∈C̊i\∂Ci

(π, {ai}) ◃ Update B covers

8: for πk ∈ ∂Ci do
9: ∂Ci ← ∂Ci ∪ {q ∈ GΠB (πk, ·)| q ∩ ai ̸= ∅}

10: end for
11: seeds←

⋃
π∈∂Ci\proj1(Π̂B) (ai,π)

12: return Π̂A, Π̂B , seeds
13: end procedure

V. MATCHING NEIGHBORING PARTITIONS

The graph of intersections derived in section IV is used
next to match regions from a partition Πi to those of its
neighbor Πj . The result is going to be used in section VI-A
where each match is characterized as deterministic or not
based on reachability and additional edges added if needed.

The circumference circ(G) of a directed graph G is the
length of the longest simple directed cycle in G. Consider
the first-choice subgraph G1

Πi,Πj
of GΠi,Πj obtained by

removing all edges r(p, q) > 1 (i.e., keep only first choices).
Our instance of matching differs from the general case in
that circ(G1

Πi,Πj
) = 2, as we now prove. Notice that this

is the shortest possible circumference in a bipartite digraph,
analogous to self-loops in non-bipartite graphs.

Proposition 5: Graph G1
Πi,Πj

has circ(G1
Πi,Πj

) = 2.
Proof: Suppose G1

Πi,Πj
contains a cycle A1 → B1 →

A2 → B2 → · · ·AM → BM → A1 with M >
1, where Ak ∈ Πi, Bk ∈ Πj . For any triple Ak →
Bk → Ak+1 by construction Ak+1 is the first choice
of Bk, meaning that Ak+1 = argmaxA∈Πi{|A ∩Bk|},
so |Ak ∩Bk| < |Ak+1 ∩Bk| (ties non-generic). So
|A1 ∩B1| < |A2 ∩B1| < |A2 ∩B2| < · · · <
|AM ∩BM | < |A1 ∩BM | < |A1 ∩B1| which is a con-
tradiction. Therefore G1

Πi,Πj
contains no directed (simple)

cycles of length larger than 2.
The above observation leads to adapting the classic Gale-

Shapley [30] algorithm and proving that our matching prob-
lem has a unique stable matching (not true in general).

Theorem 6: There exists a unique stable matching for the
intersection graph GΠi,Πj .

Proof: Uniqueness is proved by induction as follows.
A blocking edge (π, ζ) ∈ G1

Πi,Πj
is one for which also

(ζ,π) ∈ G1
Πi,Πj

, but (π, ζ) is not in the current matching. By
hypothesis Πi,Πj are partitions of X , so |cj(π)| ≥ 1 =⇒
deg(π) ≥ 1 for each π ∈ Πi and vice versa. Then by
assumption of no ties for all π in G1

Πi,Πj
the outdegree

deg+(π) = 1. Then by Prop. 5 graph G1
Πi,Πj

comprises
of linear directed paths each ending in a directed 2-cycle.

In the first iteration, the pairs of these 2-cycles are assigned
to each other, because they would be blocking in any



matching. So they are part of all stable matchings, allowing
us to remove them from G1

Πi,Πj
, denote by Q1

Πi,Πj
the result.

This implies that any stable matching must be stable
when restricted to the remaining vertices. So any pair that is
blocking in this subset will be stable in any stable matching,
so it can be assigned to each other and removed.

If a π ∈ Q1
Πi,Πj

was in a removed edge (π, ζ), then now
deg+(π) = 0. We add edges from each such π ∈ Q1

Πi,Πj
to

its second preference r(π, η) = 2 (lower for later iterations).
If a new edge introduces a 2-cycle, then we have a pair

that is blocking for the current subset of vertices, so it is
stable (as noted above) and will be removed at the end of
this iteration. Otherwise we have to prove that the new edge
does not introduce a cycle of larger length, so that after
addition of edges Q1

Πi,Πj
will comprise of directed paths

ending at 2-cycles. By Prop. 5 it is sufficient to prove that
the new edge (π, η) will have |π ∩ η| > |π ∩ z| for each
z with an edge (z,π). Suppose that |π ∩ η| < |π ∩ z| for
some z. Then r(π, η) > r(π, z), so π must have already
connected to z in a previous iteration, which would have
introduced a 2-cycle, leading to removal of π, z as a stable
pair. This contradicts that π, z are still in Q1

Πi,Πj
, proving

that circ(Qk
Πi,Πj

) ≤ 2 is an inductive invariant (minimal
possible bipartite girth). Because edge addition also restored
deg+(π) = 1, either QΠi,Πj = ∅, or there exists at least one
stable pair to remove. By induction the graph’s size reduces
in each iteration, while the removed pairs are part of any
stable matching. So eventually the iterations terminate and all
removed pairs belong to all stable matchings, which implies
that there exists a unique stable matching.
Moreover, the above provides us with an adapted algorithm
for our case. The time complexity is linear in the longest path
created during these iterations, which in our case is typically
small, because for many predicates (π, ζ) ∈ G1

Πi,Πj
=⇒

(ζ,π) ∈ G1
Πi,Πj

, because they are perturbed versions of
each other. Thus most pairs are removed in the first iteration,
requiring overall near-linear time.

For |Πi| ̸= |Πj | (unbalanced GΠi,Πj ) the above yields
a unique stable sub-matching. We assign each unmatched
predicate (associated to a vertex bifurcation) to its first
preference. Denote by Mij the resulting bipartite digraph,
which has an edge (π, ζ) iff π has been assigned ζ (if π was
unmatched, then (ζ,π) /∈Mij).

VI. MODELING BIFURCATIONS

A. Inter-Partition Reachability
The matching graph Mij (section V) encodes significant

overlaps between polytopes and by construction deg+(π) =
1 for all π ∈ Mij . Note that ϕ is interpreted over a sub-
sequence kl of discrete time k determined by transition
completion events, let k1 be the time at the start of a
transition and k2 after its completion. Let (π, ζ) ∈ Mij . If
x[k1] ∈ π ∈ Πi, δ[k1] ∈ ρi and the environment switches to
δ[k2] ∈ ρj , then we would like to ensure that x[k2] ∈ ζ. It is
true that x[k2] ∈ η∩π for some η ∈ cj(π), but not necessarily
η = ζ. To ensure this we have to allow for control actions
that restore the state x[k2] to ζ, when it happens that η ̸= ζ.

Algorithm 3 Inter-partition reachability analysis
1: procedure RESTORESWITCH(Mij , c̃j ,ΠE ,S)
2: for (π, ζ) ∈Mij do
3: S ← ζ ∪ PreW0(ρj),H(ζ), R← c̃j(π) \ {ζ}
4: while π " S do
5: η ←POP(c̃j(π))
6: S ← S∪η∪PreW0(ρj),H(η), R← c̃j(π)\{η}
7: Mij ←Mij + (π, η) ◃ Create edge (π, η)
8: end while
9: end for

10: end procedure

This is achieved by reachability analysis checking that
π ⊆ ζ∪PreW0(ρj),H(ζ), where Pre the controlled backward
reachable set in mode ρj (after the switch). If for any π ∈
Πi∪Πj this does not hold, then we add to Mij edges (π, η)
until covering π with predicates η from c̃j(π) or their con-
trolled backward reachable sets, using Algorithm 3. Denote
by Ψij the resulting graph, by construction deg+(π) ≥ 1 for
all π ∈ Πi ∪ Πj . For those π that deg+(π) > 1 we know
from Algorithm 3 that these transitions are nondeterministic
and controlled by the environment (determined by where
x[k] happens to be in π when the environment switches).
Transitions with deg+(π) = 1 are deterministic, because
there exists a control action that restores the state to ζ.

Note that both Πi ≼ Π′ |= Πϕ and Πj ≼ Π′ |= Πϕ, so
if predicates π ∈ Πi, η ∈ Πj intersect, π ∩ η ̸= ∅, then they
are subsets of the same predicate ξ ∈ Π′ which preserves
specification predicates in Πϕ. So we can use the common
predicate ξ ∈ Π′ for which both π ⊆ ξ and η ⊆ ξ as
the constraint set within which the transition trajectory must
remain, to be predicate-preserving itself. Using ξ instead of
π as a trajectory constraint was introduced in [10]. Returning
to Ψij , define its deterministic symmetric subgraph Fij ,
containing (undirected) edge {π, η} iff (π, η) ∈ EΨij ∧
(η,π) ∈ EΨij ∧ deg+(π) = 1 = deg+(η).

It follows that any switch ρi → ρj leads to π → η and
ρj → ρi to η → π (after the restoration actions have been
applied). So we can identify predicates π, η as belonging to
the same symbolic equivalence class. (Note that there might
exist some ζ ∈ Πi ∪ Πj such that (ζ,π) ∈ Ψij , but by
definition of Fij it is (π, ζ) /∈ Ψij .

Collect the predicates from all partitions into the auxiliary
predicate set Πψ ! ⊔

i∈Isw
Πi and define an equivalence

relation ∼: Πψ → C ! comp(
⋃

i,j Fij) ⊂ N<|Πψ| : π (→
[π]∼ that maps each predicate to the index of its connected
component in Fij . Select a bijection µ : C → APψc from
connected components to auxiliary symbols. We can now
define an abstraction map as h ! µ◦ ∼, i.e., Πψ ∼→ (Πψ/ ∼
) = C h→ APψc ,π

∼(→ [π]∼
µ(→ µ ([π]∼) . Therefore the inter-

partition reachability analysis identifies the predicates for
which we can remain in the same symbolic state a ∈ APψc ,
despite the switching. In the special case that all resulting
partitions are isomorphic, GΠi ≃ GΠi+1 , and the graphs Ψij

fully deterministic, switching can be completely ”masked” at
the symbolic, logic synthesis level and handled completely



at the continuous level. We thus avoid merging partitions
[10], that would create high fragmentation, sliver polytopes
(numerically ill-conditioned) and neglect the structural simi-
larities of the phase portrait between neighboring partitions.

B. Nondeterministic Transitions in Logic
It remains to model non-deterministic transitions (typically

associated with vertex bifurcations of GΠi,Πj ) realistically
in logic. Consider the non-deterministic transition caused
by switching from mode δ[k1] ∈ ρi to δ[k2] ∈ ρj when
x[k1] ∈ π ∈ Πi, leading to x[k2] ∈ ηs for some ηs in
P ! Post1Ψij

(π) ⊆ Πj . The switch is assumed (near)
instantaneous and followed by a settling time sufficient to
ensure (at the continuous level) that x[k2] ∈ ηs.

A naive approach to model this mode switch in logic is

x[k1] ∈ π ∧ δ[k1] ∈ ρi =⇒ ⃝ ((δ[k2] ∈ ρj) ∧ q) (1)

where q ! ∨
ηs∈P ((x[k2] ∈ ηs) ∧ (el = s)). where el is

an auxiliary arbitrage environment variable that models the
(uncontrolled) non-determinism and takes values indexing P .
Note that the non-determinism is absent at the continuous
level (modulo disturbances), and is an artifact of abstraction.
To avoid it would require increasing the fidelity of partition
Πi by separating predicate π into polytopes π ∩ ηs. The
downsides of this are introducing more logic states that
increase the complexity of game synthesis (observe how
el is a ”reusable” variable that locally resolves the non-
determinism, thus doesn’t substantially increase the discrete
state space), and having to propagate the separation to parti-
tions adjacent to Πi and not adjacent to Πj . Direct transitions
between modes with ρi∩ρj ̸= ∅ is impossible. This motivates
avoiding separation, confining each bifurcation between the
modes where it appears.

The issue with eq. (1) is that it allows the en-
vironment counter-strategy forcing the system response
(π, η0), (η0,π))

ω by repeatedly switching back and forth
between ρi and ρj , and resolving the non-determinism via el
(ω denotes infinite-time repetition analogous to Kleene star
∗ [23]). To avoid this possibility, the switching is instead
modeled by

q !
∨

ηs∈P

(
el = s ∧ x[k2] ∈ ηs ∪ Post1GΠj

(ηs)
)

(2)

In words, this models that a switch does not move the
system state, instead it switches the partition. It introduces
all the transitions available from ηs to other predicates in Πj ,
accounting for the fact that if after the switch x[k2] ∈ ηs, then
the system can react by transitioning from ηs to another state,
because the switch already placed it inside ηs. Although
longer counterexamples may still exist, they would imply
relatively low controllability for horizon H .

VII. SIMULATION EXAMPLE

The algorithms proposed in this paper have been imple-
mented on top of the Temporal Logic Planning Toolbox
(TuLiP) [31]. The algorithm is demonstrated on a simple
example involving two water tanks, as shown in Fig. 3. The

state x !
[
x1 x2

]T comprises of the tank water levels, the
inputs are the input valve u1 ∈ [0, 3] and pump u2 ∈ [−3, 3],
whereas the output δ ≥ 0 represents the uncertain consump-
tion and is modeled as a continuous variable controlled by
the environment. The system’s dynamics are
[
x1[k + 1]
x2[k + 1]

]
=

[
1 0
0 1

] [
x1[k]
x2[k]

]
+

[
1 −1
0 1

] [
u1[k]
u2[k]

]
+

[
0
−δ

]

The specification objectives are to initially start from some
state x[0] ∈ I ! [3, 8]×[5, 11], remain within the safe region
∀k.x[k] ∈ S ! [1, 9] × [2.5, 19] and achieve satisfactory
hydrostatic pressure infinitely often by raising the second
tank’s level to x2 ∈ T ! [15, 18] (”top” in Fig. 3). So the
specification is ϕ ! I ∧#S ∧#♦T .

The proposed algorithm was initialized over the δ domain
E ! [0, 1.6], with tolerance ϵ = 0.3 and overlap ratio
λ = 0.1 for interval convergence. It partitioned it into two
modes, by first halving [0, 1.6] to [0, 0.8], finding a strategy
for that disturbance range, then enlarging that to [0, 1.2],
computing a matching between [0, 0.8] and [0, 1.2] which
did not suffice to map the strategy, then bisecting to [0, 1.0]
and converging to the first mode ρ0 ! [0, 0.8] because
|1.0− 1.2| < 0.3 = ϵ. A horizon N = 7 was used for
reachability, up to spatial neighbors 2-hops away, with region
area lower bounded by 1.5. Next it shifted ρ0 to the interval
[0.72, 1.52] that overlaps ρ0 by λ, extended it to [0.72, 1.6]
because |1.52− 1.6| < 0.3 = ϵ, found a strategy for it, and
terminated with ρ1 = [0.72, 1.60], having covered E . The
overall iterative abstraction and synthesis lasted 683 seconds
on a 2.5 GHz Intel Core i5 processor with 4GB RAM.

Fig. 4 shows the matching between the system partitions
corresponding to each mode. Regions with solid colors
have been perfectly matched by the adapted Gale-Shapley
algorithm, whereas regions π14,π27,π49 in Π0 and
π9,π12,π18,π19,π26,π32,π37,π45,π49,π53,π58,π60 are
shown semi-transparent because they have been matched
only weakly (i.e., they are excessive ones that remained
unmatched and were assigned to the region they maximally
overlap). Next reachability analysis determines which
regions can reach their matching region in the other
partition after a switch. For example region π21 ∈ Π1

cannot reach region π1 ∈ Π0 to which it has been matched,
so that transition becomes non-deterministic and the
transition π21 → π15 ∈ Π0 is added to cover π21. In
contrast π1 → π21 is deterministic, because π1 ⊆ π21.

A switched Mealy strategy with 76 states is successfully
synthesized for ϕ using gr1c [26]. This should be contrasted
with attempting to synthesize a non-switched strategy after
abstracting the dynamics (with same discretization param-
eters) for a disturbance ranging over the initial interval
[0, 1.6]. Such a strategy does not exist, whereas the proposed
algorithm found a strategy because the controller is allowed
to observe the continuous environment behavior with finer
granularity. It is assumed that the system makes a continuous
transition when the environment is outside the overlap of two
neighboring δ-intervals, to allow the system sufficient time
for completing its transition before the environment switches



δ
x1 x2

u2
u1

top

Fig. 3: Two water tanks with input valve u1, pump u2 and
uncertain consumption δ.

(a) Π0, δ ∈ [0.0, 0.8] (b) Π1, δ ∈ [0.72, 1.6]

Fig. 4: Unique stable marriage matching, where solid colors
denote perfect matches and semi-transparent colors weak
matches (section V). For non-deterministic regions, the
hatched areas are ζ ∪ PreWj ,H(ζ) for the first choice ζ in
c̃j(π) in Algorithm 3.

mode again.

VIII. CONCLUSIONS AND FUTURE WORK

Future work aims at increasing the dimension of the envi-
ronment state space, and considering continuous environment
dynamics and their abstraction based on the switching modes
derived as described here. Another direction concerns con-
sidering continuous parameterization of the system matrices
Ai by the environment.
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