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Abstract— This paper describes a synthetic in vitro genetic
circuit programmed to work as an insulating device. This
circuit is composed of nucleic acids, which can be designed to
interact according to user defined rules, and of few proteins that
perform catalytic functions. A model of the circuit is derived
from first principle biochemical laws. This model is shown to
exhibit time-scale separation that makes its output insensitive
to downstream time varying loads. Simulation results show the
circuit effectiveness and represent the starting point for future
experimental testing of the device.

I. INTRODUCTION

The functionalities of every living organism are wired
in the biochemical interactions existing among proteins,
nucleic acids and all the other molecules that constitute life’s
building blocks. Understanding how to embed any function
in this ‘hardware of life’ via ‘molecular programming’ is an
exciting and challenging task for modern bioengineers and
synthetic biologists.

Programming molecules is indeed possible with very high
precision when reactions are run in vitro, in a controlled
environment with few components. The structural properties
of nucleic acids make them ideal programmable molecules
to perform molecular algorithms and create logic gates [8],
but also to operate as nanodevices with sensory or actuation
purposes [10].

Synthetic in vitro genetic transcriptional circuits [4] are
built with nucleic acids and few protein species. Despite
their simplicity, they can be used as a tool kit to design
systems embedding important biological functionalities, such
as self repressing or self activating modules, toggle switches
and oscillators. Being an interesting benchmark to test new
biochemical circuitry designs, it is fundamental to understand
how to interconnect different transcriptional modules in
a large network, preserving their functionality. Insulation
blocks are crucial to this purpose.

Our analysis is also motivated by ongoing research at
Caltech and TU Munich, focusing on the interconnection
of a synthetic transcriptional oscillator to downstream nan-
odevices [9]. Both the amplitude and frequency of the
oscillations are in fact affected by the presence of high
amounts of coupled molecular loads.
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Referring to Fig. 1 (a) and (b), the objective is that of plac-
ing programmable and modular insulating devices between
existing signal sources and sinks to be interconnected.
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Fig. 1. (a) A system Ω provides a reference input u to a downstream
load system Λ: retroactivity effects R could cause distortion of u. (b) A
properly designed insulation device Σ placed between Ω and Λ can reduce
the retroactivity signals r and s and guarantee that the dynamics of its
output y only depend on u.

The concept of retroactivity has been recently proposed
in the context of biochemical systems [7], [1], even though
interconnecting several devices with minimal node function-
ality alterations has always been a challenge in many engi-
neering fields. Quantifying analytically the unwanted signals
produced within interconnected biological devices is essen-
tial to understand how to design and build insulating mod-
ules. Time-scale separation is a fundamental tool to this pur-
pose: for instance, protein phosphorylation/dephosphorilation
cycles have been proved to minimize their input and output
retroactivity [2], thanks to their fast dynamics compared to
protein production and degradation.

This paper presents the design of a synthetic transcrip-
tional device that can be used as an insulator to interconnect
an input source to a desired load system in the context of
in vitro genetic circuits. Such a device is characterized by
an input domain, given by single stranded DNA (ssDNA)
activators and inhibitors (serving the role of nucleic acid
transcription factors), a core represented by a DNA tem-
plate, and an output RNA transcript. Each domain can be
suitably designed for interconnection to arbitrary upstream
and downstream modules. Reactions and binding rates of the
proposed insulator are programmable through their nucleic
acid sequences, and can be tuned to be sufficiently fast to
reduce effects of retroactivity to its input and to its output.
A model for the device is derived from first principles
biochemistry laws and is shown to fulfill the structural
properties required to minimize retroactivity effects [2]. A
remaining challenge in the design of this synthetic insulator
is systematically guaranteeing minimal input/output signal
distortion.

In Section II-A we will summarize the technical results
from [2] that define the structural properties of biochemical
insulators. Section II-B is dedicated to the derivation of
a model for the synthetic transcriptional insulator, whose
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input/output decoupling properties are then proved in Sec-
tion II-C. Finally, numerical simulations showing the behav-
ior of our device interconnected to time varying input and a
downstream load are reported in Section III.

II. DESIGN OF INSULATION DEVICES

A. Retroactivity: theory background

Interconnecting several devices without altering their func-
tionality is a challenge in most engineering fields. Classical
examples include voltage drops at the output of non-ideal
voltage generators, pressure losses in pipe networks or level
changes in systems of tanks, which are all effects of the
interconnection to a downstream load. In all these cases,
the performance degradation is due to unwanted retroactivity
phenomena: signals are not transmitted only in the desired
direction ‘source to load’, but can travel back from the load
to the source (Fig. 1(a)). Biochemical networks are largely
affected by this type of phenomena, since concentrations
of chemicals are drained by the reactions in which they
participate.

When a dynamical system is interconnected to other up-
stream and downstream elements, it is generally possible to
model the effects of such interconnection through additional
system outputs and inputs as shown in Fig. 1 (b). In general,
a system Σ having an internal state x can be defined as:

ẋ = f(x, u, s), y = Y (x, u, s), r = R(x, u, s),
where r is an additional output representing the effect of
Σ on upstream systems, while s is an additional input
quantifying the effect of downstream systems on Σ.

An insulating device is a system Σ where r � 1, s is
almost completely attenuated and where the mapping of u
to y is linear in some range of interest. Referring to Fig. 1,
our objective is that of interconnecting a signal source Ω
and a load system Λ, through an insulation device Σ. This
device should be designed to provide Λ with an input y
whose dynamics only depend on the output u of Ω, and
to reduce the retroactivity signals s and r that travel back
from the load to the signal source. The following structural
assumptions [2] are sufficient to demonstrate that the device
Σ acts as an insulator when interconnected to the source
system Ω and the load Λ:

(i) The internal state of Σ is x = (x1, ..., xn) ∈ D ⊆ Rn+,
the input u and the output y = xn are both positive
scalars, i.e. u, y ∈ R+. The dynamics of u prior to
interconnection are given by

u̇ = f0(t, u). (1)
The dynamics of Σ can be written as

ẋ =


Gf1(x, u)
Gf2(x)

...
Gfn−1(x)
Gfn(x)

 , (2)

and the internal state variables of Λ are

ν̇ =


g1(ν, y)
g2(ν)

...
gp(ν)

 ; (3)

(ii) The variables r, s are scalars and ‘parasitically’ affect
the dynamics of u and y only as additive rates, that is,

u̇ = f0(t, u) + r(x, u), (4)
ẋn = ẏ = Gfn(x) + s(ν, y);

(iii) The following conservation laws hold for the retroac-
tivity rates:
r(x, u) = −Gf1(x, u) and s(ν, y) = −g1(ν, y).

(5)
The parameter G quantifies the speed of the dynamics of

Σ and plays a fundamental role in reducing the retroactivity
to the output s. We also need a further assumption regarding
the stability properties of Σ.

Assumption 1: Define F : R+ ×D → Rn as F (a, x) =
(f1(x, a− x1), f2(x), ..., fn(x)), a ∈ R+, and x ∈ D. We
assume that all the eigenvalues of the Jacobian DFx(a, x)
have negative real parts for all x ∈ D and all a ∈ D′ :=
{a ∈ R+|(a− x1) ≥ 0, x ∈ D}.

If the structural assumptions (i), (ii) and (iii) together
with Assumption 1 hold, the following claims can be
proved [2]:

Claim 1: Let x(t) be generated by the interconnected
system (2), (3) and (4), and let xref(t) be generated by the
same system where we set s(ν, y) = 0. Then, there exist
constants G∗, t0, T > 0 such that ‖ xref(t)−x(t) ‖= O(1/G)
for all t ∈ [t0, T ) and all G > G∗.

The proof of Claim 1 (we address the reader to [2] for the
proof) is based on the application of the singular perturbation
theorem on the finite time interval [5]. The global stability
of the Jacobian DFx guarantees that the slow manifold is
attractive.

Claim 2: Let u(t) be generated by the interconnected
system (1)-(5). Define f(a, x) := (f1(x, a), f2(x), ..., fn(x))
and assume that f(a, γ(a)) = 0 admits a unique solution
γ : R+ → Rn+ with γ(a) = (γ1(a), ..., γn(a)) and
γ1 : R+ → R+. Let ū(t) be generated by dū/dt =
f0(t, u) (1/(1 + ∂γ1(ū)/∂ū)). Then, there exist G∗, t0, T >
0 such that u(t) = ū(t) + O(1/G) for all t ∈ [t0, T ) and
all G > G∗.

Claim 2 (see [2] for the proof) implies that if
∂γ1(ū/∂ū) � 1 then the dynamics of ū become approx-
imately equal to the dynamics of u̇ = f0(t, u) where
r(x, u) = 0. The quantity ∂γ1(ū)/∂ū) measures the retroac-
tivity to the input r as a function of the input and of
the parameters of the insulator Σ, which can be therefore
designed to minimize r.

B. Design of an insulation device for in vitro genetic circuits

We will now describe an insulation device to be used
in the context of in vitro synthetic transcriptional circuits.
Our device is defined by a set of biochemical species and



their programmed interactions, which are represented in
Fig. 2. In the following we will interchange the notation
used to indicate a chemical species and its concentration.
For example, let DX denote a certain DNA species; the same
symbol will be used to indicate its concentration.
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Fig. 2. Reactions occurring in the insulating device. Complementary
nucleic acid domains have the same color coding. Different toehold regions
are in orange, cyan or black. Blue domains on the templates are transcribed
into RNA, and are provided with transcription termination regions, in red.
The 5’ to 3’ orientation is indicated by an arrow on the 3’ end of the strands.
(a) Activation and transcription. (b) Inhibition. (c) Release of the activator
through the input U . (d) Degradation of the RNA output. (e) Output binding
to the downstream load RL.

The molecular components of the insulating device are five
nucleic acids and two enzymes; the process at the core of
the device is the control of RNA transcription in a synthetic
DNA template DT . The promoter region of such template is
partially single stranded: efficient transcription is possible
only when DT is bound to a DNA activator DA (panel
(a) in Fig. 2). The DNA activator can be stripped off the
template by a DNA inhibitor DI , through the mechanism of
branch migration [11] (panel (b) in Fig. 2). The reactions
corresponding to this activation/inhibition stage are

DA +DT
kAT
⇀ D̂ADT ,

D̂ADT +DI
kAIT
⇀ DT + D̂ADI ,

DA +DI
kAI
⇀ D̂ADI .

(6)

The output of the device is the RNA transcript RY , which
is produced by the active template complex D̂ADT in the
presence of the enzyme RNA polymerase, Rp (panel (a)
in Fig. 2). Weak binding and transcription occur also when
DT is not bound to the activator, but we will assume this
contribution is negligible. The production of RY is thus
described by the reactions

Rp + D̂ADT
k+

P
⇀
↽

k−
P

̂RpDADT
kcatP
⇀ Rp + D̂ADT +RY . (7)

If we assume that the formation of the complex ̂RpDADT

is faster than the catalytic step, we can derive the following
expression for the production rate of RY :

pRY (t) = kcatP [RpD̂ADT ] =
kcatP
KMP

[Rp
tot]

[D̂ADT ]

KMP + [D̂ADT ]
.

This corresponds to a Hill function of order 1. We will
denote this term as pRY

(t) = αh
(

[D̂ADT ]
KMP

)
. The degrada-

tion of the output RY is mediated by a DNA strand DD;
the enzyme RNase H, Rh, will degrade the RNA strand
in hybrid DNA-RNA bimolecular complexes (panel (d) in
Fig. 2). This represents a tunable negative feedback for the
dynamics of RY :

DD +RY
kDY
⇀ D̂DRY ,

Rh + D̂DRY
k+

H
⇀
←
k−

H

̂RhDDRY
kcatH
⇀ Rh +DD.

The degradation speed of the complex D̂DRY is

dDDRY (t) =
kcatH
KMH

[Rh
tot]

[D̂DRY ]

KMH + [D̂DRY ]
.

This is another Hill function of order 1: dDDRY
(t) =

γ h
(

[D̂DRY ]
KMH

)
.

The core of the device is thus represented by the DNA
species DT , DA, DI , DD and the RNA output RY .

The synthetic insulator can be interconnected to an input
module by designing suitably the inhibitor and activator
domains. We will model the input signal U as a DNA
species that is introduced in solution at some rate pU (t) and
sequestered at some rate dU (t). In particular, the system can
be programmed so that its input strand U acts as a releaser
molecule for DA making it available again for the activation
of DT (panel (c) in Fig. 2). For instance, U could be the
output of an arbitrary transcriptional device, which binds
and unbinds to the inhibitor species DI and to the complex
D̂ADI releasing DA:

∅ pU (t)
⇀ U(t)

dU (t)
⇀ ∅,

DI + U
k+

IU
⇀
↽

k−
IU

D̂IU,

D̂ADI + U
kAIU
⇀ D̂IU +DA.

(8)

If the input U is an RNA specie, then the complex D̂IU
would be a substrate for RNase H: this case is currently
being studied, as it introduces undesired coupling between
the negative feedback mechanism and the input dynamics of
the device. A way to overcome this problem is to work in
a saturating regime for the enzyme, but a precise analysis is
left as future work.

The device can be interconnected to a downstream module
by designing its output to target a molecular load of interest,
RL. For instance, the load could be represented by another
RNA species produced at a certain rate pL(t) (panel (e),
Fig. 2):

∅ pL(t)
⇀ RL(t),

RY +RL
kY L
⇀ R̂YRL.

(9)

Given the above set of reactions, it is straightforward to
obtain a dynamic model for the DNA insulation device while
interconnected to the upstream and downstream systems.



The ODE model that can be derived by the reactions
occurring in the system is:

dU

dt
= +pU (t)− dU (t)− k+

IUDIU + k−IU D̂IU

−kAIU D̂ADIU
dD̂IU

dt
= +k+

IUDIU − k
−
IU D̂IU + kAIU D̂ADIU

dD̂ADI
dt

= +kAIDADI − kAIU D̂ADIU

dD̂ADT
dt

= +kATDADT − kAITDID̂ADT

dDD
dt

= −kDYDDRY + γ h

 
D̂DRY
KMH

!
(10)

dRY
dt

= +αh

 
D̂ADT
KMP

!
− kDYDDRY − kY LRYRL

dRL
dt

= +pL(t)− kY LRYRL.

Mass conservation allows us to algebraically derive the
concentrations of DA, DT , DI and DD:

Dtot
T = DT + D̂ADT ,

Dtot
A = DA + D̂ADT + D̂ADI ,

Dtot
I = DI + D̂ADI + D̂IU,

Dtot
D = DD + D̂DRY .

C. Verification of the insulation properties

We will now verify that all the structural assumptions
defining an insulating device are satisfied by the proposed
synthetic module.

First of all, we will assuming that the binding rates of the
different DNA species fall in the same order of magnitude.
Indeed, the binding rates of nucleic acids can be programmed
by specifying their sequence and length: each base-pair
match provides known thermodynamic free energy gains and
it is possible to predict the binding energetics of arbitrary
sequences using existing software packages. Therefore, all
the reactions can be designed to have roughly the same speed.
Moreover, the amount of enzyme species in solution can be
varied to bring the coefficients α and γ in the same order
of magnitude as the nucleic acid binding rates. Define G =
max{kAT , kAI , kAIT , k+

IU , k
−
IU , kAIU , kDY , kY L, α, γ}, and

suppose without loss of generality that G = kAT . Then
one can define gat = kAT /G = 1, gai = kAI/G, gait =
kAIT /G, g+

iu = k+
IU/G, g−iu = k−IU/G, gaiu = kAIU/G,

gdy = kDY /G, gyl = kY L/G, ᾱ = α/G and finally
γ̄ = γ/G, where each of these new rates is of order O(1).

The device dynamics are easily recast in the same form
of the insulator equations (2). In particular the state of the
device is defined as x = (D̂IU, D̂ADI , D̂ADT , DD, RY ),

where the output y = RY . Define:
f1(x, u) = g+

iuDIU − g
−
iuD̂IU + gaiuD̂ADIU,

f2(x, u) = gaiDADI − gaiuD̂ADIU,
f3(x) = DADT − gaitDID̂ADT ,

f4(x) = −gdyDDRY + γ̄ h

 
D̂DRY
KMH

!
,

f5(x) = ᾱ h

 
D̂ADT
KMP

!
− gdyDDRY .

The dynamics of the input u(t) = U(t) prior to inter-
connection are given by u̇ = f0(t, u), where f0(t, u) =
pU (t) − dU (t). The dynamics of the load ν = RL prior
to interconnection are ν̇ = pL(t).

Upon interconnection, the overall system dynamics be-
come:

u̇ = f0(t, u) + r(x, u)

ẋ =

0BBB@
Gf1(x, u)
Gf2(x, u)
Gf3(x)
Gf4(x)

Gf5(x) +Gs(ν, y)

1CCCA
ν̇ = fν(t) +Gs(ν, y).

(11)

We can immediately verify that:
(i) The input U and the output RY are scalar quantities;

(ii) The variables r and s are scalar additive rates;
(iii) Conservation laws apply to our case: in fact r(x, u) =

−Gf1(x, u) and s(ν, y) = gylRYRL.
Assumption 1 can be verified by computing the Jacobian

of F (a, x) = (f1(x, a−x1), f2(x, a−x1)), ..., f5(x)) for all
x ∈ D = R5

+ and all a ∈ D′ := {a ∈ R+|(a − x1) ≥
0, x ∈ D}. The Jacobian of F (x, a) has a block structure
which is lower diagonal:

DFx(a, x) =
[
P ∅
L Q

]
. (12)

We can find the eigenvalues of DFx(a, x) working on
the two blocks P and Q separately. This can be done
symbolically as a function of the system parameters and of
the equilibria. Let us now assume that ḡ := g+

iu ≈ gaiu, i.e.
that the kinetics of the input binding to the complex D̂ADI
are as fast as the kinetics of U binding to unbound DI . With
this simplification, the elements pij of matrix P are:

p11 = −G(g−iu + ḡD∗I + ḡD̂ID∗A + ḡ(a− D̂IU∗)),
p12 = p13 = 0,

p21 = +G(ḡD̂ID∗A − gaiD
∗
A),

p22 = −G(gai(D
∗
I +D∗A)− ḡ(a− D̂IU∗)),

p23 = −GgaiD∗I ,
p31 = +GgaitD̂AD∗T ,

p32 = −G(D∗T − gaitD̂AD∗T ),

p33 = −G(gaitD
∗
I + gaitD

∗
T + gatD

∗
A).

The index ∗ denotes equilibrium concentrations. Since p12 =
p13 = 0, the first root of the characteristic polynomial of P
is p11, which is negative since all the all the binding rates are
positive and all equilibrium concentrations are non-negative.
The remaining roots are the solution of (λ+p22)(λ+p33)−
(p23p32) = 0. Since all the coefficients of this polynomial



are positive at any x ∈ D, a ∈ D′, then all the roots of the
system have negative real parts.

The coefficients of matrix Q are:
q11 = −GgdyD∗D,

q12 = −GgdyR∗Y −
Gγ̄

D̂DR∗Y +KMH

,

+Gγ̄
D̂DR∗Y

(D̂DR∗Y +KMH)2
,

q21 = −GgdyR∗Y ,
q22 = −GgdyD∗D.

It is straightforward to verify that also the characteristic
polynomial of Q has negative roots at any equilibrium,
provided that KMH > 0.
For a system with the structure (1)-(5), the stability of
DFx(a, x) implies the result of Claim 1. System (11) slightly
differs from that structure due to the presence of the time-
varying term fν(t) in the dynamics of ν. Nevertheless, Claim
1 can be extended to cover this case as follows.

Define ũ = u + x1 and ε = 1/G. In these new variables
the dynamics of system (11) become:

˙̃u = f0(t, ũ− x1) + r(x, ũ− x1)
εẋ1 = f1(x, ũ− x1)
εẋ2 = f2(x, ũ− x1)
εẋ3 = f3(x)
εẋ4 = f4(x)
εẋ5 = f5(x) + s(ν, x5)
εν̇ = εfν(t) + s(ν, x5).

Let ε = 0 in the above system, and let γ(u) =
(γ1(u), ..., γ5(u)) be the locally unique solution of
F (ũ, γ(ũ)) = 0. Since all the eigenvalues of DFx(a, x)
have negative real parts on all its domain D, the trajectories
are attracted by the slow manifold. The singular perturbation
theorem over the finite time interval [5] can thus be applied,
and there exist ε′, t′ and T ′, with t′ < T ′, such that the
state x(t) = γ(ũ(t)) +O(ε) for all ε < ε′, and t ∈ [t′, T ′).
Therefore, the dynamics of x on the slow manifold do not
depend on the ν variable nor on fν(t).

Similarly, it is also possible to prove that for G sufficiently
large, the solution x(t) will converge to xref(t), the state
generated by system (13) when s(ν, y) = 0. We refer the
reader to [2] for a detailed proof.

We now need to verify that Claim 2 holds for our device,
namely that we can design our module to present low retroac-
tivity to the input. An analytic solution of the equilibria for
system (13) cannot be found in a straightforward manner,
though its existence is locally guaranteed by the fact that
F (a, x) is a diffeomorphism on D′×D. An equilibrium for
x1 = D̂IU as a function of U can though be found easily if
we assume again that ḡ := g+

iu ≈ gaiu. In this case:

0 = ḡDIU − g−iuD̂IU + ḡD̂ADIU.

Since DI = Dtot
I − D̂ADI − D̂IU , we can derive

D̂IU∗ = Dtot
I

U
g−iu
ḡ

+ U
= γ1(U).

Following the notation of Claim 2, in this case

∂γ1(U)

∂U
= Dtot

I

g−iu
ḡ

(
g−iu
ḡ

+ U)2

.

Low retroactivity to the input is achieved if

Dtot
I

g−iu
ḡ

(
g−iu
ḡ

+ U)2

� 1.

A simple analytical relationship between the insulator input
and output is at present not available. This does not allow us
yet to design a device operating in a linear regime, avoiding
signal distortion. Further work in this direction is ongoing.

III. SIMULATION RESULTS

In this section, the synthetic device described at equa-
tions (11) is numerically simulated using the MATLAB
ode23t solver. We assume that the device input U(t) is a
ssDNA molecule which binds and unbinds to the DI species,
releasing the activator DA. The device is then connected to
a downstream load RL. We consider the case in which the
load is being produced at some rate pL. The utilized kinetic
parameters are reported in Table I and fall in the typical
range of experimentally measured kinetic rates for nucleic
acids and enzymes [4]. The initial conditions for all the cases
simulated are in Table II and are also typical of experiments
done with in vitro genetic circuits.

The kinetic reaction rates of different nucleic acids are
fast, in the order of 104–106 per mole per second. Such
rates can be tuned by suitably designing the complementarity
regions of the different strands and the lengths of the toehold
domains, necessary for the branch migration process. The
speed of the insulating device can be therefore specified
by sequence design. Numerical algorithms and software
packages like Nupack [3] or UNAfold [6] allow us to check
the thermodynamic likelihood of formation of the nucleic
acid complexes of interest. The kinetics of such reactions can
also be estimated using in house software packages (currently
under development in the Winfree and Pierce laboratories at
Caltech).

The kinetic rates of commercially available enzymes are
generally unknown to the end user. The speed of Rp and Rh

is often the bottleneck in the dynamics achievable with in
vitro transcriptional circuits. When designing a new device,
it is necessary to search for the optimal concentrations of
proteins that can sustain the desired system speed.

We looked at the behavior of the device with minimal
enzyme concentrations and with high enzyme concentrations:
this is equivalent to modulating the value of α and γ in equa-
tions (10). The results are shown in Fig. 3. The performance
of the device when the enzymatic concentrations are low
is unsatisfactory, since the output profile never recovers the
reference trajectory, Fig. 3 (a). If the amounts of enzyme are
instead increased ten fold, the trajectory of the output under



load RY stays very close to that of Rref
Y , Fig. 3 (b). When

increasing the RNase H concentration, the amount of Dtot
D

has also been scaled up; empirically this parameter has been
observed to cause a shift in the average value of the output
oscillation, while it does not have significant effects on its
amplitude and frequency.

The retroactivity to the input is minimal, since Dtot
I �

U2(t) for any t ≥ 0. The distortion from the input U to
the output RY , even when s(RY , RL) = 0, is due to the
nonlinear nature of the dynamics. Since it is not possible to
obtain a simple expression for the equilibria of the device as
a function of the input and the initial conditions, it is also
impossible to get a systematic insight on what parameters
and initial conditions would minimize such input/output
distortion.

Fig. 3. Performance of the synthetic insulator when the load is slowly
increasing over time. (a) Low amount of enzymes: RY does not recover
the load-free reference RY . (b) High amount of enzymes: the error between
RY and RrefY is greatly reduced.

TABLE I
SIMULATION PARAMETERS

Units: [1/sM ] Units: [1/s] Units: [M ]

kAT = 5 104 kcatP = 0.3 kMP = 2.50 · 10−7

kAI = 104 kcatH = 0.8 kMH = 5 · 10−8

kAIT = 104 kcatP = 0.2

k+
IU = 104 Units: [M/s] Units: [M/s]

k−IU = 0.05 pU (t) = a0, 2h ≤ t ≤ 4h ω = 5.55 10−4

pU (t) = 0 otherwise

kAIU = 104 dU (t) = 10−10 a0 = 10−10

kDY = 104 pL = 1.2 · 10−9

kY L = 104

IV. CONCLUSIONS AND FUTURE WORKS

This paper describes the design of an insulating device to
be used in the context of synthetic in vitro transcriptional
circuits. Due to their simplicity and high programmability,
such circuits are useful to understand and implement general
design principles for biochemical networks. Building large
scale networks of synthetic circuits relies heavily on the

TABLE II
INITIAL CONDITIONS

Species Units: [nM ] Species Units: [M ]

DA(0) = Dtot
A 1.5 · 10−7 RY (0) 2 · 10−6

DI(0) = Dtot
I 1.50 · 10−7 RL(0) 0

DT (0) = Dtot
T 1.50 · 10−7 U(0) 10−8

DD(0) = Dtot
D Low: 2 · 10−7 High: 1.6 · 10−6

Rp(0) Low: 4 · 10−9 High: 40 · 10−9

Rh(0) Low: 1 · 10−9 High: 10−8

possibility of plugging together several stand alone modules
without losing their functionality. Retroactivity effects in-
trinsically present in biochemical networks can be reduced
by employing insulating devices. The modular synthetic
insulator described in this paper satisfies the structural re-
quirements to guarantee low retroactivity to its input and
output [2]. Currently this device can be interconnected to
arbitrary DNA inputs and generic nucleic acid outputs. A
design challenge is represented by the fact that enzymatic
species are globally shared in transcriptional circuits: work-
ing at catalytic saturation (thereby forcing Hill coefficients
in their linear regime) is likely the only scalable method do
avoid strong overall coupling. Further work is also required
to understand how to systematically program the device to
present a minimal input/output signal distortion.
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