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Abstract

We consider the problem of cooperation among a collection of vehicles performing a shared

task using intervehicle communication to coordinate their actions. We apply tools from graph

theory to relate the topology of the communication network to formation stability. We prove a

Nyquist criterion that uses the eigenvalues of the graph Laplacian matrix to determine the effect

of the graph on formation stability. We also propose a method for decentralized information

exchange between vehicles. This approach realizes a dynamical system that supplies each vehicle

with a common reference to be used for cooperative motion. We prove a separation principle

that states that formation stability is achieved if the information flow is stable for the given

graph and if the local controller stabilizes the vehicle. The information flow can be rendered

highly robust to changes in the graph, thus enabling tight formation control despite limitations

in intervehicle communication capability.

1 Introduction

Recent technological advances have spurred a broad interest in autonomous, adaptable vehicle

formations. The development of powerful control techniques for single vehicles, the explosion in

computation and communication capabilities, and the advent of miniaturization technologies have

elevated interest in vehicles which can interact autonomously with the environment and other vehi-

cles to perform, in the presence of uncertainty and adversity, tasks beyond the ability of individual

vehicles. Application areas include microsatellite clusters [4, 27, 34], unmanned aerial vehicles

(UAVs) [5, 18, 32], autonomous underwater vehicles (AUVs) [8, 29], and automated highway sys-

tems (AHS) [1, 28, 30].
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While each of these areas poses its own unique challenges, several common threads can be found.

In most cases, the vehicles are coupled through the task they are trying to accomplish, but are

otherwise dynamically decoupled, meaning the motion of one does not directly affect the others.

Decisions must be made by each vehicle using only limited information, about the other vehicles,

information that may be subject to uncertainty and transmission delay. The reaction of a vehicle to

other vehicles’ motions renders the formation an interconnected dynamical system whose behavior

depends not only on the individual vehicle dynamics, but on the nature of their interconnection.

Existing approaches to vehicle formation control generally fall into two cagetories. The first

is the “leader-follower” approach. This approach as the advantage of simplicity in that a refer-

ence trajectory is clearly defined by the leader, and that stability of the formation is implied by

stablity of the individual vehicles’ control laws. Leader-follower architectures are known to have

poor disturbance rejection properties (see, e.g., [33]). Additionally, a leader-follower architecture

depends heavily on the leader for achieving its goal, and over-reliance on a single vehicle in the

formation may be undesirable, especially in adversarial environments. The second approach is the

“virtual leader” approach [12, 22, 29], in which vehicles in the formation jointly synthesize a single

fictitious leader vehicle whose trajectory acts as a leader for the group. This approach avoids the

problems with disturbance rejection inherent in the leader-follower approach, but at the expense

of high communication and computation capabities needed to synthesize the virtual leader and

communicate its position.

What these approaches have in common is an assumption about the underlying communication

topology that enables the use of a particular formation control methodology. We wish to consider

a broader range of vehicle interconnection possibilities and understand how the topology of the

information flow affects the stability and performance of the system as it performs a coordinated

task. Our ultimate goal is the development of information exchange strategies which improve

formation stability and performance and are robust to changes in the communication topology.

Our approach is to model the communication topologies as a graph; each vehicle is a node of a

(directed) graph, and an arc is drawn from node i to node j if vehicle i receives information from

vehicle j. By merging ideas from graph theory, control theory, and dynamical systems theory, we

are able to study the interplay between the communication network and vehicle dynamics, and to

propose strategies for information exchange which mitigate those effects. We limit our focus to

LTI systems in order to elucidate the role of the graph in the system behavior. In that context, we

provide necessary and sufficient conditions for stability of an interconnected system of indentical

vehicles in terms of the eigenvalues of the graph Laplacian and show how to shape the information

flow to achieve high performance. Portions of this work have been reported in [13, 14, 15].

The paper is organized as follows. We begin with a motivating example in the next section

that establishes some of the key concepts that we wish to explore. In Section 3 we provide a brief
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summary of the relevant results in graph theory and define the relevant notation. The main stability

results are derived in Section 4, where we give a Nyquist-like criteria for determining stability and

explore the interaction between graph topology and vehicle dynamics through this criteria. In

Section 5, we propose an information exchange methodology which is robust to uncertainty in

the communication topology. This approach exhibits a separation principle which decouples the

stability of the formation communication, which we term information flow, and the local control of

individual vehicles. Finally, in Section 6 we summarize the main results and provide some thoughts

on future directions of research.

2 Motivating Example

To better illustrate the class of systems that we are interested in exploring, we consider the system

illustrated in Figure 1(a). The system consists of 6 identical vehicles. Each vehicle is able to sense

some collection of other vehicles and transmit information to some separate set of vehicles. The

goal is for the vehicles to form a regular hexagon, with each vehicle maintaining the proper position

relative to its neighbors. The initial conditions of the vehicles is shown in Figure 1(a), along with

lines indicating which vehicles can see one another in this example.

To make the example more concrete, we model the vehicles as double integrators with a com-

munication time delay. The dynamics in the x and y axes are then given by P (s) = e−sT

s2
. We

choose a simple PD controller for each axis, of the form K(s) = Kp +Kds, with the input to the

controller given as the average error between the actual and desired positions with respect to the

vehicle’s “neighbors.” Initially we will choose these neighbors to be the vehicles that are to the left

and right of the given vehicle in its final configuration. Note that because the dynamics in each

axis are decoupled, we can consider each axis independently and hence it is sufficient to analyze

the stability of a single axis.

The full system dynamics consist of the individual vehicle dynamics interconnected by the

“sensed” information flow corresponding to computing the average error with respect to the left

and right neighbors. The plant and controller dynamics are decoupled, but the error vector

The error vector is given by

u = L(y − yd) L =
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, (1)

where L is the matrix that defines the toplogy of the sensed information for each of the two

(decoupled) axes.
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Figure 1: Hexagon stabilization: (a) initial condition and sensing topology, (b) sensed information

only, (c) sensed and communicated information flow.

The stability of the system is easily determined by computing the stability of the fully inter-

connected system. However, this straightforward calculation gives us little insight into how the

choice of the set of neighbors affects the closed loop performance. What if, for example, we had

chosen to have each vehicle look at its two nearest neighbors and the vehicle across from it in the

formation? Would it still be stable? We provide an answer to this question in Section 4, where we

show that the eigenvalues of L can be used as part of a Nyquist criterion to determine stability of

the interconnected system.

As the condition that we derive shows, it is possible for the vehicles to be formally stable, but

to exhibit very poor performance. This is illustrated in Figure 1(b). The poor performance of the

controller is due to the fact that the initial positions of the vehicles are far from their final values.

However, each vehicle is simply trying to position itself relative to its final set of neighbors and

hence it may move in the completely wrong direction initially.

A final set of questions relates to the design of the information flow to reach a shared consensus

about the control objective. In particular, in the formulation above, we have only used sensed

information to stability the formation. What if we could also transmit information to a potentially

different set of vehicles? As an example, suppose that the vehicles were to first reach consensus

about the desired center of the overall formation and then were regulate their position relative

to that center. This could give much better results than simply looking at one’s neighbors since

spurious transients due to each vehicle trying to react to motion of its neighbors could be eliminated.

Indeed, as shown in Figure 1(c), appropriate use of transmitted information can significantly reduce

the spurious transients, while still providing feedback to insure robustness of the overall formation.

It is important to note that this consensus is still performed in a distributed fashion: no single

vehicle is designated as a “leader,” the topology of the graph is not known to any vehicle, nor is

any centralized computation performed to determine the center of the position.



3 GRAPH THEORY 5

3 Graph Theory

Many excellent texts on graph theory exist; a recent example is by Diestel [11]. Recent results

regarding the Laplacian and its spectral structure can be found in the work of Merris [23, 24] and

Chung [6]. Perron-Frobenius theory can be found in many texts; the presentation here is based on

material in [2, 20, 31].

We now introduce some notation which we will use in the remainder of the thesis. Variables in

lower case refer to scalars, vectors or elements of sets; the distinction will be clear from context.

Variables in upper case refer to matrices, and calligraphed letters refer to sets or graphs. When v is

a vector, vi refers to the ith element of that vector, and when v is a set, vi refers to the ith indexed

element of that set. |G| denotes the cardinality of the set G. Aij refers to the element occupying

the ith row and jth column of A. In refers to the n× n identity matrix.

3.1 Basic Definitions

A directed graph G consists of a set of vertices, or nodes, denoted V, and a set of arcs A ⊂ V 2, where

a = (v, w) ∈ A and v, w ∈ V. The first element of a is denoted tail(a), and the second is denoted

the head(a). It is said that a points from v to w. We will assume that tail(a) 6= head(a) for all

a, meaning that the graph has no self-loops. We also assume that each element of A is unique. A

graph with the property that for any (v, w) ∈ A, the arc (w, v) ∈ A as well is said to be undirected;

in undirected graphs the pair of arcs is often modeled as a single edge with no direction associated

to it. The in(out)-degree of a vertex v is the number of arcs with v as its head (tail). If every

possible arc exists, the graph is said to be complete.

A path on G of length N from v0 to vN is an ordered set of distinct vertices {v0, vi, . . . , vN}

such that (vi−1, vi) ∈ A for all i ∈ [1, N ]. An N -cycle on G is defined the same as a path except

that v0 = vN , meaning the path rejoins itself. A graph without cycles is said to be acyclic. A

graph with the property that the set of all cycle lengths has a common divisor k > 1 is said to be

k-periodic.

If a path exists from vi to vj , it is said that vi has access to vj . A graph with the property that

every vertex has access to every other vertex is said to be strongly connected. (A graph consisting

of a single vertex with no arcs is also considered strongly connected.) A graph in which disjoint

subsets of vertices exists whose elements do not have access to one another is termed disconnected.

Note an undirected graph is either strongly connected or disconnected.

3.2 Algebraic Graph Theory

One area of graph theory which will be of significant interest to us is algebraic graph theory,

which studies relationships between the structure of graphs and different matrix representations
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of graphs. For the purpose of defining graphs, we assume that the vertices of G are enumerated,

and each is denoted vi. The adjacency matrix of a graph, denoted A(G), is a square matrix of size

|V|, defined by Aij = 1 if (vi, vj) ∈ A, and is zero otherwise. When the graph in question is clear,

the adjacency matrix will be denoted as A. Note that A uniquely specifies a graph, although A

itself is not unique for a given graph, as it depends on the enumeration of the vertices. However,

two adjacency matrices of the same graph are necessarily similar to one another via a permutation

matrix. As such, it is clear that the eigenvalues of A are uniquely specified by the graph (though

the converse is not true), and early research in algebraic graph theory focused on the relationship

between eigenvalues of A(G) and graph-theoretic properties of G [9, 10].

Our work will make use of a different graph which has been the object of study more recently.

Let D be the matrix with the out-degree of each vertex along the diagonal. The Laplacian of the

graph is defined as1

L = D−1(D −A). (2)

In the event that D is singular due to a vertex vi with zero out-degree, set D−1
ii = 0 to complete

the definition. Note that L of Equation 1 corresponds to the graph in Figure 1. We will further

denote the weighted adjacency matrix I − L as G.

L can be viewed as a normalized version of the adjacency matrix. In this construction, each arc

leading into a given vertex is weighted equally such that the weights sum to one. More generally,

it is possible to work with weighted graphs, in which the off-diagonal elements of L are unequal

yet still sum to −1. Most of the results of the following sections do not depend on the arcs being

weighted equally, though we will assume that for convenience.

A property of the Laplacian is that G is nonnegative by construction. The theory of nonnegative

matrices, much of which derives from the celebrated Perron-Frobenius theorem, will be quite useful

in understanding the links between graph theory and vehicle formation control. The results of this

section can be found in [2, 20, 31].

A matrix A is positive (nonnegative) if each element is positive (nonnegative). Given two

nonnegative n × n matrices A,B, we say A > B (A ≥ B) if A − B is positive (nonnegative). A

square nonnegative matrix A is reducible if there exists a permutation matrix P such that PAP T

can be represented

PAP T =

(
A11 0

A21 A22

)
, (3)

where A11, A22 are square, or if n=1 and A = 0. A matrix which is not reducible is said to be

irreducible. As will be clear later, reducibility of a Laplacian corresponds to the presence of leaders

1Some references define L as D − A. Others use the transpose of A to define the Laplacian of the directed

graph. This distinction is of little consequence in terms of the theory, but the definition stated above better suits our

purposes.
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in the formation structure. As such, the properties of reducible matrices are useful in understanding

the workings of leader-follower architectures. Because the goal of this paper is to explore formations

which do not exhibit leader-follower structures, we will forego a detailed discussion of reducible

matrices and their role in formation analysis. The interested reader can explore this topic in [13].

Just as in Section 3.2 a directed graph was used to define a matrix, a square matrix can also

be used to define a directed graph. This graph, denoted G(A), has n vertices denoted v1, . . . , vn,

and (vi, vj) ∈ A if Aij 6= 0. Unlike the directed graphs discussed above, G(A) may contain loops if

Aii 6= 0. It should be clear that the directed graph associated with A(G) is in fact G itself.

The following theorem relates a nonnegative matrix with its directed graph, as well as supplying

an algebraic characterization:

Theorem 1. Given a nonnegative n× n matrix A, the following are equivalent:

1. A is irreducible.

2. AT is irreducible.

3. G(A) is strongly connected.

4. (In +A)n−1 > 0.

If G(A) is aperiodic, then A is termed primitive. If G(A) is k-periodic, it is termed imprimitive,

or cyclic of index k.

The following celebrated theorem was proven for positive matrices by Perron and extended to

irreducible matrices by Frobenius. We will denote the spectral radius of a matrix A as ρ(A).

Theorem 2 (Perron-Frobenius). Let A be a nonnegative, irreducible matrix. The following are

true:

1. ρ(A) > 0.

2. ρ(A) is a simple eigenvalue of A, and any eigenvalue of A of the same modulus is also simple.

3. A has a positive eigenvector x corresponding to ρ(A).

4. B > A⇒ ρ(B) > ρ(A).

Furthermore, if A is primitive, then all eigenvalues of A other than ρ(A) have modulus strictly less

than ρ(A).

If A is not primitive, the eigenvalues of A have an interesting structure:

Theorem 3. Let A be a nonnegative, irreducible matrix which is cyclic of index k. Then A has k

eigenvalues of modulus ρ(A), equal to

λi = ρ(A)e
2πj
k
i, i = 0, . . . , k − 1. (4)
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3.3 Eigenvalues of Laplacians

We now return to the structure of the spectrum of the Laplacian. We begin with the observation

that the rows of L sum to zero by definition, which implies that

Proposition 1. Zero is an eigenvalue of L.

Furthermore, this condition implies that 1T is the eigenvector associated with this eigenvalue.

Of course, any eigenvalue λ of L corresponds to an eigenvalue 1−λ of G. Thus, G has an eigenvalue

of 1. The fact that this eigenvalue has a positive eigenvector implies that it is, in fact, the Perron

root of G. We therefore conclude from the Perron-Frobenius theorem that

Proposition 2. All eigenvalues of L lie in a disk of radius 1 centered at the point 1 + 0j in the

complex plane.

We denote this region the Perron disk. We can apply further ideas from Perron-Frobenius

theory:

Proposition 3. If G is strongly connected, the zero eigenvalue of L is simple. If, in addition, G is

aperiodic, all nonzero eigenvalues lie in the interior of the Perron disk. If G is k-periodic, L has k

evenly spaced eigenvalues on the boundary of the Perron disk.

If G is undirected, then L is similar to I −D1/2AD1/2, which is clearly symmetric, from which

we conclude that

Proposition 4. If G is undirected, then all eigenvalues of L are real.

If G consists of two disconnected components, it is clear that the multiplicity of the zero eigen-

value of L is two. If, instead, the two components are connected by a small number of arcs, it

follows from a perturbation argument that L will have an eigenvalue near zero. For this reason,

Fiedler [16] termed this eigenvalue the algebraic connectivity of the graph, and began a program of

research which continues to this day relating this parameter to graph-theoretic concepts, including

measures of connectivity in graphs.

4 Relative Position Control in Vehicle Formations

The problem we consider in this section is the stabilization of the relative position of a set of vehicles

with identical linear dynamics.
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4.1 Formation Equations of Motion

We consider a set of N vehicles, whose (identical) linear dynamics are denoted

ẋi = PAxi + PBui, (5)

where i ∈ [1, N ] is the index for the vehicles in the flock. Note that each vehicle’s dynamics are

decoupled from the other vehicles. Each vehicle’s sensed information is defined as follows:

yi = PC1
xi (6)

zij = PC2
(xi − xj), j ∈ Ji, (7)

where the set Ji ⊂ [1, N ]\{i} represents the set of vehicles which vehicle i can sense. Thus, yi

represents internal state measurements, and zij represents external state measurements relative to

other vehicles. To obtain relative state measurements, a vehicle must have access, in this case via

some form of sensing, to other vehicles’ states. We assume that Ji 6= ∅, meaning each vehicle can

see at least one other vehicle. Note that a single vehicle cannot drive all the zij terms to zero

simultaneously; the errors must be synthesized into a single signal. For simplicity, we assume that

all relative state measurements are weighted equally to form one error measurement:

zi =
1

|Ji|

∑

j∈Ji

zij . (8)

The choice of weighting does not impact the results of this section, as long as the weights for a

given vehicle sum to one. We also define a decentralized control law K(s) which maps yi, zi to ui,

represented in state-space form by

v̇i = KAvi +KB1
yi +KB2

zi

ui = KCvi +KD1
yi +KD2

zi.
(9)

We now consider the system of all N vehicles together. When the i subscript is omitted, the vector

is comprised of all N vehicles’ variables. Using this notation, the system dynamics are represented

as follows:

(
ẋ

v̇

)
=

(
P̂A + P̂BK̂D1

P̂C1
+ P̂BK̂D2

P̂C2
L(n) P̂BK̂C

K̂B1
P̂C1

+ K̂B2
P̂C2

L(n) K̂A

)(
x

v

)
, (10)

where Â = IN⊗A, ⊗ representing the Kronecker product, indicates the matrix A repeated N times

along the diagonal. The resulting system is block diagonal with the exception of the matrix L(n),

which contains the relative sensing information of Equation (8). L is defined as follows:

Lii = 1 (11)

Lij =

{
− 1

|Ji|
, j ∈ Ji

0, j /∈ Ji.
(12)
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Of course, L is the Laplacian of a graph to be defined in the next section. Letting n be the

dimension of xi, L(n) is of dimension Nn×Nn and is defined by replacing each element of L with

that element multiplied by In (i.e., L(n) = L ⊗ In), thus generating a version of L dimensionally

compatible with xi.

The goal of the controller as defined above is to drive the states (or at least a subset of them)

to a common value. In this problem definition, we are not concerned about the final value so long

as the vehicles share it. For some applications, such as orienting underwater vehicles, this is an

understandable goal. For other applications, such as relative satellite positioning, it is necessary

to add an offset term to zij to achieve the desired intervehicle spacing. We define a time-varying

offset function h : [1, N ]× [1, N ]×R → Rm, i, j, t 7→ hij(t) , where m is the dimension of zij , which

defines the intervehicle spacing. We assume that h is defined so that for all i, j, k, hij + hjk = hik.

This definition means that it is possible to position each vehicle such that zij = hij for all i, j. One

way to generate such a function is to define an offset hi0(t) for each vehicle relative to an arbitrary

reference. Letting h0(t) be the vector of hi0(t) offsets, the error signal is then defined by

z(t) = L(m)(y(t)− h0(t)). (13)

The offset function acts as an input to the dynamical system. We assume that hij(t) is bounded.

Because BIBO stability is implied by internal stability for LTI systems, the actual value of the hij

terms does not play a role in the stability analysis, and will henceforth be omitted. In general, hij

will be chosen to be consistent with the open-loop dynamics of the vehicles in formation. We will

not consider the case where h is also a function of the measurements, which is the case for variable

spacing policies discussed in [30, 33].

We are now able to identify the role of the sensing graph in the formation dynamics. The

vehicles and their sensing indices Ji together form a graph, where each node represents a vehicle

and an arc leads from node j to node i if j ∈ Ji. Our assumption that each vehicle can sense

at least one other vehicle implies that the out-degree of each vertex is at least 1. The matrix L

defined in Equation (11) is none other than the Laplacian of the graph, defined in Section 3.2. The

normalization of the Laplacian is equivalent in our setting to our averaging of the zij terms so no

gain is added to the observed input. This stands in distinction to other examples in the literature

which use the Laplacian-like matrices in analyzing stability of interconnected systems [26].

4.2 Formation Stability

We now consider the relationship between graph Laplacians and formation stability. We show the

following to be true:

Theorem 4. A local controller K(s) stabilizes the formation dynamics in Equation (10) iff it



4 RELATIVE POSITION CONTROL IN VEHICLE FORMATIONS 11

simultaneously stabilizes the set of N systems

ẋ = PAx+ PBu

y = PC1
x

z = λiPC2
x

(14)

where λi are the eigenvalues of L.

Proof. We will show the above to be true by transforming the closed-loop dynamics in the following

way: Let T be a Schur transformation of L, meaning the unitary matrix such that U = T−1LT

is upper triangular with the eigenvalues of L along the diagonal [20]. Clearly, T(n) is a Schur

transformation of L(n). This transformation has the following useful property, a clear consequence

of the block structure of the relevant matrices:

Lemma 5. Let X be an r × s matrix, and Y be an N ×N matrix. Then

X̂Y(s) = Y(r)X̂. (15)

Proof. Using Kronecker product algebra, both sides can be shown to be equal to Y ⊗X. ¥

Applying this property to the system dynamics, we see if we let x̃ = T(n)x, and ṽ = T(m)v, we

can rewrite Equation (10) as

(
˙̃x

˙̃v

)
=

(
P̂A + P̂BK̂D1

P̂C1
+ P̂BK̂D2

P̂C2
U(n) P̂BK̂C

K̂B1
P̂C1

+ K̂B2
P̂C2

U(n) K̂A

)(
x̃

ṽ

)
. (16)

The elements of the transformed system matrix are either diagonal or upper triangular. This means

that stability of this system is equivalent to the stability of the systems along the diagonal, i.e.:

˙̃xi = (PA + PBKD1
PC1

+ λiPBKD2
PC2

)x̃i + PBKC ṽi
˙̃vi = (KB1

PC1
+ λiKB2

PC2
)x̃+KAṽ

(17)

which is equivalent to the controller K(s) stabilizing the system

ẋ = PAx+ PBu

y = PC1
x

z = λiPC2
x.

¥

We thus identify the Laplacian eigenvalues as the object of interest in understanding formation

stability. In this context, the zero eigenvalue of L can be interpreted as the unobservability of

absolute motion of the formation in the measurements zi. It seems that a prudent controller design
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strategy is to close an inner loop around yi such that the internal vehicle dynamics are stable,

and then to close an outer loop around zi which achieves desired formation performance. For the

remainder of this paper, we concern ourselves solely with the outer loop. Hence, we assume from

now on that PC1
is empty and that PA has no eigenvalue in the open right half plane. We do not wish

to exclude eigenvalues along the jω axis because many vehicle formations (e.g., vehicle platoons,

satellite clusters) possess those, and the presence of unobservable secular or periodic motion of the

formation may be tolerable in those cases. If K(s) stabilizes the system in Equation (18) for all λi

other than the zero eigenvalue, we say that it stabilizes the relative formation dynamics.

Note that for a strongly connected graph or for a formation with a single leader, it can be shown

that the only equilibrium point is in fact the desired relative position of the vehicles. Additionally,

the theorem is equally applicable when the inputs are driven not to zero, but to some internally

consistent set of offsets [13].

For SISO systems, we can state a second version of Theorem 4 which is useful for stability and

robustness analysis:

Theorem 6. Suppose P (s) = PC2
(sI − PA)

−1PB is SISO. Then K(s) stabilizes the relative for-

mation dynamics iff the net encirclement of −λ−1i by the Nyquist plot of K(s)P (s) is zero for all

nonzero λi.

Proof. The Nyquist criterion states that stability of the closed loop system in Theorem 4 is equiva-

lent to the number of counterclockwise encirclements of −1+j0 by the forward loop λiP (jω)K(jω)

being equal to the number of right half plane poles of P (s), which is assumed to be zero. This

criterion is equivalent to the number of encirclements of −λ−1i by P (jω)K(jω) being zero. ¥

In the case where P (s) is MIMO, the formation can be thought of as a structured uncertainty

of the type scalar time identity (see [35]) where the scalars are the Laplacian eigenvalues. More

specifically, we shall write the eigenvalues as λi = 1 + µi and consider bounds on µi. Suppose it is

known that |µi| ≤M for all nonzero λi. If we close the loop around the unity block and leave µiI

as an uncertainty, the resulting lower block is C(s) = P (s)K(s)(I+P (s)K(s))−1, which is assumed

to be stable. The following result from robust control theory then applies:

Theorem 7. K(s) stabilizes the relative formation dynamics of the MIMO vehicle P (s) if

ρ(C(jω)) < M−1 ∀ω ∈ (−∞,∞) (18)

Example 1 (Double Integrator with Time Delay). Consider the system described in Section 2,

consisting of a second order plant with time-delay and a PD control law. Figure 2 shows a formation

graph and the Nyquist plot of K(s)P (s) with the Laplacian eigenvalues. The black ‘o’ locations

correspond to the eigenvalues of the graph defined by the black arcs in Figure 2, and the ‘x’ locations
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Figure 2: Formation graph and Nyquist plot.

are for eigenvalues of the graph when the dashed arc is included as well. This example clearly shows

the effect the formation has on stability margins. The standard Nyquist plot reveals a system with

reasonable stability margins — about 8 dB and 45 degrees. When one accounts for the effects of

the formation, however, one sees that for the ‘o’ formation, the stability margins are substantially

degraded, and for the ‘x’ formation, the system is in fact unstable. Interestingly, the formation is

rendered unstable when additional information (its position relative to vehicle 6) is used by vehicle

1. We shall return to this point shortly.

4.3 Evaluating Formations via Laplacian Eigenvalues

The location of Laplacian eigenvalues has emerged as the parameter which enables formation sta-

bility to be analyzed on the local level. We now turn to the question of bounding or predicting

eigenvalue location based on properties of the graph. We begin by considering simple formation

structures and their eigenvalue placement. Examples of these graphs are shown in Table 1, where

sample graphs, their nonzero spectra, and the locations on the Nyquist plot are shown.

1. Complete graph. The complete graph is one where every possible arc exists. In this case, the

eigenvalues of a graph with N vertices can be analytically determined to be zero and 1+ 1
N−1 ,

the latter repeated N−1 times. For large N , stabilization of the complete graph is equivalent

to stabilizing an individual vehicle. Of course, a complete interconnection structure can place

an enormous burden on each vehicle’s sensing and computational capacities.

2. Acyclic (directed) graph. This graph has the 1 eigenvalue repeated N times. This can be seen

from the fact that the vertices can be ordered such that L is upper triangular with ones along

the diagonal. This is the “leader-follower” architecture discussed earlier. In this case, vehicle

stabilization is truly a local result, since other vehicles’ dynamics enter only as a disturbance.

However, this architecture has drawbacks regarding disturbance rejection.
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for −L and the right figure shows the corresponding regions for −L−1.

3. Single directed cycle. This graph is periodic, and therefore has eigenvalues at 1−ej(i−1)/2π, i ∈

[1, N ] according to Proposition 3. These eigenvalues lie on the boundary of the Perron disk

in which all the eigenvalues must lie. Note that the negative inverse of these points lie on the

-0.5 vertical in the complex plane.

4. Two-cyclic undirected graph. A graph of this type would include a vehicle platoon with

bidirectional position measurement. This graph will have an eigenvalue at 2, due to its

periodicity, and all other eigenvalues will be real, due to the symmetry of the graph.

Figure 3 shows various eigenvalue regions for −L and the corresponding regions for −L−1. The

region bounded by the solid line is the Perron disk in which all eigenvalues must lie. Its inverse is

the LHP shifted by -0.5. The dashed region is a bound in the magnitude of the nonzero eigenvalues

of L. It corresponds to a shifted circle on the right-hand side of Figure 3. Finally, the dash-dot

line corresponds to a bound on the real component of the eigenvalues. The inverse of this bound

corresponds to a circle which touches the origin. The shaded region represents the “desirable”

region, in which the eigenvalues’ locations do not differ substantially from −1.

If we consider the complete graph and the single directed cycle graph of Table 1 as representing

two extremes — one with all eigenvalues at a single location, the other with eigenvalues maximally

dispersed, we see that eigenvalue placement can be related to the rate of mixing of information

through the network. When the graph is highly connected, the global component of an individual

vehicle’s dynamics are rapidly averaged out through the rest of the graph, and thus has only
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λ(L) = {1 + 1
N−1} −1

λ(L) = {1}
−1

λ(L) ⊂ [0, 2]
−1

λi(L) = 1− e
2πj
N

i

−1

λ(L) 3 2
−1

Table 1: Sample Graphs, Spectra, and Nyquist Locations.

a minor effect on stability. When the graph is periodic, the global component of the dynamics

introduces periodic forcing of the vehicle, and the rest of the network never averages it out. This

is represented on the Nyquist plot by putting the inverse eigenvalues nearer to the imaginary axis,

thus diminishing stability margins.

We see that aperiodicity is a desirable property of formation interconnection topologies. With

this insight, we can see why the system in Figure 2 loses stability margin when a link is added.

The “solid” graph possesses two 3-cycles and two 2-cycles. When the dashed link is added, an

additional 3-cycle is created, rendering the graph more nearly 3-periodic. This drives two of the

eigenvalues nearer to the positions they would occupy if the graph were truly periodic, i.e., the

−0.5 vertical. An interesting, and to the authors’ knowledge, open challenge is to quantify this
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insight: to define a measure of periodicity within a graph which can be correlated to bounds on

the eigenvalue locations.

These results can be extended to the case where mixed absolute and relative measurements

exist, such as where a subset of the vehicles sense their position relative to a target. If we consider

the target as a leader of the formation with trivial (or at least decoupled) dynamics, then then the

stability analysis concerns only the submatrix of L containing the vehicles. In this case, the error

signal of vehicle i takes the form (assuming equal weighting of all measurements),

zi =
1

|Ji|+ 1


zi0 +

∑

j∈Ji

zij


 , (19)

and the relevant submatrix of L will still have 1 along the diagonal and off-diagonal terms equal to

− |Ji|
|Ji+1|

. Assuming all vehicles have access to the target, then ρ(G) < 1 (Theorem 2), so L does not

have a zero eigenvalue. This corresponds to the fact that unobservability of bulk formation motion

is no longer relevant when the formation can view the target. From this perspective, the presence of

absolute measurements tightens the bound on λ(L), which improves the stability picture. However,

it does not guarantee that individual eigenvalues will not be nearer to the bound than they were

in the case where only relative measurements where present.

As discussed earlier, significant efforts have been made by graph theorists to relate eigenvalue

location to various graph-theoretic properties. These results were largely derived for undirected

graphs, whose eigenvalues are real and can be bounded using variational techniques. For directed

graphs, the problem is more challenging. Most of the work cited earlier regarding eigenvalue

bounding focuses on the algebraic connectivity and its relationship to substructures in the graph.

As we have seen, the algebraic connectivity does not directly impact stability margins. Of greater

interest to this application are bounds such as λ in Figure 3, which identify the region in which

the majority of eigenvalues are located, with the possible exception of isolated eigenvalues near the

origin. Examining the structure of the cycles in the graph may lead to interesting results in this

area.

5 Information Flow in Vehicle Formations

In Section 2, we show via example how the communication topology impacts performance as well

as stability. The absence of a centralized controller causes individual vehicles to follow contradic-

tory trajectories. As we discuss in the introduction, traditional methods for supplying a vehicle

formation with an agreed-upon leader presume the existence of a communication and computation

infrastructure which facilitates real-time determination of the formation leader.

In this section, we explore a paradigm for information exchange which enables the vehicles

to jointly determine a virtual formation leader which does not presuppose any communication
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topology. Our goal is to derive an information exchange policy whose stability and convergence are

robust to changes in the graph. The stability analysis tools developed in the previous section will

be useful in this development, as will theorems from Perron-Frobenius theory developed in Section

3.2.

In the previous section, we assume that sensed information was available instantaneously, and we

used a continuous-time model of the vehicle dynamics. In this section, we assume that information

takes a fixed time T to travel between vehicles. To facilitate analysis, we also model each vehicle

as a discrete time dynamical system:

xik+1 = PAx
i
k + PBu

i
k

yik = PCx
i
k + PDu

i
k

(20)

where k is the time step of duration T and i is the vehicle index. The error signal is given in

Equation (8). Note that the stability results of Section 4.2 can be reproduced for discrete time

systems by plotting the response of the discrete-time transfer function for z = ejω and applying

the Nyquist criterion.

Broadly speaking, any decentralized formation control system consists of vehicles receiving a

transmission from other vehicles and performing some computation using that information, in-

formation from previous transmissions, and sensed information. Each vehicle then transmits the

results of their computation to other vehicles. We can view this process as a discrete-time dynami-

cal system where the states are the information at each vehicle. This can be generically represented

as

pik+1 = f(pik, p
i
k−1, . . . , {p

j
k, p

j
k−1, . . . |j ∈ J

T
i }, z

i
k+1, z

i
k . . .), (21)

where J T
i is the set which determines the transmitted information topology. For the remainder of

this paper, we assume that the sensed and transmitted information graph are identical, and omit

the superscript. Our approach is to shape this dynamical system to ensure that its evolution has

the desired stability and convergence properties. We term this approach information flow.

The information flow law we investigate mimics the structure of the sensed information flow,

taking the following form:

pik+1 =
∑

j∈Ji

pjk + (yik − yjk) (22)

or, in vector form:

pk+1 = G(m)pk + L(m)yk, (23)

where G(m) and L(m) are the directed adjacency matrix and Laplacian of the graph, as defined in

Section 3.2, dimensioned compatibly with the measurement vector yik whose dimension is denoted

m. Henceforth, we shall assume that m = 1, and dispense with the extra notation. As discussed

in the previous section, the commutation result of Lemma 5 implies that the dimension of y is not
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relevant. For the information flow laws to be derived, one can replicate all the results by replacing

the given transfer functions with the same transfer function repeated m times along the diagonal.

5.1 Convergence of the Information Flow Loop

Let us explore this information flow paradigm in some detail. The information flow component is

a discrete time dynamical system which, as discussed above, is neutrally stable due to the Perron

root of G. We begin by determining the steady-state behavior of the information flow loop. In

preparation, we introduce some definitions and related lemmas.

Let er denote the right Perron eigenvector of G, and el its left Perron eigenvector, normalized

such that eTr el = 1. If G is irreducible, both er and el are positive (Theorem 2), so such a scaling

must exist. Let E = ere
T
l . The following relationships between G and E are known to be true:

(See [20], p. 498, and recall that the Perron eigenvalue is 1.)

Lemma 8. Gj = E + (G− E)j .

Lemma 9. The eigenvalues of G−E are the eigenvalues of G with the Perron eigenvalue replaced

with a zero eigenvalue.

We now state and prove the following theorem:

Theorem 10. Suppose the directed graph G(G) is strongly connected and aperiodic, and let the

input yk be fixed in time. The steady state value of the dynamical system in Equation (23), when

p0 = 0, is

piss = yi −
N∑

j=1

ejl y
j (24)

where eil is the ith element of the left Perron eigenvector of G, scaled so that
∑

eil = 1.

Proof. Consider the evolution of Equation (23):

pk = Gkp0 +




k∑

j=0

Gj


Ly. (25)

We assume that p0 = 0, and we wish to find pss = limk→∞ pk, if such a limit exists. Substituting

into Equation (25) via Lemma 8, we have

pk =




k∑

j=0

Ej + (G− E)j


Ly. (26)

Recalling that E = ere
T
l , and that L shares eigenvectors with G, we see that er and el are the

eigenvectors of L corresponding to the zero eigenvector. Therefore, EL = ere
T
l L = er0 = 0, and
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we can rewrite pk as

pk =




k∑

j=0

(G− E)j


Ly. (27)

Because G is assumed irreducible and aperiodic, all non-Perron eigenvalues of G have modulus

strictly less than one (Theorem 3). Therefore, by Lemma 9, we see that ρ(G−E) < 1. The infinite

expansion of pss therefore converges ([20], p. 301) and can be written as follows:

pss =




∞∑

j=0

(G− E)j


Ly

= (I −G+ E)−1Ly

= (L+ E)−1Ly

= (L+ E)−1(L+ E − E)y

= (I − (L+ E)−1E)y. (28)

Now Ler = 0, and Eer = (ere
T
l )er = er(e

T
l er) = er, so (L + E)er = er ⇒ (L + E)−1er = er, and

hence

pss = (I − (L+ E)−1ere
T
l )y

= (I − ere
T
l )y

= (I − E)y. (29)

The eigenvector er is known to be 1T . The eigenvector el is positive, and is scaled such that
∑

eil = 1. The columns of E are therefore constant, and the rows are each eTl . Therefore, Equation

(29) can be written

piss = yi −
N∑

j=0

ejl y
j . (30)

¥

The information flow loop therefore has the effect of having the formation track the formation

center, where the center is defined according to a weighting given by the graph. In this architecture,

the weighting cannot be chosen, though in principle it could be set by unevenly weighting the

information when performing the averaging. However, this would require global knowledge of the

graph, which is assumed not to be available.

Theorem 10 demonstrates both stability and convergence of an information flow law given a

constant input and aperiodicity of the graph. We now consider the a more general information flow

law which enables the designer to shape the dynamics of the information flow:

qk+1 =
∑R

j=0 ajqk−j +G
∑R

j=0 bjqk−j + Lyk

pk =
∑R

j=0 cjqk−j .
(31)
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In this version, we are computing our current information using information from previous time

steps as well as information received from other vehicles through a filter. This formulation can also

be used to account for the presence of additional delays in data transmission. In this case, we prove

separate stability and convergence theorems. We begin by checking stability of the information

flow law using the tools from Section 4.

Theorem 11. The system in Equation (31) is (neutrally) stable if the transfer function

F (z) =

∑R
j=0 bjz

R−j

zR+1 −
∑R

j=0(aj + bj)zR−j
(32)

is (neutrally) stable and its Nyquist plot avoids encirclement of the negative inverse of any of the

nonzero eigenvalues of L.

Proof. We can take the z-transform of Equation (31), setting aside the input, and rewrite it as

follows:

zq(z) =
R∑

j=0

ajz
−jq(z) +

R∑

j=0

bjGz
−jq(z)

=

R∑

j=0

(aj + bj)z
−jq(z)−

R∑

j=0

bjLz
−jq(z)

or, if we collect terms not including L and multiply both sides by zR,

q(z) = −

∑R
j=0 bjz

R−j

zR+1 −
∑R

j=0(aj + bj)zR−j
Lq(z). (33)

The transfer function in the above equation is F̂ (z), and this equation is equivalent to the lower

loop shown in Figure 4. This block diagram has the same structure as the system of vehicle for-

mations examined in Section 4, where it was shown in Theorems 4 and 6 that the stability of this

system is given by the Nyquist criterion stated above. Because one set of eigenvalues of this system

corresponds to the open-loop dynamics, this system can be at best neutrally stable if F (z) is itself

neutrally stable. ¥

We now turn to the steady-state performance of the information flow law. We assume that

cj = bj , which is useful in the stability proofs of Section 5.2, and which implies that each vehicle

need only transmit pk =
∑R

j=0 bjq
i
k−j to its neighbors. We also assume that F (z) has all poles on

the interior of the unit circle with the possible exception of a simple pole at 1. Finally, we assume

that the polynomial
∑R

i=0 aiz
R−i has roots in the interior of the unit circle.

Theorem 12. If F (z) stabilizes L in the sense of Theorem 11, and under the above assumptions,

pss = c
(
I − cE − (1− c) (I − c(G− E))−1G

)
y (34)
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P̂ (z) K̂(z)

F̂ (z) L
+

u

y

h0p

− −

Figure 4: Block Diagram of Information Flow in the Loop.

where a =
∑R

j=0 aj , b =
∑R

j=0 bj, and c =
b
1−a .

Proof. The proof is a lengthier version of the proof for Theorem 10, and can be found in [13].

¥

Note that c = 1 corresponds to a+ b = 1, which implies that the system has a pole at 1. When

c = 1, we recover the steady-state result of Theorem 10, only we now see it to be true for any

information flow filter with a pole at 1 (and which stabilizes the graph). When c < 1, the steady-

state is offset by an additional term. Note that when c = 1, the vehicles all agree on the location of

the formation center (expressed in each vehicle’s coordinates), while when c < 1, they do not. We

can say that when c = 1, the vehicles achieve consensus on formation center. From this perspective,

having c = 1 appears to be a desirable property of the information flow filter. However, when c = 1,

the system is only neutrally stable. The reason the filter converges to a steady state is because

the input passed through L, whose kernel is equal to the Perron eigenvector of G. However, the

presence of noise or sensor errors has the potential to introduce drift. Additionally, the eigenvalue at

1 means that old information never decays out, rendering the system sensitive to initial conditions.

Of course, the initial conditions of the information flow law can be set (or reset) by the vehicle,

assuming the existence of a protocol which guaranteed that this could be done without disrupting

the formation.

Example 2. To understand the effects of shaping the information flow, we consider two examples.

The first filter is in Equation (23). In this case, following Equation (32), F1(z) =
1

z−1 . The second
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filter is given by

pk+1 = 1.0625pk − 0.2313pk−1 + 0.1875Gpk − 0.0188Gpk−1 (35)

qk = 0.1875pk − 0.0188pk−1. (36)

This corresponds to F2(z) =
0.1875(z−0.1)
(z−0.25)(z−1) . The pole at 1 means that c = 1 in both cases. Figure 5

shows the Nyquist plot for these two filters. The first lies along the −0.5 vertical. Points on that

line correspond to periodic graphs (see Section 3.3), which confirms Theorem 10. The second lies

entirely to the right of the −0.5 vertical. Recalling from Section 4.3 that the Nyquist plot points

generated by the Laplacian, −λi(L)
−1, all must lie on or to the left of this vertical, we conclude

that this information flow law stabilizes any graph.

Figures 5,6 shows the response of the two filters to a step response for a sparsely connected

graph. While both settle in approximately 0.5 sec (using a time step of 0.02 sec), the first filter

exhibits ringing due to the proximity of the closed loop poles to the unit circle. The second filter

has a much smoother response. We see how the information flow filter can be designed to achieve

desirable responses and robustness to uncertainty in the graph.

We note in passing that this approach is easily extended to the case where some vehicles can

sense their position relative to the target or to an absolute reference frame. In that case, the desired

graph structure is that the target be the sole leader component of the graph to which all other

vehicles have access. In this case, the Perron eigenvector is [1, 0, 0, . . .]T (see [13]), meaning each

vehicle’s information converges to its position relative to the target — a desirable result. Of course,

the target is not transmitting any information, so the vehicles that sense the target must generate

the information the target would be transmitting. Since the target is by definition at its desired

location, the target’s transmitted information is just zero.

5.2 Information Flow in the Loop

The information flow filter supplies each vehicle with the information it cannot sense: a formation

center about which to do control. The information p represents the position of the virtual leader

relative to each vehicle, and is therefore the logical input to the controller K(z). A block diagram

for this architecture is shown in Figure 4. As before, we can analyze stability with respect to

uncertainties in the graph by isolating L and applying the Nyquist criterion as in Theorem 6. In

this case, one determines stability by analyzing the Nyquist plot of

F (z)(1 +K(z)P (z)). (37)

For a given plant and controller, the information flow loop can be designed to provide desirable

margins. However, care must be taken in interpreting the stability margins derived from this plot.
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Figure 5: Information Filter Nyquist Plots.
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Figure 6: Information Filter Convergence.

The gain and phase margins of this plot do not correspond to uncertainties in the plant in the

typical fashion due to the location of P (z) in the transfer function. Instead, they correspond more

directly to uncertainties in L. Small variations in P (z) can produce unexpected perturbations of the

Nyquist plot. A reasonable design methodology is to design K(z) to stabilize P (z), without regard

to the graph (remember that stabilizing the formation is never easier than stabilizing an individual

vehicle) and then design F (z) to stabilize L. However, the coupling between the dynamics of the

two can produce unexpected results. In this section, we explore a means to improve this situation.

The information flow algorithm presented earlier is necessarily reactive; it does not anticipate

the motion of the cluster. A logical means of improving performance is to supply the information

flow loop with feedforward information regarding the expected motion of the formation. Recalling

that the information represents an averaged position of the vehicles’ positions, a logical choice

for a feedforward signal is the anticipated change in vehicle position. This can be calculated by

using each vehicles’ control signal u(z) as the input to a model of the plant, denoted P̃ (z), and
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differencing that. The resulting signal

wi(z) = (1− z−1)P̃ (z)ui(z) (38)

is then transmitted in addition to the signal q(z) and used by each vehicle as a correction term to

p. For example, we would replace Equation (23) with the following information flow law:

qk+1 = G(qk + wk) + Lyk

pk = qk + wk
(39)

In this case, the transmitted quantity is pik = qik + wi
k, as is clear from is premultiplication by G.

Of course, this feedforward correction term is only current if the control signal is delayed by a time

step before application to the plant to allow a time step for the information to reach the other

vehicles. Alternatively, each vehicle could delay the use of its sensed information until it receives

the transmitted information from that vehicle.

To allow for information flow laws more general than Equation (38), we will let w(z) take on

the more general form

w(z) = H(z)P̃ (z)u(z). (40)

The information flow block diagram for this architecture is shown in Figure 7. When H(z) is chosen

properly, the following result can be derived:

Theorem 13. Choose H(z) to be

H(z) =
1

F (z) + 1
, (41)

and suppose the feedback interconnection of P (z) and K(z) is well-posed. Then the relative forma-

tion dynamics are stabilized if and only if F(z) stabilizes L in the sense of Theorem 11 and K(z)

stabilizes P (z).

Proof. By construction, F (z) is biproper. Using our definition of F (z), we can write H(z) as

H(z) =
zR+1 −

∑R
j=0(aj + bj)z

R−j

zR+1 −
∑R

j=0 aiz
R−j

. (42)

Note that H(z) is stable due to the assumptions of Theorem 11.

We prove the presence of a separation principle for the system of equations, through the use

of a transformation of coordinates that isolates the subsystems whose stability implies stability of

the overall system. To do this, we first present the system of equations in state-space form. The

state-space equations of motion for the plant are given in Equation (20). The predictor P̃ (z) is

presumed to be identical to the plant P (z), and has the same equations of motion with x, y replaced

by x̃, ỹ. The dynamics of the controller will be represented as

vik+1 = KAv
i
k +KBp

i
k

uik = KCv
i
k +KDp

i
k.

(43)
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Figure 7: Block Diagram of Information Flow with Feedforward Correction.

The information flow filter F (z) is defined as found in Equation (31), but with the feedforward

correction term added:

qk+1 =
∑R

j=0 ajqk−j +G
(∑R

j=0 bjqk−j + wk

)
+ Lyk

pk =
∑R

j=0 bjqk−j + wk.
(44)

Once again, it should be clear from the position of the quantity pk =
∑R

j=0 bjqk−j + wk that it

is the information which is transmitted by each vehicle.

Finally, the state space representation of the feedforward correction term, found in Equation

(42), is

rik+1 =
∑R

j ajr
i
k−j + ỹik

wi
k = −

∑R
j bk−jr

i
k + ỹik.

(45)

To simplify the representation of Equations (44) and (45) in state-space notation, we introduce the

following notation. Let

HA =




0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

aR aR−1 · · · a0



, (46)

let

HB =
[
0 0 · · · 1

]T
, (47)

and let

HC =
[
bR · · · b0

]
, (48)
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where HB is dimensioned compatibly with HA. For the information flow law and feedforward term,

we use q̄i to denote [qik−R, q
i
k−R+1, . . . , q

i
k]
T , and similarly for r̄. The state-space representation of

Equation (44) can thus be represented as

q̄k+1 = ĤAq̄k + ĤBG(ĤC q̄k + wk) + ĤBLyk

pk = ĤC q̄k + wk
(49)

and of Equation (45) as

r̄k+1 = ĤAr̄k + ĤB ỹk

wk = −ĤC r̄k + ỹk.
(50)

If one solves Equations (20), (43), (49), and (50) for the states, the resulting system of equations is

Xk+1 = ΨXk, (51)

where Xk = [xk, vk, x̃k, r̄k, q̄k] and

Ψ =




P̂A P̂B∆K̂C P̂BK̂D∆P̂C −P̂BK̂D∆ĤC P̂BK̂D∆ĤC

0 K̂A + K̂BP̂D∆K̂C K̂B∆P̂C −K̂B∆ĤC K̂B∆ĤC

0 P̂B∆K̂C P̂A + P̂BK̂D∆P̂C −P̂BK̂D∆ĤC P̂BK̂D∆ĤC

0 ĤBP̂D∆K̂C ĤB∆P̂C ĤA − ĤBP̂DK̂D∆ĤC ĤBP̂DK̂D∆ĤC

ĤBLP̂C ĤBP̂D∆K̂C φP̂C −φĤC ĤA + φĤC


 (52)

where φ = ĤB(P̂DK̂D∆ + G), and ∆ = (I − P̂DK̂D)
−1, which is invertible by assumption of

well-posedness of the interconnection. If we apply the transformation

T =




I 0 0 I 0

0 0 I 0 0

0 0 0 I 0

0 I 0 0 I

0 0 0 0 I




(53)

to the system matrix, we recover the matrix

T−1ΨT =




P̂A 0 0 0 0

−ĤBLP̂C ĤA + ĤBGĤC 0 0 0

0 −K̂B∆ĤC K̂A + K̂BP̂D∆K̂C K̂B∆P̂C 0

0 −P̂BK̂D∆ĤC P̂B∆K̂c P̂A + P̂BK̂D∆K̂C 0

ĤBLP̂C −φĤC ĤBP̂D∆K̂C ĤB∆P̂C ĤA



. (54)

Stability of the system is equivalent to stability of the blocks along the diagonal. The first, PA, is

neutrally stable by assumption. The assumption that the information flow law stabilizes the graph

is equivalent to the second block, HA+HBGHC , being stable. The third block along the diagonal,

which comprises the third and fourth columns/rows, is stable if K(z) stabilizes P (z). (The reader

will verify that this is the matrix derived when K(z) and P (z) are interconnected directly via feed-

back.) The final block represents the states of H(z), which is stable by the assumption in Theorem
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11. We thus derive a separation principle for our formation which demonstrates that design of the

individual vehicle controller K(z) and the information flow filter F (z) can be decoupled. ¥

Remarks Equation (54) can be interpreted in the following way. The first set of states are

open-loop copies of the vehicles’ dynamics, and represent mismatches in initial conditions between

the predictor and the actual vehicle. The second set is identical to the dynamics of Equation (31),

whose stability and convergence properties were studied above. The output of this set of states acts

as a reference to N more copies of the vehicle dynamics in feedback interconnection with the local

controllers, found in the third and fourth rows. We see, therefore, that the effect of this architecture

is to supply the local controllers with a reference signal which, if implemented properly, represents

the error of that vehicle relative to a common reference trajectory whose dynamics obey the open

loop dynamics of an individual vehicle. The final set of states represent the feedfoward component.

These states are unobservable in the motion of the vehicles, but are stable by design.

Several observations can be made regarding implementation. The first is that the motion of the

formation is sensitive to mismatches between initial conditions of the vehicle and predictor. This

can lead to drift of the cluster if the mismatch is in velocities. It should be possible to improve upon

this through the use of an observer which will prevent the vehicle and predictor from diverging.

Another solution is to initialize the predictor using earlier measurements.

The second is that if c 6= 1, meaning the information flow loop does not converge to a common

reference, then the vehicles’ final positions will incorporate those errors as well (although the system

is stable in this case as well). The position of the vehicles will also depend on the ability of the

information flow filter to track the natural motion of the vehicles. When the natural motion of

the vehicles is at rest, we have seen that it achieves a proper steady state when c = 1. When the

natural motion is secular drift or oscillation (corresponding to poles at the origin or along the jω

axis), the quality of the reference signal will depend on the ability of the information flow filter to

track signals at the relevant frequencies.

We also note that the model of the plant P̃ (z) is not an observer, but a predictor of vehicle

motion. The zero at 1 in H(z) corresponds to differencing the input, which generally amplifies

signal noise. However, the input to H(z) is derived by integrating u(z), so no net differencing takes

place in the filter. In fact, it is possible to compress P (z) and H(z) into a single filter, but it is

easier not to do so when proving stability.

Finally, we note that unlike the results of the previous section, this separation principle does not

rely on the vehicles having identical plants or controllers. It merely relies on each vehicle’s predictor

matching the vehicle dynamics and on each vehicle implementing the same information flow and

feedfoward correction computation. This eliminates a significant obstacle to implementation. A
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minor consequence is that when the vehicles have the same dynamics, the bulk motion of the

formation itself obeys the dynamics of a single vehicle, while when the vehicles have different

dynamics, that motion will be more complex.

Example 3 (Formation Acquisition). We return to the example with which we began in Section

2. If the information flow law together with feedforward compensation is enabled, the vehicles follow

the trajectories shown on the left in Figure 8. The trajectories are smoother, but still show some

curving due to action of the control law prior to convergence of the information flow law. The

right-hand figure shows the trajectories followed by the vehicles when the information flow law is

enabled one second prior to enabling the control loop. In this case, the vehicles follow straight lines

to their targets. Note that the formation center is identical in the two cases despite the differing

trajectories. This is due to the decoupling of the information flow law from expected formation

motion.
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Figure 8: Hexagon acquisition with information flow using no information pre-convergence (left)

and using one second of information preconvergence (right).
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Figure 9: Communication topology and hexagon acquisition using only sensed infromation.

If we presume a different communication topology, we see the role the information flow law plays
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Figure 10: Hexagon acquisition with information flow using no information pre-convergence (left)

and using one second of information preconvergence (right).
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Figure 11: The y-axis transients of formation reconfiguration, without information flow (left) and

with information flow (right).

in decoupling formation dynamics and vehicle dynamics. Figure 9 shows a different topology and the

formation acquisition trajectories followed using only sensed information. The transients are worse

in this example because the Laplacian eigenvalues are nearer to instability. Figure 10 shows the

trajectories when information flow is employed. Again, the left hand figure shows the trajectories

when vehicle control and information flow are enabled simulatneously, and the right hand figure

shows the trajectories when information flow is enabled earlier. Once again, the information flow

renders then formation response largely insensitive to the communication topology.

Example 4 (Formation reconfiguration). In this example, the formation is already in a hexago-

nal formation and traveling in the positive y direction, when a command is issued for the formation

to rotate counterclockwise. The transients for the motion of each vehicle in the y direction are

shown on the left in Figure 11 for the case where information flow is disabled and on the right

for the case where information flow is enabled. The use of information flow reduces the transients
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Figure 12: Target acquisition with no information flow (left) and with information flow (right)

associated with the reconfiguration as it did with the formation acquisition.

Example 5 (Target Acquisition). In this example a target becomes visible to a single vehicle as

the formation is acquiring the hexagon. The vehicle which views the target includes that information

as described earlier, and attempts to bring the vehicles into formation with the target at the center

of the hexagon. The left plot in Figure 12 shows the formation motion with information flow

disabled. In this case, the vehicle which can view the target has to reconcile conflicting information:

its position relative to the target and relative to the other vehicles, which are unaware of the targets

existence. This causes the formation to overshoot the target, marked with a diamond, and to slowly

settle into the desired position.

The right plot in Figure 12 shows the same situation with information flow enabled. In this

case, the information flow loop disseminates the target information to the other vehicles, causing

the information loop to treat the target as the formation leader and use its position as the common

reference. In this case, the formation gracefully changes course and quickly acquires the target.

Example 6 (Satellite Reconfiguration). We now consider an example from a different domain:

relative satellite motion. This problem is motivated by missions such as the TechSat 21 mission, in

which a collection of small satellites are used to distributed aperature sensing.

The relative motion of a second satellite about a reference satellite can be approximating by

linearizing the Keplerian orbital mechanics about the reference trajectory. These equations are

known as Hill’s equations due to Hill’s study of lunar motion [19] and as the Clohessy-Wiltshire

equations due to their work on orbital rendezvous [7]. The equations of motion about a circular

reference orbit are
ẍ = 3n2x+ 2nẏ + ax

ÿ = −2nẋ+ ay

z̈ = −n2z + az

(55)

where x point in the radial direction, y along track, and z out of plane. The orbit rate is given by n.
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The vector [ax, ay, az]
T represents external accelerations, either due to environmental disturbances

or applied thrust. The equations, when solved, reveal families of periodic orbits about the origin as

well as secular drift along y. The periodic solutions include a 2×1 inclined ellipse whose projection

onto the Earth (the yz plane) is a circle. The ground track of these satellites remains fixed relative

to one another and rotates at orbit rate. These orbits are attractive for space-based interferometry,

such as the TechSat21 mission, and were part of the impetus for exploring missions of this type

[21]. We also note that interferometry requires accurate knowledge of relative satellite position,

but drift in absolute position is more tolerable. Hill’s equations are often used as a coarse model

for relative satellite motion despite the absence in the model of external forces and perturbations

of Earth’s gravitational field.

Note that the xy-dynamics are decoupled from the z-dynamics. Setting n = 1, a family of

unforced solutions to the xy dynamics is given by

x(t) = A cos(t+ φ)

y(t) = y0 − 2A sin(t+ φ).
(56)

Consider a set of six satellites, evenly spaced initially along the y-axis, that are asked to take up

stations along a Hill’s ellipse given by A = 1 at evenly spaced φ. Each satellite can measure the full

relative states of a subset of other satellites, and an LQR controller has been designed. The offset

hi0 is given by Equation (56) and its derivative, with φ = πi
3 , and y0 = 0. We begin by designing the

information flow law. In this case, the reference signal which the vehicles must determine follows

a periodic trajectory. To ensure good tracking, we place poles of the information flow law at the

(discretized) frequency locations, along with a pole at 1 so that the c = 1 condition is satisfied. A

candidate information flow law is given by

F (z) =
z2 − 1.6575z + 0.7225

z3 − 2.9975z2 + 2.9975z − 1
. (57)

The Nyquist plot for this information flow law is found in the leftmost plot of Figure 13. In this

case, the desire for good tracking of the reference signal places limits on the range of graphs which

the information flow law stabilizes. Nonetheless, the encircled region of Figure 13, which offsets

the encirclement at infinity, leading to zero net encirclements, gives reasonable latitude around the

−1 point. Once F (z) is designed, then the feedforward term H(z) is derived automatically. The

center plot in Figure 13 shows the reference signal supplied to each satellite for measurements of

y converging to a common trajectory, and the right plot shows the motion of the satellites in the

xy plane. The initial positions of the satellite are at the center, and the final positions are marked

with an ‘x.’

As in the previous case, our information flow approach greatly enhances stability. It is important

to note that while the information flow law was restricted to those with good tracking performance

at the reference trajectory frequencies, this is far less restrictive than the design of a controller
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Nyquist Diagram
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Figure 13: Satellite reconfiguration: nyquist plot for satellite information flow (left), convergence

of satellite y-axis reference data (center), and satellite reconfiguration trajectories (right).

which stabilizes the vehicle dynamics. The difference is most noticeable in the presence of plant

zeros, as would occur when only a subset of states are measurable.

6 Conclusions

The information flow law proposed in Section 5 shows the utility of the stability theorem in analyzing

the behavior of vehicle formations and in synthesizing control solutions. We expect that this

framework will be generally useful in analysis of formation stability problems and will be a useful

starting point for future research. In particular, we expect that the qualitative insights into graph

properties which are desirable from the perspective of stability can be quantified. A principle which

allowed each vehicle in the graph to determine its impact on formation stability using only local

information would be particularly useful, as it could form the basis of a protocol for information

weighting.

In addition to separating information flow stability from vehicle stability, our approach to

information flow can be shown to have good string stability properties, a subject which will be

developed more fully in a future paper. Our approach relies on two key ideas. The first is the use

of dynamical systems as a paradigm for understanding information exchange between vehicles, and

the design of a dynamical system which enables the vehicles to achieve consensus on the formation

center. The second is the use of feedforward compensation to render the sensed and transmitted

information timely. While this paper restricts its focus to linear systems with fixed time delays,

we expect that this approach can be extended to nonlinear vehicle systems and systems with

variable time delays. Nonlinear systems typically possess a center manifold which corresponds to

the surface on which the vehicle performs locomotion; if the information flow is restricted to that

surface, it should be possible to extend the information flow principle to that class of problems. We
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also conjecture that our approach can be extended to systems with variable time delays through

appropriate extension of the feedforward term used to achieve stability separation.

At the moment, the main limitation in the method is the constraint that c = 1 in the information

flow law. The need for consensus among vehicles forces the information flow law to be neutrally

stable, which means that information never decays out. This renders the system sensitive to sensor

errors and mismatches in initial conditions. One possibility for improvement is a protocol for

resetting the information to zero periodically or in response to an event as a means of limiting any

drift. Such a protocol could lie in a higher layer in the control architecture, and may itself require

stability analysis. Alternate approaches to zeroing out accumulated error will be explored in the

future.
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