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Optimal and Cooperative Control of Vehicle Formations

by

J. Alexander Fax

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Abstract

Control of vehicle formations has emerged as a topic of significant interest to

the controls community. In applications such as microsatellites and underwater

vehicles, formations have the potential for greater functionality and versatility than

individual vehicles. In this thesis, we investigate two topics relevant to control of

vehicle formations: optimal vehicle control and cooperative control.

The framework of optimal control is often employed to generate vehicle tra-

jectories. We use tools from geometric mechanics to specialize the two classical

approaches to optimal control, namely the calculus of variations and the Hamilton-

Jacobi-Bellman (HJB) equation, to the case of vehicle dynamics. We employ the

formalism of the covariant derivative, useful in geometric representations of vehicle

dynamics, to relate variations of position to variations of velocity. When variations

are computed in this setting, the evolution of the adjoint variables is shown to be

governed by the covariant derivative, thus inheriting the geometric structure of the

vehicle dynamics. To simplify the HJB equation, we develop the concept of time

scalability enjoyed by many vehicle systems. We employ this property to eliminate

time from the HJB equation, yielding a purely spatial PDE whose solution supplies

both finite-time optimal trajectories and a time-invariant stabilizing control law.

Cooperation among vehicles in formation depends on intervehicle communica-

tion. However, vehicle communication is often subject to disruption, especially in

an adversarial setting. We apply tools from graph theory to relate the topology of

the communication network to formation stability. We prove a Nyquist criterion
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that uses the eigenvalues of the graph Laplacian matrix to determine the effect

of the graph on formation stability. We also propose a method for decentralized

information exchange between vehicles. This approach realizes a dynamical sys-

tem that supplies each vehicle with a common reference to be used for cooperative

motion. We prove a separation principle that states that formation stability is

achieved if the information flow is stable for the given graph and if the local con-

troller stabilizes the vehicle. The information flow can be rendered highly robust

to changes in the graph, thus enabling tight formation control despite limitations

in intervehicle communication capability.
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Chapter 1

Introduction

1.1 Vehicle Formations

Recent technological advances have spurred a broad interest in autonomous, adapt-

able vehicle formations. The development of powerful control techniques for single

vehicles, the explosion in computation and communication capabilities, and the

advent of miniaturization technologies have elevated interest in vehicles which can

interact autonomously with the environment and other vehicles to perform, in the

presence of uncertainty and adversity, tasks beyond the ability of individual ve-

hicles. Research in vehicle formation control is currently progressing in multiple

fields. Some examples, along with the controls challenges they pose, are discussed

in the paragraphs below.

Microsatellite Clusters In recent years, researchers have begun to consider the

advantages of microsatellite clusters over large, complex, single-purpose satellites.

The use of satellite clusters has the potential to expand functionality, distribute

risk, and reduce cost. One example of a microsatellite cluster which has attracted

attention recently is the Air Force’s Techsat21 mission, which is investigating the

ability of a satellite cluster to perform high-resolution imaging through the dis-

tribution of microsatellites along a lattice of points and jointly processing the

interferometric data [18]. Through this technique, known as sparse aperture radar

(SAR), the cluster can realize an effective antenna larger than can be deployed

on a single satellite. Many of NASA’s missions planned for the upcoming decades

also involve satellite clusters [61].

Successful deployment of satellite clusters faces multiple technological chal-

lenges. For example, Earth’s gravitational field tends to cause satellite formations
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to diverge, and the constraints of fuel and power, present in any satellite mission,

are particularly restrictive for microsatellites. For this reason, many researchers in

the controls community have focused in recent years on understanding satellite for-

mation dynamics in the vicinity of the Earth and implementation of fuel-efficient

control laws [21, 88, 107, 108].

Unmanned Aerial Vehicles Advances in avionics, GPS-based navigation, and

flight control techniques have brought unmanned aerial vehicle (UAV) technology

to a point where it is routinely used in commercial and military applications, lead-

ing to renewed interest in UAV formation flight. Applications of this technology

include coordinated military maneuvers [71, 72] and drag reduction via close for-

mation flight [19, 22, 46, 103]. In a battlefield environment, unforeseen threats,

electromagnetic countermeasures, and vehicle damage can impact both formation

goals and UAV communication capability. The ability of UAVs to reliably ex-

change information and achieve consensus as to formation goals in an uncertain

and adversarial environment is critical for UAV formation flight.

Autonomous Underwater Vehicles Over the last decade, autonomous under-

water vehicles (AUVs) have moved from the laboratory to commercial, scientific,

and military applications. (See [109, 110] and the references therein for AUV appli-

cations and research groups.) Recently, researchers have turned to AUV formations

to accomplish more challenging tasks. Potential applications of underwater vehicle

formations include oceanographic sampling and minesweeping [30, 49].

Unlike satellites, underwater vehicles face significant uncertainty in their dy-

namics due to ocean currents. Design constraints such as power limitations and the

harsh sea environment have led researchers to consider underwater gliders, which

effect motion in the fluid via manipulation of vehicle orientation or center of grav-

ity [47, 92]. Also, underwater communication is very limited compared to above

ground, forcing designers to consider carefully AUV communication architectures.

Automated Highway Systems The prospect of computer-controlled automo-

biles autonomously navigating the nation’s highways has intrigued engineers and

researchers for decades, and advances in computation and machine vision are bring-

ing this technology closer to fruition. (See [1, 90] and the references therein for

an overview of this technology). A predominant concern to autonomous traffic

flow is collision avoidance. In that respect, vehicles must be aware not only of
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the environment but of the other vehicles as well. The interaction of individual

vehicles on the highway induces formation-level dynamics that can exhibit unde-

sirable properties despite the simplicity of local vehicle control laws. Properties

such as formation disturbance rejection often depend more heavily on the nature

of the information available to each vehicle controller than on the controller itself

[95, 96, 106].

While each of these areas poses its own unique challenges, several common

threads can be found. In most cases, the vehicles are dynamically decoupled, mean-

ing the motion of one does not directly affect the others. Instead, the vehicles are

coupled through the task they are trying to accomplish jointly. The tasks must be

accomplished in the face of nontrivial vehicle dynamics. Decisions must be made

by each vehicle using only limited information about the other vehicles — informa-

tion which may be subject to uncertainty and transmission delay. The reaction of a

vehicle to other vehicles’ motions renders the formation an interconnected dynam-

ical system whose behavior depends not only on the individual vehicle dynamics,

but on the nature of their interconnection. Environmental factors can impact the

overall formation goal, the actions of individual vehicles within the formation, and

the ability of vehicles to communicate. The overarching goal of the formation

is autonomy, meaning the ability to accomplish its goal in the face of significant

uncertainty without human intervention.

1.2 Thesis Outline

Clearly, vehicle formation control poses many interesting research challenges. This

thesis explores two issues within vehicle formation control: optimal control of ve-

hicles and cooperative control of vehicle formations. Rather than focus on a single

application area, we consider vehicle dynamics generally. Both areas of study use

tools outside the domain of linear control theory. In the former, we apply tools

from differential geometry to specialize general results in optimal control theory

to the case of vehicle dynamics. In the latter, we use tools from graph theory

to understand the effect of communication topologies on formation stability and

performance.

In the following sections, we motivate these two topics, discuss our research

methodology, and review the relevant literature.
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1.2.1 Optimal Control of Vehicles

One task a formation may face is reconfiguration, meaning the repositioning of the

vehicles relative to one another or to a target. Change in formation goals, loss or

damage of a vehicle, and emergence of an external threat are all situations which

may necessitate formation reconfiguration. Reconfiguration involves both deter-

mination of the desired final configuration and the derivation of trajectories and

control policies to bring each vehicle to its desired position. Generation of trajec-

tories is often accomplished by posing the problem as an optimization constrained

by vehicle dynamics and possibly by limits on position and control effort. The

optimized quantity will be situation dependent. For example, satellite formation

reconfiguration demands a fuel-optimal trajectory to preserve mission life and is

constrained by the limited thrust available. Indeed, it was the satellite formation

reconfiguration problem that originally motivated this research.

Solving optimal control problems is often a challenging mathematical problem.

One can often gain insight into the structure of solutions through examination

of the underlying dynamics. While numerical approaches have made significant

progress in recent years [77, 89], they benefit substantially from good initial guesses

as to the optimal solution. Those approximate solutions are often based on an

analysis of the dynamics of the underlying system. With that in mind, the first

two chapters of this thesis are devoted to exploring optimal control of vehicle

dynamics from the perspective of the two classical formulations of the optimal

control problem, namely the Euler-Lagrange equations and the Hamilton-Jacobi-

Bellman equation.

Central to our methodology is the use of tools from geometric mechanics to

formulate vehicle dynamics, which are often mechanical in nature. Many exciting

advances have been made in recent decades at the juncture of nonlinear control

theory, differential geometry, and geometric mechanics: see [7, 52, 57, 80, 82]

for a few significant examples. In the modeling of mechanical control systems,

one tool that has emerged is the affine connection and the associated notion of

covariant differentiation. See [35, 58] for extensive development of these concepts

and their relation to Riemannian geometry. The affine connection appears within

Lagrangian systems as the Levi-Civita connection, and can also be used to model

mechanical control systems with nonholonomic constraints. This use of the affine

connection, which can be thought of as a covariant formulation of F = ma, is

proposed in Bloch and Crouch [4] as a means of modeling mechanical systems
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with nonholonomic constraints, an idea which is furthered by Lewis [65]. The

role of the connection in symmetry and reduction of nonholonomic mechanical

systems is exploited to great effect by Bloch et al. [7]. From the perspective of

control theory, the affine connection has been used to derive controllability tests

for mechanical control systems [67], motion control algorithms [17], and series

expansions of trajectories of mechanical systems [16]. The work presented in this

thesis continues in that spirit by applying this formulation to the optimal control

problem.

In Chapter 2, we consider the optimal control problem as a constrained op-

timization problem and use the technique of Lagrange multipliers to derive the

equations of motion. Mechanical systems, which include many examples of vehicle

dynamics, are naturally second-order. Rather than rewrite the equations of mo-

tion as a first-order system, thereby doubling the number of constraints, we include

them in the more natural form, namely as a second-order constraint of the opti-

mization. In optimizing, we consider how variations of position induce variations

in the velocity, rather than taking independent variations of the two. Central to

these computations is the use of the affine connection and covariant differentiation.

The resulting equations of motion of the adjoint variables are second-order differen-

tial equations defined using the covariant derivative, thus inheriting the geometric

structure of the vehicle dynamics. This approach has a potential computational

advantage in that the number of adjoint variables has been halved. Addition-

ally, recently developed integration schemes based on variational principles [101]

or which exploit the presence of an affine connection [16] can potentially be used in

the approximation of optimal trajectories. Finally, this formulation affords greater

insight into the role geometric notions such as symmetry and reduction play in the

construction of optimal trajectories.

In Chapter 3, we consider the Hamilton-Jacobi-Bellman (HJB) equation for

optimal control of vehicles which are not subject to external forces such as grav-

ity. Examples include satellite orientation, AUV motion, and robotic locomotion.

These systems have the property that they are time scalable, meaning the equa-

tions of motion remain the same when time is reparameterized. For time-scalable

systems, we show that if the cost function is compatible with the time scaling,

one can deduce a priori the time dependence of the value function associated with

the HJB partial differential equation (PDE). This results in conversion of that

PDE, which depends on space and time, into a purely spatial PDE. The solution

of this PDE, combined with the known time dependency, yields the control law
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which generates the optimal finite-time trajectories. If the time variation of the

control law is omitted, the same value function can produce a stabilizing (though

not optimal) control law, with the value function playing the role of Lyapunov

function. These results are applied to driftless systems as well, which are time

scalable though not mechanical.

Optimal control is a venerable mathematical field, with antecedents far older

than control theory itself. A survey of the field is beyond the scope of this intro-

duction; we mention only [13, 93, 111] as recent texts covering aspects of modern

optimal control theory. Optimal control and geometric mechanics share intimate

links due to their origins in the calculus of variations [70]. This link is explored in

[60] in the context of optimal control of mechanical systems with symmetry and

by Bloch and Crouch [6], who examine the equivalence of optimal control prob-

lems with higher-order variational problems. The variational approach to optimal

trajectory generation for systems defined by an affine connection is considered in

[29, 83] in the context of finding force-minimizing arcs on Riemannian manifolds.

In that case, however, the underlying system was fully actuated, meaning that the

constraints could be directly substituted into the cost function, thus eliminating

the need for adjoint variables. The results presented here are more general, in

that they apply to underactuated systems, systems with drift, and a broader class

of cost functions. The equations we derive match those derived recently in [66],

which considers the same problem from a different perspective. In that paper, the

first-order optimal control equations given by the Pontryagin Maximum Principle

are recast as second-order equations using splittings derived from the affine con-

nection. Our work complements those results, in that it shows how to interpret

the resulting equations from the perspective of variational calculus.

1.2.2 Cooperative Control of Vehicle Formations

As we noted earlier, vehicles in formation depend on information from one another

to accomplish their objective. When the formation is dynamically coupled, that

coupling constrains, or at least naturally suggests, what information must be avail-

able to each component of the decentralized controller. In the case of cooperative

vehicle control, no such architecture is necessarily suggested. In some cases, such

as automated highway systems [99], the task may suggest which vehicles ought to

have information about one another, but for many tasks this is not the case. As

such, central to any discussion of cooperative control of vehicles is a determination
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of the nature of the information flow throughout the formation. We will distinguish

between two types of information flow: sensed information, meaning the ability of

a single vehicle to sense some information (e.g., relative position) about another

vehicle in a way which involves no action on the part of that vehicle, and trans-

mitted information, meaning transfer of information between two vehicles which

requires some action on the part of both the sender and recipient. Sensing and

transmission, or “seeing” and “hearing,” as we refer to them colloquially, together

are the means by which each vehicle acquires the information necessary to perform

its task within the formation.

Several observations about the information flow within a formation make clear

the need to consider its impact on the formation performance. The first is that as a

rule, no vehicle will be able to see or hear the entire formation. Having each vehicle

simultaneously solve a centralized control problem using complete information is

therefore infeasible; some form of decentralized control is required. The second

observation is the sensing and transmitted information topologies are themselves

dynamic, meaning they are subject to disruption by external influences or changes

in the formation itself. As such, a control law which is optimized for one topology

may exhibit poor performance, or even instability, for another topology.

One possible approach to vehicle formation control is to implement a central-

ized controller or decision maker, and to overcome the limitations in the informa-

tion flow topologies by having each vehicle transmit all information it possesses,

thereby allowing all necessary information to eventually arrive at one vehicle, who

then transmits the results of his centralized computation. While this architecture

may be appropriate in certain cases, it possesses certain deficiencies which render

it infeasible in a dynamic and adversarial environment. This architecture, which

requires maximal information flow, is necessary slow and expensive in terms of

bandwidth. It is fragile, in that it depends on the reliable transmission of large

amounts of data over potentially unreliable and dynamic communication channels.

Instead, we intend to research the implementation of decentralized control laws

augmented by minimal information flow. A minimal information flow paradigm

has the potential to balance the performance improvements achieved through in-

formation sharing with the requirements of reliability and stealth.

With that in mind, we devote the second section of the thesis to exploring

the role which the communication topologies play in cooperative control of vehicle

formations. Our approach is to model the communication topologies as graph;

each vehicle is a node of a (directed) graph, and an arc is drawn from node i to
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node j if vehicle i receives information from vehicle j. By merging ideas from

graph theory, control theory, and dynamical systems theory, we are able to study

the interplay between the communication network and vehicle dynamics, and to

propose strategies for information exchange which mitigate those effects. We limit

our focus to linear dynamics and control systems in order to elucidate the role of

the graph in the system behavior. In Chapter 7 we discuss extensions to nonlinear

systems.

In our investigation of the interplay between the communication topology and

formation performance, we will not focus on how the communication network

is physically realized. Indeed, the connectivity of the graph may not coincide

with the physical realization of the communication network. For example, the

Internet can be thought of as a complete graph due to the ability of any two

nodes to communicate, despite the obvious lack of physical connection between all

the nodes. In our case, intervehicle communication may take place over various

media, including wireless networks. Nonetheless, we do not wish to assume that

any two vehicles communicating over a network are necessarily connected. One

reason this assumption cannot be made is that vehicles need to make decisions and

implement control laws in real time. Any communication network possesses time

delays, and these delays may render two vehicles effectively unconnected for the

purpose of real time control. A second reason is that the problem of computational

complexity may require vehicles to ignore some information they receive so that

the necessary computations can be carried out in the required time. A third reason

is that the demands of network capacity and/or stealth may force the network to

limit the amount of transmission taking place. For these reasons, we will model

the communication network as an arbitrary graph and set aside the issue of how

that graph is physically realized.

The use of graphs in analysis of interconnected systems is not new. Mason’s

gain formula, which can be found in standard introductory control texts (e.g.,

[42]), uses the notion of a signal flow graph to compute the transfer function of

an interconnected system. When decentralized control became an area of study in

the 1970s, researchers used graph-theoretic ideas in modeling interconnections [27,

91, 100]. Many researchers focused on arbitrary interconnected systems, for which

decentralized controller synthesis procedures are difficult to derive. The current

broad interest in vehicle formations has revived an interest in graph-theoretic ideas

[46, 75, 94, 97].
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A significant source of research on vehicle formations is the mobile robotics

community (see [20] for a recent survey). Within this community, several ap-

proaches to formation control have emerged. Many of these researchers focus on

“leader-follower” formations. Two recent papers exploring graph-theoretic ideas

in the context of a leader-follower architecture are Desai, et al. [33] and Tabuada

et al. [97]. This approach as the advantage of simplicity in that a reference tra-

jectory is clearly defined by the leader, and no cycles exist in the graph which

complicate the dynamics. However, they possess disadvantages which lead us to

study the behavior of vehicle formations whose interconnection topology is not

acyclic. First, leader-follower architectures are known to have poor disturbance

rejection properties (see, e.g., [106]). Secondly, enforcing an acyclic architecture

requires some global knowledge of the graph, which may not be available to a given

vehicle deciding whom to follow. Finally, a leader-follower architecture depends

heavily on the leader for achieving its goal, and over-reliance on a single vehicle in

the formation may be undesirable, especially in adversarial environments.

Another approach is the “virtual leader” approach [38, 63, 92], in which ve-

hicles in the formation jointly synthesize a single fictitious leader vehicle whose

trajectory acts as a leader for the group. This approach avoids the problems with

disturbance rejection inherent in the leader-follower approach, but at the expense

of high communication and computation requirements needed to synthesize the

virtual leader and communicate its position. From a graph-theoretic perspective,

this approach requires a complete graph, in that the virtual leader is computed

using information from all vehicles. Some researchers [63] use techniques such ar-

tificial potentials and nearest neighbor techniques to synthesize the control laws

to circumvent the requirement of global communication and computation. This

approach has yielded some success and continues to bear fruit; however, it has

not yet reached the point where it can be applied to arbitrary communication

topologies and to arbitrary vehicle dynamics.

What these approaches have in common is an assumption about the underlying

topology of the graph which enables the use of a particular formation control

methodology. As discussed above, this assumption cannot be maintained in many

application areas, especially as the number of vehicles in the formation increases.

For these reasons, we wish to consider a broader range of vehicle interconnection

possibilities. The first challenge in this case is formation stabilization. When cycles

are present in the graph, they induce global formation dynamics which preclude

local stability analysis. A second issue that must be confronted is the ability of
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the formation to agree upon an effective leader in the situation where no leader is

defined by the graph. We explore these two topics in the second half of this thesis,

with a goal of deriving information exchange strategies which improve formation

stability and performance and are robust to changes in the graph.

In Chapter 5, we examine formation stability in the case where no transmitted

information exists between vehicles. We demonstrate how the Laplacian matrix

of the graph appears in the formation equations of motion. In the case where

the vehicles have identical dynamics and controllers, we derive stability criteria

involving the eigenvalues of the Laplacian. This approach yields an elegant gen-

eralization of the Nyquist criterion in which the negative inverse of the Laplacian

eigenvalues replace the −1 point about which one computes encirclements. The

criterion allows one to design a decentralized vehicle controller at the local level

and determine if it will stabilize the formation. The Laplacian is an object of study

within algebraic graph theory [24, 39, 73]; one area of research is the correlation

of Laplacian eigenvalue locations to structural properties of the underlying graph.

Using those insights, we evaluate desirable graph properties in terms of formation

stability.

One area of research which focused on similar issues is the study of synchroniza-

tion of chaotic oscillators. The work of [48, 84] identified the Laplacian eigenvalues

as an important object of study in synchronization. Other researchers took a more

control-theoretic approach, using tools such as Lyapunov stability [105]and the

circle criterion [104] to derive sufficient conditions for nonlinear chaotic oscillators

to synchronize. In particular, the observation in [105] that the eigenvalues must be

“negative enough” to achieve stability is similar is spirit to the work presented here.

Our work differs in that we restrict our focus to stabilization of formations with

linear dynamics, and as such we are able to make more precise statements about

the role of Laplacian eigenvalues in determining formation stability. Our results

are useful for controller design and also lay the foundation for our investigation of

the role of intervehicle communication.

In Chapter 6, we turn to the flow of transmitted information between vehicles.

Our approach is to model the information flow as a dynamical system, and to

construct a dynamical system with desirable stability and convergence properties.

This development will rely heavily on ideas from Perron-Frobenius theory, which

are closely tied to graph-theoretic concepts. We propose an information flow law

which, upon convergence, supplies each vehicle with an agreed-upon formation

center. The stability of the information flow law is analyzed using the tools from
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the previous chapter. The common reference supplied by the information flow law

supplies the formation with an effective leader, thereby facilitating coordinated

formation motion. A feedforward information correction law is also proposed,

which prevents the information flow law from lagging vehicle motion. When this

term is included, a stability separation principle is derived, wherein stability of the

formation is achieved if the information flow law stabilizes the graph independent

of the vehicle dynamics, and the local controller stabilizes the plant independent

of the graph. This striking result renders formation stability and performance

largely independent of the underlying graph. The dynamical systems approach to

achieving consensus to formation center renders the information flow law highly

robust to changes in the communication topology. Finally, this approach is shown

to have good string stability properties.

1.3 Statement of Contributions

A brief restatement of the thesis contributions by chapter is found in the following

paragraphs.

• Chapter 2: In this chapter we review the affine connection and its role in

modeling mechanical control systems. We derive an alternate formulation

of the Euler-Lagrange equations using a variational approach appropriately

tailored to our setting. The resulting equations for the adjoint variable are

also governed by the affine connection, revealing the parallel structure of the

optimal control equations.

• Chapter 3: In this chapter we develop the notion of time scalability as a

property of mechanical control systems which do not include external forces

such as potential gradients or damping. Time scalability is used to eliminate

time from the HJB equation, leaving a purely spatial PDE. The resulting

PDE, when solved, supplies both finite-horizon optimal trajectories and a

stabilizing control law.

• Chapter 4: In this chapter we review relevant ideas from graph theory and

Perron-Frobenius theory in preparation for our discussion of cooperative con-

trol of vehicle formations.

• Chapter 5: In this chapter we demonstrate the role of the Laplacian of the

graph in determining formation stability. A Nyquist criterion is derived
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for formation stability using Laplacian eigenvalues which facilitates design

of local vehicle control laws which stabilized the overall formation. The

spectral properties of the Laplacian are used to evaluate desirable properties

of formation graphs.

• Chapter 6: In this chapter we propose an information flow law which supplies

each vehicle with an agreed-upon formation center. This information flow

law can be made robust to changes in the graph. When the output of the

information flow law is used as an input to the vehicle controller, together

with a feedforward compensation term, the resulting system exhibits a sta-

bility separation principle which renders the overall system highly robust

to changes in the graph. This approach is also shown to have good string

stability properties.

• Chapter 7: In this chapter we review the results presented in this thesis and

discuss avenues for future research.
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Chapter 2

Optimal Control of Affine Connection

Control Systems

In this chapter we derive optimal control equation for vehicle motion using the

machinery of affine connections. This approach exposes the parallel geometric

structure between the vehicle dynamics and the dynamics of the adjoint variables.

The approach in this chapter is motivated by recent work using affine connection

in the context of finding force-minimizing arcs on Riemannian manifolds [29, 83].

The results here extend that approach to the general optimal control problem,

including underactuated mechanical systems, systems with damping, and a broad

class of cost functions. The results presented in this chapter confirm the work of

Lewis [66], which considers the same problem from the perspective of the Pon-

tryagin Maximum Principle. In that paper, the standard first-order equations are

recast as second-order equations using splittings derived from the affine connection.

Our approach is complementary, in that it shows how to interpret the resulting

equations from the perspective of variational calculus.

This chapter is organized as follows. In Section 2.1, we introduce the affine

connection and recall necessary ideas from the calculus of variations. In Section 2.2,

we define an affine connection control system, pose the optimal control problem,

and derive the optimal control equations. Section 2.3 contains several examples.

For consistency, we employ the notation of [66].
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2.1 Mathematical Preliminaries

2.1.1 Theory of Affine Connections

In this section, we introduce terminology which we will use throughout the chapter.

For a more thorough introduction to the topic, see [35, 58].

Connections and associated Tensors

Let Q be a manifold, and TQ (T ∗Q) be the (co-)tangent bundle of Q. Let-

ting {q1, . . . , qi, . . .} be local coordinates on Q, the associated coordinate vector

field is denoted ∂
∂qi

and the associated coordinate one-form field is denoted dqi.

The natural pairing between vectors and one forms is denoted 〈, 〉. Recall that〈
∂
∂qi

, dqj
〉
= δij . Let X (Q) be the set of all smooth vector fields on Q, and let [ , ]

denote the Lie bracket of vector fields on Q. Using these definitions, we can define

the affine connection:

Definition 2.1. An affine connection on Q is a map ∇ : X (Q)× X (Q)→ X (Q),

denoted ∇ : X,Y 7→ ∇XY , which satisfies the following properties:

1. ∇fX+gY Z = f∇XZ + g∇Y Z

2. ∇X(Y + Z) = ∇XY +∇Y Z

3. ∇X(fY ) = f∇XY +X(f)Y

where f, g are smooth functions on Q.

The affine connection allows us to introduce the notion of covariant differenti-

ation, which is the differentiation of vectors (or arbitrary tensors, as we shall see)

along a path c(t) in Q:

Proposition 2.1. Let c(t) be a differentiable curve in Q. There exists a unique

correspondence which associates to a vector field V defined along c(t) another vector

field DV
dt , called the covariant derivative of V along c, such that

1. D
dt(V +W ) = DV

dt + DW
dt

2. D
dt(fV ) = df

dtV + f DVdt

3. If V is induced by a vector field Y ∈ X (Q), i.e., V (t) = Y (c(t)), then
DV
dt = ∇ dc

dt
Y.
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Note that for the covariant derivative ofX to be defined at a point c(t), we need

know only X(c(t)), c(t)dt , and the rate of change of X along c(t). The affine connec-

tion and the covariant derivative are often used interchangeably in the literature;

we will endeavor to use the affine connection when the operands are elements of

X (Q) and the covariant derivative when the operands are vector fields defined only

along curves. Note that the covariant derivative satifsies linearity and a product

rule, thus making it a derivative in the algebraic sense. A salient feature of the

covariant derivative is that it returns an element of TQ rather than an element of

TTQ.

Let X,Y be vector fields whose representation in coordinates are X = X i ∂
∂qi

,

Y = Y i ∂
∂qi

, where X i, Y i are smooth functions on Q. The affine connection,

written in coordinates, takes the form

∇XY =
[
XiY jΓkij +X(Y k)

] ∂

∂qk
(2.1)

where Γkij are functions on Q known as the Christoffel symbols of the connection.

Note that we employ the Einstein summation convention when performing com-

putations in coordinates.

While the connection ∇ is not a tensor, it has two tensors associated with it

which will used later in the paper. The first is the curvature form, which is a (1,3)

tensor defined to be

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z (2.2)

and the second is the torsion form, a (1,2) tensor defined to be

T (X,Y ) = ∇XY −∇YX − [X,Y ]. (2.3)

We can write these tensors in coordinates using the Christoffel symbols Γkij asso-

ciated with ∇:

T sij = Γsij − Γsji (2.4)

Rs
ijk =

∂Γsjk
∂qi

−
∂Γsik
∂qj

+ ΓljkΓ
s
il − ΓlikΓ

s
jl, (2.5)
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where the index notation is given by

T (X,Y ) = T s
ijX

iY j ∂

∂qs
(2.6)

R(X,Y )Z = Rs
ijkX

iY jZk ∂

∂qs
. (2.7)

Note that although the definitions in Equations (2.2),(2.3) use the affine connec-

tion, the tensors themselves are functions of the vectors at a given point, since

the elements of right-hand side of Equations (2.2),(2.3) which involve the local

variation of the operands are internally canceled. When the torsion tensor is zero,

the affine connection is said to be symmetric. In this case, the affine connection

satisfies the property

[X,Y ] = ∇XY −∇YX. (2.8)

Differentiation of Tensors

In this section, we present the formulas for covariant differentiation of an arbitrary

covariant tensor. Let A be a tensor of order (0, r). Then its covariant differential

∇A is a tensor of order (0, r + 1), defined by ([35], p. 102)

(∇A)(X1, . . . , Xr, Z) = (2.9)

Z[A(X1, . . . , Xr)]−A(∇ZX1, . . . , Xr)− · · · −A(X1, . . . ,∇ZXr)

and the covariant derivative of A in the direction of Z is an (0, r) tensor ∇ZA

defined by

(∇ZA)(X1, . . . , Xr) = (∇A)(X1, . . . , Xr, Z). (2.10)

In particular, if we wish to differentiate a one-form α, we see that

〈X,∇Zα〉 = Z(〈X,α〉)− 〈∇ZX,α〉 . (2.11)

If Z is the tangent vector to a path c(t), we can rewrite this identity as

d

dt
〈X,α〉 =

〈
DX

dt
, α

〉
+

〈
X,

Dα

dt

〉
. (2.12)

We see that our definition for covariant differentiation of tensors leads to a product

rule as one would expect. This identity is true for any connection, unlike the

product rule to be introduced in the next section. This equation will be significant
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for two reasons. Firstly, we will use it to integrate by parts expressions involving

covariant derivatives. Secondly, if we replace t with ε, we see that this expression

will be useful in understanding how variational principles enter equations with

covariant derivatives.

Riemannian Geometry

The development until now has not relied on the existence of a metric on Q. Let

us now consider the case where such a metric exists. Suppose Q is a Riemannian

manifold, meaning it is endowed with a symmetric, positive definite two-form,

denoted 〈〈X,Y 〉〉 . As with all two-forms, the Riemannian metric can be thought of

as a map g : TQ → T ∗Q which satisfies the property 〈g(X), Y 〉 = 〈〈X,Y 〉〉 for all

X,Y ∈ TQ. Clearly, g is invertible.

A landmark result in Riemannian geometry is the following:

Theorem 2.1 (Levi-Civita). A Riemannian manifold Q possesses a unique

affine connection ∇ which satisfies the following properties:

1. ∇ is symmetric.

2. Given vector fields X,Y defined along a differentiable curve c(t) in Q,

d

dt
〈〈X,Y 〉〉 =

〈〈
DX

dt
, Y

〉〉
+

〈〈
X,

DY

dt

〉〉
. (2.13)

This connection, known as the Levi-Civita connection, is the connection which

satisfies a product rule with regard to the Riemannian metric. It can be defined

in coordinates in the following way:

Γkij =
1

2
gmk

(
∂gmj
∂qi

+
∂gmi
∂qj

−
∂gij
∂qm

)
, (2.14)

where gjk, g
jk are g and g−1 in coordinates. Note that defining the Christoffel

symbols uniquely defines the affine connection.

When employing the Levi-Civita connection in computations, the following

result is often useful:

Proposition 2.2. Let ∇ be the Levi-Civita connection associated with Riemannian

metric g, as defined above. Let X and α be a smooth vector field and one form

defined along a differentiable curve c(t) in Q. Then g and g−1 commute with ∇,
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that is:

g

(
DX

dt

)
=

D

dt
(gX) (2.15)

g−1
(
Dα

dt

)
=

D

dt
(g−1α) (2.16)

Proof. Consider how the two terms act on another vector field, Z. We have

g

(
DX

dt

)
(Z) =

〈〈
DX

dt
, Z

〉〉
(2.17)

and, from Equation (2.11), we have

D

dt
(gX)(Z) =

d

dt
〈gX,Z〉 − gX

(
DY

dt

)
(2.18)

or, using the metric notation,

D

dt
(gX)(Z) =

d

dt
〈〈X,Z〉〉 −

〈〈
X,

DZ

dt

〉〉
. (2.19)

Subtracting Equation (2.17) from this equation yields

D

dt
(gX)(Z)− g

(
DX

dt

)
(Z) =

d

dt
〈〈X,Z〉〉 −

〈〈
X,

DZ

dt

〉〉
−

〈〈
DX

dt
, Z

〉〉
. (2.20)

The right-hand side of this equation is zero by Theorem 2.1 if ∇ is the Levi-Civita

connection, which proves our assertion. The second assertion of the proposition is

shown to be true if X is replaced with g−1α in the first assertion. ¥

An equivalent statement, which can be seen by examining Equation 2.9 and

seeing that the right-hand side is zero, is that ∇g = 0.

Additional Definitions

We now introduce some additional terminology, borrowed from [66], which will be

useful. Given an (1, r) tensor A, we associate with it an (2, r− 1) tensor A∗ which

satisfies the identity

〈A(X1, . . . , Xr), α〉 = 〈X1, A
∗(α,X2, . . . , Xr)〉 . (2.21)
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We will also associate with any (0, r) tensor A an (1, r− 1) tensor Â such that

A(X1, . . . , Xr−1, Y ) =
〈
Y, Â(X1, . . . , Xr−1)

〉
. (2.22)

Finally, we will associate with any (r, 2) tensor A another (r, 2) tensor Ã which

is the same with the indices for the vector inputs reversed, that is:

A(X,Y ) = Ã(Y,X). (2.23)

2.1.2 Calculus of Variations

In this section, we recall how variations are defined, and we derive properties of

the variations which will be used later on. We consider a family of trajectories

q(t, ε) defined on some interval [t0, tf ]× [−ε0, ε0], and we denote q(t, 0) as q(t). We

can also freeze t and consider a path dependent on ε. We now define the variations

of q(t) in the standard way:

δq(t) =
∂q

∂ε

∣∣∣∣
ε=0

∈ Tq(t)Q. (2.24)

We also note that the velocity vector field is given by

V (t, ε) =
∂q

∂t
∈ Tq(t,ε)Q. (2.25)

When ε = 0, we denote the velocity as V (t). We see that δq(t) can be thought of

as a vector field defined along a path q(t), and if we hold t fixed, V (t, ε) can be

thought of as a vector field defined along a path q(t, ε) parametrized by ε. With

that in mind, we see that DV
dε is well-defined at ε = 0 and Dδq

dt is also well defined for

all t. We now prove three propositions using the coordinate definition of covariant

differentiation.

Proposition 2.3. ∂V k

∂ε = ∂δqk

∂t .

Proof. This follows immediately from the definitions and the equality of mixed

partials. ¥

Proposition 2.4. T (δq(t), V (t)) = DV
dε −

Dδq
dt .
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Proof. The definition of covariant differentiation in coordinates is

DV

dε
=

(
∂V k

∂ε
+ V jδqiΓkij

)
∂

∂qk
(2.26)

and
Dδq

dt
=

(
∂δqk

∂t
+ δqjV iΓkij

)
∂

∂qk
. (2.27)

Subtracting and applying Proposition 2.3 yields

DV

dε
−
Dδq

dt
= V jδqi

(
Γkij − Γkji

) ∂

∂qk
(2.28)

which is the coordinate definition of T (δq, V ) given in Equation (2.4). ¥

Proposition 2.5. R(δq(t), V (t))Z =
(
D
dε

D
dt −

D
dt

D
dε

)
Z.

Proof. The proof follows in exactly the same fashion as Proposition 2.4. If one

expands the right-hand side in coordinates and cancels like terms via Proposition

2.3, one is left with the coordinate definition of R(δq(t), V (t))Z as given in Equa-

tion (2.5). ¥

In the case where δq, V can be written as vector fields on some open set contain-

ing q(t, 0), then it is possible to prove the above by showing that [δq(t), V (t)] = 0

and applying this to the intrinsic definition of the curvature and torsion forms.

The difficulty is that δq(t) and V (t) are not defined as vector fields, may not be

locally extendable to form vector fields, in which case [δq(t), V (t)] is not defined.

We now discuss how covariant derivatives enter the picture. If we fix t, we can

consider V (t, ε) as a vector field varying along a trajectory q(t, ε). Suppose we had

a one-form α(t, ε) similarly defined, and we consider the variation of

∫
〈V, α〉 dt. (2.29)

Using Equation (2.12), we see that

δ

∫
〈V, α〉 dt =

∫
d

dε
〈V, α〉 dt

=

∫ 〈
DV

dε
, α

〉
+

〈
V,

Dα

dε

〉
dt. (2.30)

Indeed, the expression DV
dε is precisely the variation of V as ε is varied. It is
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important to note that variations of V arise solely from the family of trajectories

q(t, ε).

2.2 Optimal Control of Affine Connection Control Sys-

tems

2.2.1 Affine Connection Control Systems

Having developed the machinery of affine connections, we now discuss its applica-

tion to modeling of vehicle dynamics. Essentially, the affine connection facilitates

a coordinate-independent formulation of Newtonian dynamics. When the equa-

tions of motion are written in terms of DV
dt rather than q̈, the resulting equations

are coordinate-independent, with the connection encompassing the Coriolis terms

present in moving frames. As such the affine connection is a useful tool for analysis

of vehicle dynamics.

Many mechanical systems admit a Lagrangian formulation, where the kinetic

energy term is in fact a Riemannian metric. As we have seen, the affine connection

is closely related to the Riemannian metric, which should make clear its utility in

representing Lagrangian systems. In fact, Lagrangian systems with nonholonomic

constraints can also be represented via the affine connection, though not the Levi-

Civita connection (see [4, 65]). From the perspective of control theory, the affine

connection has been used to derive controllability tests for mechanical control sys-

tems [67] and to design motion control algorithms [17]. For an extensive discussion

of modeling of vehicle dynamics via affine connections, see the work of Lewis [64]

and Bullo [14].

Definition 2.2. An affine connection control system on a manifold Q endowed

with an affine connection ∇ is a (1,1) tensor F : TQ → TQ, a vector field P , a

set of vector fields Yi ∈ TQ, i = 1 . . .m, and a set of controls ui(t) : R+ → R.

Together, these define the following differential equation:

DV

dt
= Yi(q)u

i + F (V ) + P (q). (2.31)

The vector fields Yi map the controls to TQ. The vector field P represents

the drift vector field (in a second-order sense). In a mechanical setting, we would

write this as the gradient of a potential function, but we need not make this

restriction here. The term F (V ) represents dissipation. The latter two terms are
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not generally included in discussions of affine connection control systems, but here

they have been included, since they do not complicate the theory in this case. As

before, the velocity q̇ is denoted by V . Note that despite the fact that all vector

fields are defined on Q, they govern the evolution of the system on TQ, and the

affine connection facilitates that formulation.

2.2.2 Cost Functions

We now need to define a cost function to complete the optimal control problem.

To do so, we borrow the framework of [66]. Let i ∈ {1, . . . , s}, ri be a nonnegative

integer, and Ai be a symmetric Rm-dependent (0, ri) tensor field onQ. Our integral

cost function J is therefore

J(q, u, V ) =
s∑

i=1

Ai(q, u)(V, . . . , V ), (2.32)

where V is repeated ri times as an operand for each Ai. Thus, when ri = 0, the

tensor represents a cost term associated with position and control effort alone. If

ri = 2, then the cost is quadratic in velocity and possibly dependent on q and u.

Also, let φi(q) be a symmetric (0, bi) tensor field on Q. We define a terminal

cost function Jf as

Jf (q, V ) =
w∑

i=1

φi(q)(V, . . . , V ). (2.33)

2.2.3 Problem Statement

We can now state two optimal control problems:

P1 (Fixed Final State) Given an initial condition (q0, V0) ∈ TQ and a final

condition (qf , Vf ) ∈ TQ, determine trajectories that minimize

∫ tf

t0

J(q, u, V )dt (2.34)

subject to the constraint of Equation (2.31).
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P2 (Free Final State) Given an initial condition (q0, V0) ∈ TQ, determine

trajectories that minimize

∫ tf

t0

J(q, u, V )dt+ Jf (q(tf ), V (tf )) (2.35)

subject to the constraint of Equation (2.31).

2.2.4 Problem Solution: Lagrange Multipliers

To solve this problem we use the technique of Lagrange multipliers and calcu-

lus of variations. Recall that using this approach, the problem of optimizing of

J(x, u) when constrained by f(x, u) = 0 is done by solving the unconstrained min-

imization of J + λf , where λ is an additional variable, known as the adjoint to

x, whose dimension is equal to that of the number of equality constraints. When

this optimization is carried out, the result equations, known as the Euler-Lagrange

equations, supply necessary conditions on the optimal trajectory in x and λ. When

inequality constraints on the states or controls are present, these conditions may

not be satisfied at all points along the trajectory. For a comprehensive study of

this approach to optimal control, see Bryson and Ho [13] or Stengel [93]. In this

study, we will limit our scope to the case where the optimization is only con-

strained by the dynamics, in which case the resulting equations can be obtained

via a variational approach.

The standard Euler-Lagrange equations are derived for a system whose con-

straints are of the form ẋ = f(x, u). It is possible to represent an affine connec-

tion control system in that form by introducing velocities as independent states,

and considering the variations of positions and velocities independently. This ap-

proach, while valid, has several disadavntages. One is that it necessitates doubling

the number of constraints. Additionally, by rendering the system first-order, the

underlying geometric structure is lost. Our goal is to derive the “Euler-Lagrange”

equations which govern the optimal control problem in a way which preserves that

structure. Thus, rather than artifically doubling the constraints to conform to the

standard structure, we consider only the given constraint. The unconstrained cost

function takes the following form:

∫ tf

t0

J(q, u, V ) +

〈
λ,−

DV

dt
+ F (V ) + P + Yiu

i

〉
dt+ Jf (q(tf ), V (tf )). (2.36)

We see that our constraint lives in TQ, meaning the Lagrange multiplier is a one-
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form field on Q. When we take the variation, we consider the variation of u and

q. Unlike the first-order case, we do not consider the variation of V independently

of that of q. Instead, we look at how variations of q affect the velocity vector field,

and we do so using the covariant derivative, as discussed above.

Our governing equation is now

δ

(∫ tf

t0

J(q, u, V ) +

〈
λ,−

DV

dt
+ F (V ) + P + Yiu

i

〉
dt+ Jf (q(tf ), V (tf ))

)
= 0

(2.37)

or

∫ tf

t0

d

dε

(
J(q, u, V ) +

〈
λ,−

DV

dt
+ F (V ) + P + Yiu

i

〉)
dt+

d

dε
Jf (q(tf ), V (tf )) = 0.

(2.38)

We now consider the variation of each term in this expression with respect to q.

In the following section, the term V ri indicates V repeated ri times as an operand.

1. d
dεJ(q, u, V )

Suppose J consists of a single tensor Ai. We will calculate the variation of

this term, and sum over the resulting expression for the case where J consists

of multiple tensors. We assume ri 6= 0, apply Equation (2.9) and exploit the

symmetry of Ai to arrive at

dJ

dε
= ∇Ai(V

ri , δq) + riAi

(
DV

dε
, V ri−1

)
(2.39)

which, using Proposition 2.4, becomes

dJ

dε
= ∇Ai(V

ri , δq) + riAi

(
Dδq

dt
+ T (δq, V ), V ri−1

)
. (2.40)

Using the notation in Equation (2.22), we rewrite this as

dJ

dε
=
〈
∇̂Ai(V

ri), δq
〉
+ ri

〈
Dδq

dt
+ T (δq, V ), Âi(V

ri−1)

〉
. (2.41)

We split the latter term into two and, using the terminology of Equation

(2.21), we write this as

dJ

dε
=
〈
∇̂Ai(V

ri), δq
〉
+ ri

〈
Dδq

dt
, Âi(V

ri−1)

〉
+ ri

〈
T ∗(Âi(V

ri−1), V ), δq
〉
.

(2.42)
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The second term of this equation is integrated by parts via Equation (2.12):

dJ
dε =

〈
∇̂Ai(V

ri), δq
〉
− ri

〈
δq,∇V Âi(V

ri−1)
〉
+ ri

〈
T ∗(Âi(V

ri−1), V ), δq
〉

+ d
dtri

〈
δq, Âi(V

ri−1)
〉
.

(2.43)

The last term can be removed from the integrand, and will be considered

later. Finally, we differentiate the second term on the right-hand side and

collect terms using the symmetry of Ai, as we did before, to arrive at

dJ
dε =

〈
∇̂Ai(V

ri), δq
〉
− ri

〈
δq,
(
∇V Âi

)
(V ri−1)

〉

+ri

〈
T ∗(Âi(V

ri−1), V ), δq
〉
− ri(ri − 1)

〈
δq, Âi(

DV
dt , V

ri−2)
〉
.

(2.44)

If we collect terms, we arrive at

dJ
dε =

〈(
∇̂Ai − ri∇V Âi

)
(V ri)

−ri(ri − 1)Âi(
DV
dt , V

ri−2) + riT
∗(Âi(V

ri−1), V ), δq
〉
.

(2.45)

Of course, we can substitute in for DV
dt using Equation (2.31). Note that if

ri = 0, this reduces to ∇Ai, which is simply the gradient of the function Ai,

so the notation is consistent even for this case.

2. d
dε

〈
λ, DVdt

〉

As before, we write

d

dε

〈
λ,
DV

dt

〉
=

〈
λ,
D

dε

DV

dt

〉
. (2.46)

Applying Proposition 2.5, we rewrite this as

d

dε

〈
λ,
DV

dt

〉
=

〈
λ,
D

dt

DV

dε
+R(δq, V )V

〉
. (2.47)

We integrate the first term by parts, and rewrite the resulting expression

using Equation (2.21) and Proposition 2.4:

d

dε

〈
λ,
DV

dt

〉
= −

〈
Dλ

dt
,
Dδq

dt
+ T (δq, V )

〉
+〈δq,R∗(λ, V )V 〉+

d

dt

〈
λ,
DV

dε

〉
.

(2.48)
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We integrate by parts again and use Equation (2.21) to write this term as

d
dε

〈
λ, DVdt

〉
=

〈
D2λ
dt2

− T ∗(Dλdt , V ) +R∗(λ, V )V, δq
〉

+ d
dt

(〈
λ, DVdε

〉
−
〈
Dλ
dt , δq

〉)
.

(2.49)

Again, the final term can be integrated directly, and will be addressed later.

The remaining term in the integrand is

d

dε

〈
λ,
DV

dt

〉
=

〈
D2λ

dt2
− T ∗

(
Dλ

dt
, V

)
+R∗(λ, V )V, δq

〉
. (2.50)

3. d
dε 〈λ, F (V )〉

Following the steps used earlier, we have

d

dε
〈λ, F (V )〉 =

〈
λ,∇F (V, δq) + F

(
DV

dε

)〉

=

〈
λ, ∇̃F (δq, V ) + F

(
Dδq

dt
+ T (δq, V )

)〉

=
〈
∇̃F

∗
(λ, V ), δq

〉
+

〈
F ∗(λ),

Dδq

dt
+ T (δq, V )

〉

=

d
dt 〈F

∗(λ), δq〉+
〈
∇̃F

∗
(λ, V ) + T ∗(F ∗(λ), V )

− ∇F ∗(λ, V )− F ∗
(
Dλ
dt

)
, δq
〉
.

(2.51)

As before, the final term is integrated directly, and the remaining term in

the integrand is

d

dε
〈λ, F (V )〉 =

〈
∇̃F

∗
(λ, V ) + T ∗(F ∗(λ), V )−∇F ∗(λ, V )− F ∗(

Dλ

dt
), δq

〉
.

(2.52)

4. d
dε 〈λ, P (q)〉

This term evaluates to

d

dε
〈λ, P (q)〉 = 〈λ,∇P (δq)〉

= 〈δq,∇P ∗(λ)〉 . (2.53)
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5. d
dε

〈
λ, Yi(q)u

i
〉

This term evaluates similarly to the previous one to be

d

dε

〈
λ, Yi(q)u

i
〉
=
〈
δq,∇Y ∗i u

i(λ)
〉
. (2.54)

We now have expressed the variation of each term in the form 〈·, δq〉. If we collect

the expressions in Equations (2.45),(2.50),(2.52),(2.53), and (2.54) and set the

integrand to zero by setting δq = 0, we arrive at the following equations of motion

for λ. The equation is stated explicity below in Theorem 2.2.

2.2.5 Variations of u: stationarity condition

We now turn to the requirement that cost function be a critical point with respect

to variations of u. Since u ∈ Rm, this variation is far simpler to calculate. The

variation with respect to ui yields the equation

∂J

∂ui
δui +

〈
λ, Yiδu

i
〉
= 0. (2.55)

Since δui is a scalar, we can pull it outside the pairing, collect terms, and arrive

at
∂J

∂ui
+ 〈λ, Yi〉 = 0. (2.56)

We thus have m conditions which define u as a function of q, V, λ. If we assume

that the cost function is smooth and convex with respect to u, and that there are

no constraints on the system states or controls, then Equations (2.31),(2.57) and

(2.56) together represent necessary conditions which the optimal trajectory must

satisfy.

These results are summarized in the following theorem:

Theorem 2.2. A necessary condition for a trajectory x(t) to optimize J(q, u, V )

is the existence of λ(t) and u(t) satisfying

D2λ
dt2

− T ∗(Dλdt , V ) +R∗(λ, V )V =
∑

i

[(
∇̂Ai − ri∇V Âi

)
(V ri)

−ri(ri − 1)Âi(F (q, V ) + P (q) + Yi(q)u
i, V ri−2) + riT

∗(Âi(V
ri−1), V )

]

+∇̃F
∗
(λ, V ) + T ∗(F ∗(λ), V )−∇F ∗(λ, V )− F ∗(Dλdt ) +∇P

∗(λ)

+
∑m

i=1

(
∇Y ∗i u

i(λ)
)

(2.57)

and Equation (2.56).
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As desired, we arrive at a second order equation on T ∗Q rather than a first-

order equation on TT ∗Q. While the notation is cumbersome, it is not particularly

complicated. In many cases, the dissipation and/or torsion terms will be zero,

which will simplify the expansion significantly.

2.2.6 Endpoint Conditions

In this section, we state the endpoint conditions needed to solve the differential

equations which govern the optimal control system. The optimal control ODE

is now two second-order differential equations, one on Q, the other on T ∗Q. We

therefore need four endpoint conditions to solve for the controller which generates

the optimal trajectory. We consider the two optimal control problems separately:

P1: In this case, the initial conditions q(t0), V (t0) and the final time conditions

q(tf ), V (tf ) are fixed. These conditions completely specify optimal control and

trajectory. Because the endpoints are fixed, the variations of the terminal cost, as

well as the endpoint terms generated by the integrations by parts, are zero.

P2: In this case, the final time conditions q(tf ), V (tf ) are not supplied. This

means that the variation of the trajectory at tf is nonzero, and therefore we derive

the final time condition by considering the variations of the terminal cost and the

endpoint terms derived from the integrations by parts. Specifically, using Equation

(2.9), we have

δJf =
w∑

i=1

〈
∇̂φi(V

bi), δq
〉
+ br

〈
φ̂i(V

bi−1),
DV

Dε

〉
(2.58)

with all terms evaluated at tf . The integations by parts of Equations (2.12),(2.49),

and (2.51) extract several terms from the integrand, and we consider their varia-

tions now. Their variations are also zero at t0, but at the final time, we have

δJ |t=tf =
s∑

i=1

ri

〈
Âi(V

r1−1), δq
〉
+

〈
λ,
DV

dε

〉
−

〈
Dλ

dt
, δq

〉
+ 〈F ∗(λ), δq〉 . (2.59)

Summing these and setting to zero, we have

〈∑w
i=1 ∇̂φi(V

bi) +
∑s

i=1 riÂi(V
r1−1)− Dλ

dt + F ∗(λ), δq
〉
+〈

λ+
∑w

i=1 brφ̂i(V
bi−1), DVdε

〉
= 0.

(2.60)
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At a given point in time, the term DV
dε is independent of δq. We thus have two

final time conditions:

λ(tf ) = −
w∑

i=1

brφ̂i(V
bi−1) (2.61)

Dλ

dt
(tf ) =

w∑

i=1

∇̂φi(V
bi) +

s∑

i=1

riÂi(V
r1−1) + F ∗(λ). (2.62)

We thus recover two final-time conditions for λ, Dλdt which, when paired with

q(t0), V (t0), provide endpoint conditions to solve for the optimizing controller.

2.3 Examples

2.3.1 Splines on Manifolds

One example to which this theory can be applied is the problem of calculating force-

minimizing curves which link two points in the tangent space of some Riemannian

manifold Q. While this is not a vehicle control problem, it is a problem which

has historically been studied in this context [29, 83]. In this example, the system

is fully actuated, so the problem can be stated as an unconstrained higher-order

variational problem, and there is no need to use adjoint variables. Nonetheless,

the theory developed here covers this case.

The problem statement is to minimize

J =
1

2

∫ tf

t0

〈〈u, u〉〉 dt (2.63)

subject to
DV

dt
= u. (2.64)

Substituting these into Equations (2.57),(2.56) yields the conditions:

D2λ

dt2
+R∗(λ, V )V = 0 (2.65)

(recall that the Riemannian metric is torsion-free and has the property ∇g = 0),

and

λ = g(u). (2.66)
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Subtituting in the equation for λ yields

D2

dt2

(
g
DV

dt

)
+R∗(g

DV

dt
, V )V = 0. (2.67)

Using the cyclic properties of the curvature tensor and Proposition 2.2, we can

rewrite this equation as

g

(
D3V

dt3

)
+ g

(
R

(
DV

dt
, V

)
V

)
= 0 (2.68)

which is equivalent to
D3V

dt3
+R

(
DV

dt
, V

)
V = 0 (2.69)

which matches the results of [29, 83].

2.3.2 Planar Rigid Body

In this example, we consider a rigid body free to move in the plane, actuated by

a force applied in the body frame applied at a distance h from the center of mass.

A diagram is shown in Figure 2.1. The Riemannian metric for this system is

〈〈V, V 〉〉 =
1

2
V T




m1 cos
2 θ +m2 sin

2 θ (m1 −m2) cos θ sin θ 0

(m1 −m2) cos θ sin θ m1 sin
2 θ +m2 cos

2 θ 0

0 0 J


V (2.70)

where V =
[
ẋ, ẏ, θ̇

]
, the velocity in the inertial frame. When m1 = m2 = m,

metric corresponds to a hovercraft of mass m. When the masses are unequal, it

corresponds to the motion of an underwater body, with different effective masses

in the directions of motion depending on the orientation of the body relative to its

motion in the fluid. We note in passing that the Riemannian metric, and hence the

associated Lagrangian, is SE(2)-invariant, and the equations of motion admit a

simpler characterization using reduction (see [62] for a thorough discussion of full

SE(3) underwater motion). Since our goal is to expose the role of the connection,

we consider the undreduced vehicle motion.

The governing equation of motion is

DV

dt
= Yiu

i, (2.71)
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θ

y

x

u1
u2

h

Figure 2.1: Diagram of Planar Rigid Body.

where

Y1 =




cos θ
m1

sin θ
m1

0


 , Y2 =




− sin θ
m2

cos θ
m2

−h
J


 (2.72)

are the control vector fields. Again, we choose our cost function to be force mini-

mization:

J =
〈〈
Y1u

1, Y1u
1
〉〉

+
〈〈
Y2u

2, Y2u
2
〉〉

=

(
u1
)2

2m1
+

(
J +m2h

2
) (
u2
)2

2Jm2
. (2.73)

When m1 = m2, the coefficients of g are all constant, and hence the Christoffel

symbols are Γkij = 0, and thus DV
dt =

[
ẍ, ÿ, θ̈

]
. When m1 6= m2, the Christoffel

symbols are nontrivial. The torsion tensor is zero because we use the Levi-Civita

connection, but the curvature tensor is not. Hence, applying Equation (2.57), we

recover a simple equation for the adjoint variables:

D2λ

dt2
+R∗(λ, V )V = ∇Y ∗i (λ)u

i. (2.74)

When m1 = m2, the curvature tensor is zero, and the dynamics evaluate in coor-

dinates to
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λ̈x = 0 (2.75)

λ̈y = 0 (2.76)

λ̈θ =
1

m
[(−λx sin θ + λy cos θ)u1 + (−λx cos θ − λy sin θ)u2] (2.77)

and the optimal control is given by

u1 = − (λx cos θ + λy sin θ) (2.78)

u2 =
Jm

J +mh2

(
λx
m

sin θ −
λy
m

cos θ +
h

J
λθ

)
. (2.79)

2.4 Conclusions

The equations derived in this chapter reveal the relevance of the affine connection

in formulating the optimal control equations of motion. Because they are derived

using a variational approach, they are less general than the equations derived by

Lewis in [66], which proceed directly from the Pontryagin Maximum Principle.

However, understanding the relationship between the affine connection and the

calculus of variation provides insight into the structure of these equations and

lays the framework for future analysis of topics such as the role of symmetry and

generating approximate solutions. Topics for future work will be discussed in detail

in Chapter 7.
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Chapter 3

Optimal Control of Time-Scalable Systems

In this chapter, we turn our attention to the other classical approach to optimal

control, namely the Hamilton-Jacobi-Bellman (HJB) equation. As in the previous

chapter, our goal is to understand the role which the structure of vehicle dynamics

plays in this formulation of the optimal control problem. In this case, we will

restrict ourselves to the class of systems which are time scalable, meaning the

equations of motion remain the same when time is reparametrized. Examples of

time scalable dynamic systems include driftless systems and mechanical systems

without potential energy. Vehicle applications which fall into this category in-

clude locomotion of systems with nonholonomic constraints, control of underwater

vehicles, and satellite reorientation [7, 17, 56].

The chapter is organized as follows. In Section 3.1, we define time-scalable con-

trol systems and derive relevant properties. Specific attention is paid to properties

of functions which are compatible with the time scaling. In Section 3.2, we apply

these ideas to the HJB equation. We consider the derivation of both finite-time

optimal trajectories and stabilizing control laws from the HJB value function. The

example of the kinematic wheeled locomotion is examined in detail.

3.1 Time Scaling

3.1.1 Definitions

Let x ∈ Rp u ∈ Rs. Let an nth order control system be a dynamical system

of the form x(n) = f(x, ẋ, . . . , x(n−1), u), where the superscript in parentheses

indicates the order of differentiation. Let x̄ ∈ Rpn be a point of the form x̄ =

(x, ẋ, . . . , x(n−1)).

Definition 3.1. An nth order control system is said to be affinely time scalable
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if, for any affine scaling of time τ = αt + β, there exists a scaling of u such

that the scaled equations of motion are identical to the original equations. Let

K : Rpn × Rs × R → Rpn × Rs × R denote the time scaling operator associated

with a given time scaling. That is, K(x̄, u, t) maps each of the operands to its

time-scaled counterpart.

We can easily write how K acts on the various operands by applying the chain

rule. We see that

dx

dt
=

dx

dτ

dτ

dt
(3.1)

= α
dx

dτ
(3.2)

and thus we see thatK maps ẋ to ẋ/α. More generally, we can see thatK maps x(j)

to x(j)/αj . Because x is independent of time, it does not vary by time scaling. To

determine if a control system is time scalable, one simply makes this substitution

and then sees if u can be compatibly scaled such that α can be factored out of the

equation.

Remark Because K acts on each operand independently (as well as acting on

each x(i) independently, we will use, for example, K(u) to denote the image of u

under the time scaling.

Example 3.1 (Driftless Systems). First-order driftless systems, meaning sys-

tems of the form ẋ = f(x)u, are time scalable. If we scale time and substitute, we

arrive at the equation
dx

dτ
= f(x)

u

α
. (3.3)

If we define K(u) = u/α, and substitute, we recover the original equation. More

generally, systems of the form x(n) = f(x)u, are also time scalable, with the

substitution K(u) = u/αn.

Example 3.2 (Affine Connection Control Systems). The affine connection

control system of Equation 2.31, when F, P = 0, is

DV

dt
=
∑

i

Y i(q)ui. (3.4)

Because the covariant derivative is linear in q̈ and quadratic in q̇ (see Equation

(2.1)), this system is time scalable. When u = 0, the time-scalability corresponds
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with the well-known time scalabilty of geodesics [35]. When u is nonzero, it can

still be scaled by the procedure noted above.

Definition 3.2. A point x̄ which exhibits the property K(x̄) = x̄ is said to be

scale invariant. A scaling K for which K(T ) = T , where T ∈ R, is said to be

T-invariant.

Remark The scale invariant points are clearly those for which all derivatives are

zero. For a first-order control system, these consist of the entire space. A time

scaling is T -invariant if β = (1− α)T . We see that the function

r(t) =
1

(T − t)n
(3.5)

is compatible with any T -invariant time scaling, and the scale factor is f(α) = α−n.

We now introduce a class of functions whose behavior under time scaling we

wish to investigate:

Definition 3.3. A function L(x, ẋ, . . . , x{n−1}, u, t) is said to be compatible with

a time-scaling operation K if the following holds there exists a function f : R → R
such that

L(K(x, ẋ, . . . , x{n−1}, u, t)) = f(α)L(x, ẋ, . . . , x{n−1}, u, t). (3.6)

Remark An obvious property of f(α) is that f(1) = 1. Also, it is easy to see

that f(α−1) = f(α)−1.

We see that the class of time-scalable systems is fairly rich, and includes systems

for which significant work has been done in the areas of controllability and tra-

jectory generation. To our knowledge, however, the time scaling property of these

systems has never explicitly been exploited. In the development which follows, we

discuss the implications time scalability has for the optimal control problem.

3.1.2 Properties of Time-Scalable Systems

The following proposition follows immediately:

Proposition 3.1. Given a time-scalable control system, initial conditions x̄i at

initial time t = ti, a control time history u(t) defined on the interval t ∈ [ti, tf ],

and a resulting trajectory x̄(t) defined on the interval, the time scaled control K(u)
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defined on the interval K([ti, tf ]), when applied to the time-scaled initial condition

K(x̄i) at time K(ti), will produce the time-scaled trajectory K(x̄(K(t))).

Remark In other words, the time scaling of an integral curve yields another inte-

gral curve generated by the time-scaled control history. In particular, if the initial

and final points are scale invariant, then a control time history which connects the

two points in a given time interval can be scaled to connect those two points in

any interval of time.

We now apply Proposition 3.1 to derive a property of integrals of compatible

functions.

Proposition 3.2. Given a time-scalable control system, a time scaling K for which

α ≥ 0, a function L(x̄, u) which is compatible with K and for which f(α) ≥ 0, and

a control history u∗(t), t ∈ [ti, tf ] which drives the system between mi ∈M at time

t = ti and mf ∈M at time t = tf and minimizes the quantity

J =

∫ tf

ti

L(x̄, u)dt. (3.7)

Then the time-scaled control history K(u∗(K(t))) minimizes J between the

time-scaled endpoints.

Proof. To see the correspondence of J with its scaled counterpart, let us evaluate

J̃ =

∫ K(tf )

K(ti)
L(x̄, v) dτ (3.8)

with endpoints K(mi) and K(mf ). We can evaluate the integral in the unscaled

interval by changing coordinates through K−1. Letting t = K−1(τ), we apply the

formula for change of coordinates of an integral to arrive at

J̃ =

∫ tf

ti

L(K(x̄, v))αdt, (3.9)

where the extra α term is the Jacobian of the coordinate transformation. Replacing

v with K(u) and applying the definition of compatibility yields

J̃ =

∫ tf

ti

αf(α)L(x̄, u) dt (3.10)

or

J̃ = αf(α)J (3.11)
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which is clearly minimized by u = u∗, or v = K(u∗), since the quantity αf(α) is

assumed positive. ¥

Proposition 3.2 guarantees that K(u∗) does in fact drive the system to the

desired endpoint, and hence is an admissible control history. Furthermore, it

guarantees that every control history which is admissible for the scaled function

is also admissible for the original function. Hence no other control history could

exist which yields a lower J than v = K(u∗).

We now consider the properties of the integral function J for a special case.

Suppose the final point mf of the previous proposition is scale invariant, and let us

fix the final time tf . The function J can be thought of as a function of the initial

point x̄ and the initial time ti ∈ (−∞, tf ). It is not an explicit function of u, since

u is chosen according to the initial position and time. From the proof above, the

following proposition holds:

Proposition 3.3. Given the above conditions, J(x̄, ti) is compatible with the set

of all tf -invariant scalings. Specifically,

J(K(x̄, ti)) = αf(α)J(x̄, ti). (3.12)

Finally, we are able to use compatibility to prove the following about the partial

derivative of compatible functions:

Proposition 3.4. Let L(x̄, u, t) be a function which is compatible with the set of

all T -invariant time scalings. For simplicity, assume K(u) = u/αn. Then, for all

t0 6= T ,

∂L

∂t

∣∣∣∣
t=t0

=
1

t0 − T

(
∂f

∂α

∣∣∣∣
α=1

L +
n−1∑

i=1

i
∂L

∂x(i)
x(i) + n

∂L

∂u
u

)
. (3.13)

Proof. Recall the definition of the partial derivative:

∂L

∂t

∣∣∣∣
t=t0

= lim
∆t→0

L(x̄, u, t0 +∆t)− L(x̄, u, t0)

∆t
. (3.14)

We can map the first term on the right-hand side using the time scaling operator.

If we set

α =
t0 − T

t0 +∆t− T
(3.15)

β =
T∆t

t0 +∆t− T
, (3.16)
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we recover the unique T -invariant time-scaling for which K(t0 +∆t) = t0. Thus,

L(x̄, u, t0 +∆t) =
1

f(α)
L

(
x,
ẋ

α
, . . . ,

x(n−1)

αn−1
,
u

αn
, t0

)
. (3.17)

Now α−1 = 1 + ∆t/(t0 − T ), and α−n = 1 + n∆t/(t0 − T ) +O(∆t2). Using this,

we can Taylor expand the right-hand side to first order, to arrive at

L(x̄, u, t0+∆t) =
1

f(α)

[
L+

(
n−1∑

i=1

i
∂L

∂x(i)
x(i) + n

∂L

∂u
u

)
∆t

t0 − T

]
+O(∆t2), (3.18)

where the right-hand side is evaluated at (x, ẋ, . . . , , x(n−1), u, t0). If we recall that

at ∆t = 0, we have α = 1 and thus f(α) goes to 1 in the limit. Substituting into

Equation (3.14) and taking the limit, we have

∂L

∂t

∣∣∣∣
t=t0

=
1

t0 − T

(
n−1∑

i=1

i
∂L

∂x(i)
x(i) + n

∂L

∂u
u

)
+ lim
∆t→0

1− f(α)

f(α)∆t
L. (3.19)

The final term can be simplified by noting that α = 1− ∆t
t0+∆t−T

, Taylor expanding

f(α) to first order, and taking the limit as before. This results in the following:

∂L

∂t

∣∣∣∣
t=t0

=
1

t0 − T

(
∂f

∂α

∣∣∣∣
α=1

L +
n−1∑

i=1

i
∂L

∂x(i)
x(i) + n

∂L

∂u
u

)
, (3.20)

which proves our proposition. ¥

The significance of this proposition is that it shows how the temporal partial

derivative can be converted to a spatial quantity.

3.2 Optimal Control of Time-Scalable Systems

3.2.1 Application of Time-Scalability to the HJB Equation

We are now ready to consider the relationship between time scaling and the optimal

control problem. Recall that the value function V (x̄, t) associated with the HJB

equation is defined as the minimum cost necessary to drive a system from a point

x̄ at time t to a desired final condition at time (not necessarily finite) T . To apply

the above theory to this problem, we consider a finite time optimal control problem

with fixed final state which is scale invariant, and a cost function L(x̄, u, t) which
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is compatible with all time scalings. Given this, we see that the value function is

given by

V (x̄, t) =

∫ T

t
L(x̄, u, τ)dτ. (3.21)

Applying Proposition 3.3, we see that V (x̄, t) is compatible with all T -invariant

time scalings, and hence Proposition 3.4 applies as well.

The HJB equation for this optimal control problem is given by [13, 93]

∂V

∂t
= −min

u

[
L(x̄, u, t) +

∂V

∂x̄
g(x̄, u)

]
. (3.22)

Proposition 3.4 allows us to replace the left-hand side with a term involving V and

its spatial partial derivatives. Solving this spatial PDE yields the value function

at one point in time, and the value function at any other time can be found using

the time scaling. The presence of the 1
t−T term in Equation (3.13) indicates that

as t approaches T , the value function will approach infinity at all points except

the desired endpoint. This is logical — as time runs out, the cost associated with

driving the system to the endpoint increases.

Ordinarily, the HJB equation is solved by defining V (x̄, T ) using a terminal

cost function and propagating that function backwards in time. In our case, the

x̄(T ) is fixed, so a terminal cost constraint is not meaningful. Nonetheless, the

Principle of Optimality from which the HJB equation is derived is still applicable,

so the use of that equation is still valid.

In the next sections, we consider the cases of first-order systems and affine

connection control systems in greater detail. For the former, we shall show that

solving the spatial PDE yields a stabilizing controller in addition to solving the

finite-horizon optimal control problem.

3.2.2 Driftless Systems

Let us consider a system of the form

ẋ = g(x)u, (3.23)

where g(x) is C1, and a cost function

J =
1

2

∫ T

t0

uTu dt, (3.24)
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and suppose the constraint was that x(T ) = 0. Evaluating the HJB equation for

this system yields

Vt =
1

2
V T
x g(x)g

T (x)Vx (3.25)

and optimal control

u∗(x, t) = −gT (x)Vx, (3.26)

where the subscripts on V indicate partial derivatives. We now turn to replacing

Vt with its spatial counterpart. The cost function uTu is compatible with any

time scaling, and the scaling function is f(α) = α−2. The scaling for V , following

Proposition 4, is f(α) = α−1. Applying Proposition 3.4, we have

Vt =
1

T − t
V. (3.27)

Furthermore, applying the definition of time scalability, we see that

V (x, t) =
T − t0
T − t

V (x, t0). (3.28)

Letting t0 = 0 and defining Ṽ (x) = V (x, 0), we can substitute into Equation (3.25)

and derive the following spatial PDE:

1

T
Ṽ =

1

2
Ṽ T
x g(x)g

T (x)Ṽx. (3.29)

Solving this PDE yields the optimal finite-horizon control law by finding

ũ(x) = −gT (x)Ṽx (3.30)

and scaling ũ(x) appropriately in time to arrive at u∗(x, t). Note that t was

eliminated from the equation via the substitution, as expected.

We now consider the possibility of using ũ(x) as a control law without time

scaling, and asking whether that control law stabilizes the system. When V is

smooth, it is easy to show that it acts as a Lyapunov function for the control law

ũ(x):

˙̃V = Ṽ T
x ẋ

= Ṽ T
x g(x)u

∗(x)

= −Ṽ T
x g(x)g

T (x)Ṽx

= −
2

T
Ṽ . (3.31)
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Since Ṽ is a value function, ˙̃V must be negative at all points x 6= 0. Thus,

solving a single spatial PDE yields both optimal finite-horizon trajectories and

an asymptotically stabilizing controller whose gain can be set. Conceptually, a

controller of this form can be thought of as applying the optimal control one would

use if the final time were always T−t0 away, reminiscent of receding-horizon control

concepts used in model predictive control [45, 86]. Note further that by varying

the value of t0 used to define Ṽ , we can influence the rate of convergence of Ṽ ,

i.e., the gain of the controller. Whether or not the convergence of the system is

exponential will depend on whether the value function is locally quadratic, a fact

which will depend on the underlying system.

Finally, we note in passing that Equation (3.24) is not the only compatible cost

function. A function of the form

J =

∫ T

t0

a

(T − τ)2
xTx+ buTu dτ (3.32)

is also compatible. This cost function can be viewed as forcing x(t) to approach

zero sufficiently quickly to avoid the cost function becoming infinite.

3.2.3 Affine Connection Control Systems

In this section, we consider systems of the form

q̈i + Γijkq̇
j q̇k = gij(q)uj (3.33)

which is Equation (3.4) in coordinates, with the cost function in Equation (3.24).

In this case, the scaling function is f(α) = α−4, and the scaling function for V is

αf(α) = α−3. Thus, following Proposition 3.4, we have

Vt =
1

T − t
(3V − Vq̇ q̇). (3.34)

As in the first-order case, we can derive the following equation for V :

V (q, q̇, t) =
(T − t0)

3

(T − t)3
V (q,

T − t

T − t0
q̇, t0). (3.35)

It is easily verified that this form for V satisfies the equation for Vt. Again, we

set t0 = 0 and denote the spatial PDE as Ṽ (x, ẋ) = V (q, q̇, 0). We use x for the

operands of Ṽ since the operands of V and Ṽ are not the same. The relationship
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between the two is

x = q, ẋ =
T − t

T
q̇, (3.36)

a fact we shall use shortly, but we want to make clear the difference between partial

differentiation with respect to the second operand of V , i.e., x2, and with respect

to q2.

The HJB PDE for this system is

Vt = −Vq q̇ + Vq̇Γ
i
jkq̇

j q̇k +
1

2
V T
q̇ g(q)g

T (q)Vq̇. (3.37)

We take the partials of Equation (3.35) with respect to the relevant terms and

substitute in Equations (3.35),(3.36), we arrive at

3

T
Ṽ −

1

T
Ṽẋẋ = −Ṽxẋ+ ṼẋΓ

i
jkẋ

j ẋk +
1

2
Ṽ T
ẋ g(x)g

T (x)Ṽẋ. (3.38)

If we attempt to use this value function as a Lyapunov function as done earlier,

we arrive at the following equation:

˙̃V = −
3

T
Ṽ −

1

2
Ṽ T
ẋ g(x)g

T (x)Ṽẋ +
1

T
Ṽẋẋ. (3.39)

The above equation is not necessarily negative due to the last term. Given a

solution Ṽ , this equation can be evaluated to determine if Ṽ is in fact a Lyapunov

function.

3.2.4 Example: Wheeled Locomotion

As an example, we consider optimal control of a planar cart actuated by two wheels

whose angular rate can be specified. A diagram of such a cart is shown in Figure

3.1. The (normalized) equations of motion for this cart are

ẋ = v1 cos θ

ẏ = v1 sin θ

θ̇ = v2

(3.40)

where vr, vl are the angular velocities of the left and right wheels, v1 =
1
2(vr+ vl),

and v2 =
1
2(vr − vl). This system is driftless and underactuated. It is known (see,

e.g., [79]) that this system can be locally transformed to the following form:
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θ
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x
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ur

Figure 3.1: Diagram of Kinematic Cart.

ẋ1 = u1

ẋ2 = u2

ẋ3 = x1u2 − x2u1.

(3.41)

This system is the well-known first-order nonholonomic integrator [11]. When

we employ the cost function

J =
1

2

∫ T

t0

u21 + u22 dt (3.42)

and the constraint that the states are all zero at t = T , then the optimal trajectories

of this system, derived using the Euler-Lagrange method, are known to take the

form
u1 = k1 sinµt+ k2 cosµt

u2 = k1 cosµt− k2 sinµt,
(3.43)

where k1, k2, µ are parameters chosen to meet the endpoint conditions. The HJB

equation for this system is

∂V

∂t
=

1

2

∂V

∂x

T




1 0 −x2

0 1 x1

−x2 x1 x21 + x22



∂V

∂x
. (3.44)
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Following the development in Section 3.2.2, we can rewrite this as

1

T
Ṽ =

1

2

∂Ṽ

∂x

T




1 0 −x2

0 1 x1

−x2 x1 x21 + x22



∂Ṽ

∂x
. (3.45)

We now seek a functional form for Ṽ which is consistent with this equation. If we

assume that Ṽ = Ṽ (d, x3) where d = x21 + x22 (a fact which can be deduced from

the symmetry of the problem), we can substitute and simplify the equation to

1

T
Ṽ = 2d

(
∂Ṽ

∂d

)2
+
d

2

(
∂Ṽ

∂x3

)2
. (3.46)

If we further assume that V has the form

Ṽ =
d

2T
f(r) (3.47)

where r = x3/d, we can reduce the equation to an ODE:

f = f2 − 2rff ′ +

(
r2 +

1

4

)
f ′2. (3.48)

This equation can be factored to form two ODEs, namely

f ′ =
2
(
2rf ±

√
4r2f2 − (4r2 + 1)(f2 − f)

)

4r2 + 1
. (3.49)

To solve either ODE, we need an initial condition. Note that when r = 0, this is

equivalent initial conditions in the x1x2 plane. Reviewing the equations of motion,

we see that this case can be solved directly using constant u1 = x1/T (T − t),u2 =

x2/(T − t). This corresponds to V (d, 0) = d
2T , meaning f(0) = 1. Note that for

f = 1, r ≥ 0, the ODE corresponding to the positive square root is a fixed point

of the system, and for r ≤ 0 the other one is. Thus, by solving the initial value

problem for both positive and negative r using the nontrivial ODE, we derive f(r),

and thus the value function as well.

Solving Equation (3.49) reveals that lim
r→∞

f(r) =∞. However, lim
r→±∞

V (d, r) is

finite, as is the limit of f ′(r). This allows us to define V at points where x1, x2 = 0.
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In fact, it can be computed that

Ṽ (0, 0, x3) =
π|x3|

T
. (3.50)

However, Ṽ is only C0 (and Lipschitz) at these points. To proceed further requires

tools from nonsmooth analysis, which are beyond the scope of this discussion. It

will suffice to say that it can be verified that our solution for Ṽ is a viscosity

solution of the HJB PDE in the sense of [28].

At points away from the x3 axis, we have the following control law:

ũ1 = −x1(f − f ′r) + 1
2x2f

′

ũ2 = −x2(f − f ′r)− 1
2x1f

′.
(3.51)

Along the x3 axis, the control laws cannot be derived using Equation (3.30).

The limit lim
r→∞

ui exists but is path-dependent. It can be shown that along the x3

axis a control law of the form

ũ1 = sinφ

√
2π|x3|
T

ũ2 = cosφ

√
2π|x3|
T

(3.52)

for arbitrary φ yields a control law which is continuous along trajectories.1 Note

that the discontinuity of the control law is necessary for systems of this form, as

proven by Brockett [12].

Figures 3.2 and 3.3 show optimal finite-time trajectories and stabilizing trajec-

tories for two initial conditions. The stabilizing trajectories were generated using

the value function at t0 = 9 to give faster convergence. The initial conditions in

Figure 3.2 are at a point where the value function is smooth. Those for Figure 3.3

are at a nonsmooth point. Both show the trajectory reaching zero at the appro-

priate time for the finite-horizon case, and decaying to zero in the infinite horizon

case. For first-order systems such as this, the finite and infinite time trajectories

are actually the same. Because the stabilizing controller does not have the 1/(T−t)

term to increase the control effort, it takes infinite time to reach the origin.

The resulting trajectories are consistent with deruved by applying the control

law of Equation (refnhu1). We also note that for certain initial conditions, multiple

values of k1, k2, µ satisfy those equations and endpoint conditions. The value

1This control law is the boundary of the control law derived using the subdifferential of Ṽ in

Equation (3.30).
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Figure 3.2: Finite-Time Optimal (left) and Stabilizing Trajectories (right), x0 =

(2,−3, 4).
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Figure 3.3: Finite-Time Optimal (left) and Stabilizing Trajectories (right), x0 =

(0, 0, 4).



3.3. Conclusions 47

function derived above returns the globally minimizing trajectory.

3.3 Conclusions

In this chapter, we showed how the HJB equation can be simplified through a

priori knowledge of the solution structure corresponding to the structure of the

underlying dynamical system and cost function. For this class of systems, solving a

single simplified PDE yields both finite time trajectories and a stabilizing control

law. In practice, this PDE may not be easier to solve than the original one.

In Chapter 7, we will discuss the utility of this formulation and how it may be

exploited in practice.
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Chapter 4

Graph Theory

4.1 Introduction

In this chapter, we introduce notation and basic concepts from graph theory that

will be useful in our analysis of vehicle formation structure. In Section 4.2, we

introduce basic terminology from graph theory and focus on connectivity structure

in graphs. In Section 4.3, we introduce ideas from algebraic graph theory that will

be useful in linking graph-theoretic and control-theoretic concepts. Specifically,

we define the Laplacian matrix of a graph, which we will later identify in Section

5.1 as the matrix of interest in vehicle formation control. In Section 4.4, we review

ideas from Perron-Frobenius theory. Finally, in Section 4.5, we discuss the spectral

structure of the Laplacian using ideas from the previous section.

Many excellent texts on graph theory exist; a recent example is [34]. Recent

results regarding the Laplacian and its spectral structure can be found in the

work of Merris [73, 74] and Chung [24]. Perron-Frobenius theory can be found

in many texts; the presentation here is based on material in [2, 51, 98]. The

terminology regarding connectivity in directed graphs is borrowed from [87], and

that terminology is used to derive Theorem 4.5, which is a specialized case of the

topic addressed in that paper.

We now introduce some notation which we will use in the remainder of the

thesis. Variables in lower case refer to scalars, vectors or elements of sets; the

distinction will be clear from context. Variables in upper case to matrices, and

calligraphed letters refer to sets or graphs. When v is a vector, vi refers to the ith

element of that vector, and when v is a set, vi refers to the ith indexed element

of that set. |G| denotes the cardinality of the set G. Aij refers to the element

occupying the ith row and jth column of A. In refers to the n×n identity matrix.
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4.2 Introductory Graph Theory

4.2.1 Basic Definitions

A directed graph G consists of a set of vertices, or nodes, denoted V, and a set

of arcs A ⊂ V2, where a = (v, w) ∈ A and v, w ∈ V. The first element of a is

denoted tail(a), and the second is denoted the head(a). It is said that a points

from v to w. We will assume that tail(a) 6= head(a), meaning that the graph

has no loops. We also assume that each element of A is unique. A graph with

the property that for any (v, w) ∈ A, the arc (w, v) ∈ A as well is said to be

undirected; in undirected graphs the pair of arcs is often modeled as a single edge

with no direction associated to it. The in(out)-degree of a vertex v is the number

of arcs with v as its head (tail). For an undirected graph, the in-degree and out-

degree of a given vertex are equal. If all vertices have the same in(out)-degree, the

graph is said to be in(out)-regular. If every possible arc exists, the graph is said

to be complete.

A path on G of length N from v0 to vN is an ordered set of distinct vertices

{v0, vi, . . . , vN} such that (vi−1, vi) ∈ A ∀i ∈ [1, N ]. An N -cycle on G is defined

the same as a path except that v0 = vN , meaning the path rejoins itself. A graph

without cycles is said to be acyclic. A graph with the property that the set of all

cycle lengths has a common divisor k greater than one is said to be k-periodic.

Let V1 ⊂ V and A1 ⊂ A, where each a ∈ A1 has its head and tail in V1. The

directed graph G1 = (V1,A1) is termed a subgraph of G. If A1 contains every arc

in A whose head and tail are in V1, then G1 is termed an induced subgraph of G.

4.2.2 Connectivity in Directed Graphs

If a path exists from vi to vj , it is said that vi has access to vj . A graph with the

property that every vertex has access to every other vertex is said to be strongly

connected. (A graph consisting of a single vertex with no arcs is also considered

strongly connected.) A graph in which disjoint subsets of vertices exists whose

elements do not have access to one another is termed disconnected. Note an undi-

rected graph is either strongly connected or disconnected.

Two vertices which have access to one another are said to communicate. Com-

munication is an equivalence relation, and the equivalence classes of V induced by

the communication relation are termed components of G. Note that the induced

subgraph of a component of G is strongly connected. The component structure
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also generates a second graph, where each equivalence class is represented by a

vertex, and an arc joins two vertices if elements of the first equivalence class have

access to the second. This graph is necessarily acyclic. In such a graph, a vertex

which is not the head (tail) of any arc is said to be initial (final).

Example 4.1. Figure 4.1 shows a graph with twelve enumerated vertices. In this

graph, vertices 1 through 6 communicate with one another, as do vertices 7, 8, 9,

11, and 12. The latter set has access to the former. Vertex 10 has access to all

vertices, but no vertex has access to it. As such, this graph has three components.

Figure 4.2 shows the induced subgraphs of these components. Figure 4.3 shows

the acyclic graph induced by the component structure. In that graph, the leftmost

vertex is final and the rightmost is initial.

4.3 Algebraic Graph Theory

4.3.1 Graph Laplacians

One area of graph theory which will be of significant interest to us is algebraic graph

theory, which studies relationships between the structure of graphs and different

matrix representations of graphs. For the purpose of defining graphs, we assume

that the vertices of G are enumerated, and each is denoted vi. The adjacency

matrix of a graph, denoted A(G), is a square matrix of size |V|, defined by Aij = 1

if (vi, vj) ∈ A, and is zero otherwise. When the graph in question is clear, the

adjacency matrix will be denoted as A. Note that A uniquely specifies a graph,

although A itself is not unique for a given graph, as it depends on the enumeration

of the vertices. However, two adjacency matrices of the same graph are necessarily

similar to one another via a permutation matrix. As such, it is clear that the

eigenvalues of A are uniquely specified by the graph (though the converse is not

true), and early research in algebraic graph theory focused on the relationship

between eigenvalues of A(G) and graph-theoretic properties of G [31, 32].

Our work will make use of a different graph which has been the object of study

more recently. Let D be the matrix with the out-degree of each vertex along the

diagonal. The Laplacian of the graph is defined as1

L = D−1(D −A). (4.1)

1Some references define L as D − A. Others use the transpose of A to define the Laplacian

of the directed graph. This distinction is of little consequence in terms of the theory, but the

definition stated above better suits our purposes.
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Figure 4.1: Sample Graph G.
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Figure 4.2: Induced Subgraphs of Components of G.

{1, . . . , 6} {7, 8, 9, 11, 12} {10}

Figure 4.3: Graph of Components of G.
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In the event that D is singular due to a vertex vi with zero out-degree, set D−1ii = 0

to complete the definition. We will further denote the weighted adjacency matrix

I − L as G. For example, the Laplacian of the leftmost graph in Figure 4.2 is

L =




1 0 0 0 0 −1

−14 1 −14 −14 −14 0

0 −1 1 0 0 0

0 0 −12 1 −12 0

0 0 0 −1 1 0

−12 0 0 0 −12 1




. (4.2)

L can be viewed as a normalized version of the adjacency matrix. In this construc-

tion, each arc leading into a given vertex is weighted equally such that the weights

sum to one. More generally, it is possible to work with weighted graphs, in which

the off-diagonal elements of L are unequal yet still sum to −1. Most of the results

of the following sections do not depend on the arcs being weighted equally, though

we will assume that for convenience.

Interest in the Laplacian matrix has increased in recent years; see [24, 74, 73,

78]. In particular, researchers identified many links between the eigenvalues of L

and various graph-theoretic properties. We will return to this in Section 4.5, but

before that we digress slightly into a discussion of nonnegative matrices.

4.4 Theory of Nonnegative Matrices

A property of the Laplacian is thatG is nonnegative by construction. The theory of

nonnegative matrices, much of which derives from the celebrated Perron-Frobenius

theorem, will be quite useful in understanding the links between graph theory and

vehicle formation control. The results of this section can be found in [2, 51, 98].

4.4.1 Nonnegative Matrices and Graph Theory

A matrix A is positive (nonnegative) if each element is positive (nonnegative).

Given two nonnegative n × n matrices A,B, we say A > B (A ≥ B) if A − B is

positive (nonnegative). A square nonnegative matrix A is reducible if there exists

a permutation matrix P such that PAP T can be represented

PAP T =

(
A11 0

A21 A22

)
, (4.3)
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where A11, A22 are square, or if n=1 and A = 0. A matrix which is not reducible

is said to be irreducible.

Just as in Section 4.3 a directed graph was used to define a matrix, a matrix

can also be used to define a directed graph. This graph, denoted G(A), has n

vertices denoted v1, . . . , vn, and (vi, vj) ∈ A(A) if Aij 6= 0. Unlike the directed

graphs discussed above, G(A) may contain loops if Aii 6= 0. It should be clear that

the directed graph associated with G(G) is in fact G itself.

The following theorem relates a nonnegative matrix with its directed graph, as

well as supplying an algebraic characterization:

Theorem 4.1. Given a nonnegative n×n matrix A, the following are equivalent:

1. A is irreducible.

2. AT is irreducible.

3. G(A) is strongly connected.

4. (In +A)n−1 > 0.

If G(A) is aperiodic, then A is termed primitive. If G(A) is k-periodic, it is

termed imprimitive, or cyclic of index k. Primitivity admits the following algebraic

characterization:

Theorem 4.2. A is primitive if and only if there exists m such that Am > 0.

Often, this is taken as the definition of primitivity, and the relationship to

graph theory can be deduced from it. Note that all the results discussed thus far

concern only the nonzero entries of A, but not their actual value. Thus, these

results can be used to relate a graph G to its weighted adjacency matrix G.

4.4.2 Perron-Frobenius Theorem for Irreducible Matrices

Thus far, we have addressed the structure of nonnegative matrices and its rela-

tionship to related directed graphs. We now turn to the spectral structure of

nonnegative matrices. The following celebrated theorem was proven for positive

matrices by Perron and extended to irreducible matrices by Frobenius. We will

denote the spectral radius of a matrix A as ρ(A).
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Theorem 4.3 (Perron-Frobenius). Let A be a nonnegative, irreducible matrix.

The following are true:

1. ρ(A) > 0.

2. ρ(A) is a simple eigenvalue of A, and any eigenvalue of A of the same mod-

ulus is also simple.

3. A has a positive eigenvector x corresponding to ρ(A).

4. B > A⇒ ρ(B) > ρ(A).

Furthermore, if A is primitive, then all eigenvalues of A other than ρ(A) have

modulus strictly less than ρ(A).

The Perron-Frobenius theorem states that the spectral radius of a nonnegative

matrix is in fact an eigenvalue, often known as the Perron root. Associated with

the Perron root is a positive eigenvector, known as the Perron vector. When A is

irreducible, it will have positive left and right Perron vectors. When A is reducible,

a more complicated picture emerges, as we shall see shortly.

If A is not primitive, the eigenvalues of A have an interesting structure:

Theorem 4.4. Let A be a nonnegative, irreducible matrix which is cyclic of index

k. Then A has k eigenvalues of modulus ρ(A), equal to

λi = ρ(A)e
2πj
k
i, i = 0, . . . , k − 1. (4.4)

4.4.3 Reducible Matrices

When a matrix A is reducible, the graph structure of the components of G(A),

as shown in the example in Figure 4.3, will prove useful in extending the ideas of

Perron-Frobenius theory. It is possible to enumerate the components such that no

component has access to any component behind it in the ordering. When this is

done (and the vertices within each component are ordered arbitrarily), then A has

the following block structure:

A =




A1,1 0 . . . 0
...

. . .
. . .

...

Am−1,1 . . . Am−1,m−1 0

Am,1 . . . Am,m−1 Am,m



, (4.5)
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where Ai,i are the principal submatrices corresponding to each component. The

component corresponding to i = 1 is final, and the component corresponding to

i = m is initial, though they need not be the only initial and final components.

Each Ai,i is irreducible or else a 1 × 1 zero matrix. As such, each irreducible Ai,i

has a Perron root. Clearly, the eigenvalues of A are the union of eigenvalues of

Ai,i. A component is termed basic if its Perron root equals ρ(A).

Rothblum [87] analyzed the eigenstructure of an arbitrary reducible matrix,

using the location of the basic components within the graph generated by the

component structure. In the next section, we specialize those results to the Lapla-

cian.

4.5 Eigenvalues of Laplacians

4.5.1 Elementary Results

We now return to the structure of the spectrum of the Laplacian. We begin with

the observation that the rows of L sum to zero by definition, which implies that

Proposition 4.1. Zero is an eigenvalue of L.

Furthermore, this condition implies that 1T is the eigenvector associated with

this eigenvalue. Of course, any eigenvalue λ of L corresponds to an eigenvalue

1 − λ of G. Thus, G has an eigenvalue of 1. The fact that this eigenvalue has a

positive eigenvector implies that it is, in fact, the Perron root of G. We therefore

conclude from the Perron-Frobenius theorem that

Proposition 4.2. All eigenvalues of L lie in a disk of radius 1 centered at the

point 1 + 0j in the complex plane.

We denote this region the Perron disk. We can apply further ideas from Perron-

Frobenius theory:

Proposition 4.3. If G is strongly connected, the zero eigenvalue of L is simple.

If, in addition, G is aperiodic, all nonzero eigenvalues lie in the interior of the

Perron disk. If G is k-periodic, L has k evenly spaced eigenvalues on the boundary

of the Perron disk.

If G is undirected, then L is similar to I − D1/2AD1/2, which is clearly sym-

metric, from which we conclude that

Proposition 4.4. If G is undirected, then all eigenvalues of L are real.
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When G is undirected, the graph is either strongly connected or disconnected.

Since we will be concerned with Laplacians of directed graphs, we wish to con-

sider the eigenvalue/eigenvector structure of L for directed graphs. To do so, we

specialize the results of [87], and derive the following:2

Proposition 4.5. The multiplicity m of the zero eigenvalue of L is equal to the

number of final components of G. The dimension of the kernel of L also equal to

m, and is spanned by a basis of m nonnegative vectors.

Proof. We begin by proving the first assertion. Suppose G has m components,

and let G be partitioned as in Equation (4.5). The final components of G have

the property that if component j is final, Gj,i = 0 for all i < j. Thus, the rows

of Gj,j sum to one, implying that each final component is basic. We now consider

the non-final components. Let G̃j be the induced subgraph of the jth component,

presumed non-final, and let G̃j its weighted adjacency matrix. Because G̃j is non-

final, it must contain at least one vertex whose out-degree is less than that of the

corresponding vertex in G. Obviously, no vertex can have a higher out-degree than

its counterpart. We see therefore that Gj,j < G̃j , which implies by Theorem 4.3

that the Perron root of Gj,j is less than 1. Thus, only the final components of G

are basic, meaning the multiplicity of 1 as an eigenvalue is equal to the number of

basic components.

We now construct m linearly independent vectors which lie in the kernel of

L. Suppose there are r non-final components. If r = 0, the graph consists of m

disconnected components, and the result is trivial. If r 6= 0, let gi,j denote the

vector populated by the row sum of Gi,j , and let gk = [gTm+1,k, . . . , g
T
m+r,k]

T . Let

G′ be the lower right-hand quadrant of G when partitioned into final and non-final

components. Let vk = [01, . . . , 1k, . . . , 0m, w
T
k ]
T , where the first m terms are sized

compatibly with their components. and w is sized compatibly with the r non-final

components. We see that

Gvk = [01, . . . , 1k, . . . , 0m, g
T
k ]
T + [01, . . . , 0k, . . . , 0m, (G

′wk)
T ]T . (4.6)

Recall that ρ(G′) < 1, as discussed above, so I − G′ is invertible. In order for vk

2Rothblum uses the term “class” to refer to the subset of rows whose corresponding vertices

induce a component of the associate graph. For simplicity, we will use component to refer both

to the subgraph and the rows of the matrix which correspond to it.
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to be an eigenvector of G, we must choose wk such that

gk +G′wk = wk (4.7)

To do so, choose wk = (I−G′)−1gk. Clearly the vk are linearly independent of one

another. We thus construct m linearly independent eigenvectors corresponding to

the 1 eigenvector of G, and hence the kernel of L. Of course, there cannot be more

than m linearly independent eigenvectors in the kernel of L, since the multiplicity

of the zero eigenvalue is m.

Finally, we prove that wk is nonnegative. Each gk is nonnegative by construc-

tion. I−G′ has the property that all off-diagonal elements are non-positive and all

eigenvalues have positive real part. Therefore ([41], Theorem 4.3), I−G′ is known

as a K-matrix, and its inverse (known as an M-matrix) is nonnegative. Thus, wk,

and hence vk, are nonnegative. ¥

Of course,
∑m

k=1 vk = 1T , since this is known to be in the kernel of L. We see

that when multiple final components exist, the positive Perron eigenvector is “split

up” among m vectors, each of which can be associated with a final component.

4.5.2 Additional Results

If G consists of two disconnected components, it is clear that the multiplicity of

the zero eigenvalue of L is two. If, instead, the two components are connected

by a small number of arcs, it follows from a perturbation argument that L will

have an eigenvalue near zero. For this reason, Fiedler [39] termed this eigenvalue

the algebraic connectivity of the graph, and began a program of research which

continues to this day relating this parameter to graph-theoretic concepts, includ-

ing measures of connectivity in graphs. Fiedler [40] also showed the associated

eigenvector, often termed the Fiedler vector, to be useful in partitioning graphs

into densely connected subgraphs. While his paper applies to undirected graphs,

the heuristic technique he developed can be applied to directed graphs as well; see

[44] for one such example.

When G is undirected, the eigenvalues of the Laplacian can be viewed as so-

lutions to a minimization or maximization problem following the Rayleigh-Ritz

theorem [51]. This characterization of the eigenvalues has led to many bounds

on the eigenvalues of L and links to other topics in graph theory; see [24] for an

excellent exposition of this topic. For example, finding optimal cuts in graphs has
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led to the definition of Cheeger constants for graphs in an analogous fashion to

their definition for Riemannian manifolds, which in turn bound the eigenvalues of

L; again, see [24], and [3, 43, 81] for more recent results. Again, though these

results are for undirected graphs, they can sometimes be extended to bound the

real component of eigenvalues of directed graphs.
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Chapter 5

Stabilization of Vehicle Formations

In this chapter, we use the ideas from graph theory developed in the previous

chapter to address stability of vehicle formations. We identify the Laplacian as

the graph-theoretic object of interest in the context of stabilization of relative po-

sition in a vehicle formation. This leads to formation stability criteria involving

only the local plant and control law and the eigenvalues of the Laplacian. The

negative inverse of the Laplacian eigenvalues play the role of the −1 point in the

Nyquist stability criterion. We use graph-theoretic characterizations of Lapla-

cian eigenvalue locations to evaluate formation interconnection strategies from the

perspective of formation stability. Our approach in this section is similar to the

approach in [48, 84], but from a control-theoretic perspective.

The chapter is structured as follows. In Section 5.1, we present the formation

equations of motion and identify the role of the Laplacian. In Section 5.2, we

present several stability theorems. In Section 5.3, we discuss the implication of

different structures in the graph for formation stability.

5.1 Relative Position Control in Vehicle Formations

Vehicle formations can be assigned a wide range of tasks; in this chapter we con-

sider one such task to gain insight into the effect of network topologies on formation

dynamics. The problem we consider in this chapter is the stabilization of the rela-

tive position of a set of vehicles with identical linear dynamics. This problem arises

in the context of automated highway systems [106] and satellite formations [108].

At the end of the chapter we will comment on mixed absolute/relative position

measurements, as might occur in scenarios such as vehicle pursuit and obstacle

avoidance.
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5.1.1 Formation Equations of Motion

We consider a set of N vehicles, whose (identical) linear dynamics are denoted

ẋi = PAxi + PBui, (5.1)

where i ∈ [1, N ] is the index for the vehicles in the flock. Note that each vehi-

cle’s dynamics are decoupled from the vehicles around it. Each vehicle’s sensed

information is defined as follows:

yi = PC1
xi (5.2)

zij = PC2
(xi − xj), j ∈ Ji, (5.3)

where the set Ji ⊂ [1, N ]\{i} represents the set of vehicles which vehicle i can sense.

Thus, yi represents internal state measurements, and zij represents external state

measurements relative to other vehicles. To obtain relative state measurements, a

vehicle must have access, in this case via some form of sensing, to other vehicles’

states. We assume that Ji 6= ∅, meaning each vehicle can see at least one other

vehicle. Note that a single vehicle cannot drive all the zij terms to zero simul-

taneously; the errors must be synthesized into a single signal. For simplicity, we

will assume that all relative state measurements are weighted equally to form one

error measurement:

zi =
1

|Ji|

∑

j∈Ji

zij . (5.4)

Of course, we could also weight different measurements unequally if desired. We

also define a decentralized control law K(s) which maps yi, zi to ui, represented in

state-space form by

v̇i = KAvi +KB1
yi +KB2

zi

ui = KCvi +KD1
yi +KD2

zi.
(5.5)

We now consider the system of all N vehicles together. We use the hat notation,

for example Â, to represent the matrix A repeated N times along the diagonal, or

Â = IN ⊗A, where ⊗ represents the Kronecker product. Using this notation, the

total system dynamics is represented as follows:

ẋ = P̂Ax+ P̂BK̂D1
P̂C1

x+ P̂BK̂D2
P̂C2

L(n)x+ P̂BK̂Cv

v̇ = K̂Av + K̂B1
P̂C1

x+ K̂B2
P̂C2

L(n)x
(5.6)
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or

(
ẋ

v̇

)
=

(
P̂A + P̂BK̂D1

P̂C1
+ P̂BK̂D2

P̂C2
L(n) P̂BK̂C

K̂B1
P̂C1

+ K̂B2
P̂C2

L(n) K̂A

)(
x

v

)
. (5.7)

The resulting system is block diagonal with the exception of the matrix L(n),

which contains the relative sensing information. We now turn our attention to

this matrix. Define L in the following way:

Lii = 1 (5.8)

Lij =

{
− 1
|Ji|

, j ∈ Ji

0, j /∈ Ji.
(5.9)

Of course, L is the Laplacian of a graph to be defined in the next section. Letting

n be the dimension of xi, L(n) is of dimension Nn×Nn and is defined by replacing

each element of L with that element multiplied by In (i.e., L(n) = L ⊗ In), thus

generating a version of L dimensionally compatible with xi.

5.1.2 Commanded Vehicle Offsets

The goal of the controller as defined above is to drive the states (or at least a subset

of them) to a common value. In this problem definition, we are not concerned

about the final value so long as the vehicles share it. For some applications,

such as orienting underwater vehicles, this is an understandable goal. For other

applications, such as relative satellite positioning, it is necessary to add an offset

term to zij to achieve the desired intervehicle spacing. We define a time-varying

offset function h : [1, N ] × [1, N ] × R → Rm, i, j, t 7→ hij(t) , where m is the

dimension of zij , which defines the intervehicle spacing. We assume that h is

defined so that for all i, j, k, hij + hjk = hik. This definition means that it is

possible to position each vehicle such that zij = hij for all i, j. One way to

generate such a function is to define an offset hi0(t) for each vehicle relative to an

arbitrary reference. Letting h0(t) be the vector of hi0(t) offsets, the error signal is

then defined by

z(t) = L(m)(y(t)− h0(t)). (5.10)

The offset function acts as an input to the dynamical system. We assume that

hij(t) is bounded. Because BIBO stability is implied by internal stability for LTI

systems, the actual value of the hij terms does not play a role in the stability
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analysis, and will henceforth be omitted. In general, hij will be chosen to be

consistent with the open-loop dynamics of the vehicles in formation. We will not

consider the case where h is also a function of the measurements, which is the case

for variable spacing policies discussed in [96, 106].

5.1.3 Graph Laplacians and Formation Dynamics

We are now able to identify the role of the sensing graph in the formation dynamics.

The vehicles and their sensing indices Ji together form a graph, where each node

represents a vehicle and an arc leads from node j to node i if j ∈ Ji. Our

assumption that each vehicle can sense at least one other vehicle implies that

the out-degree of each vertex is at least 1. The matrix L defined in Equation

(5.8) is none other than the Laplacian of the graph, defined in Section 4.3. The

normalization of the Laplacian is equivalent in our setting to our averaging of the

zij terms so as not to add a gain term. This stands in distinction to other examples

in the literature which use the Laplacian-like matrices in analyzing stability of

interconnected systems [84].

The classification of graphs can now be translated into more familiar terms. A

final component corresponds to one which is sensed by others but does not sense

others, often known as a “leader.” Similarly, initial components correspond to

“followers” in the formation. Note, however, that the leader-follower distinction is

not a function of one’s position relative to other vehicles, but a function of one’s

position within the topology of the sensed information flow. (The two, of course,

may coincide.) When a graph is irreducible, no leaders or followers are distinguish-

able within the formation. As we discussed earlier, leader-follower formations are

simpler from a stability perspective in that the motion of the vehicle “ahead” can

be treated as a disturbance, whereas strongly connected formations must somehow

take into account the global picture. In the next section, we will make all these

ideas precise using the Laplacian.

5.2 Stabilization of Vehicle Formations

5.2.1 The Role of The Laplacian in Formation Stability

We now consider the relationship between graph Laplacians and formation stabil-

ity. We show the following to be true:
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Theorem 5.1. A local controller K(s) stabilizes the formation dynamics in Equa-

tion (5.7) iff it simultaneously stabilizes the set of N systems

ẋ = PAx+ PBu

y = PC1
x

z = λiPC2
x

(5.11)

where λi are the eigenvalues of L.

Proof. We will show the above to be true by transforming the closed-loop dy-

namics in the following way: Let T be a Schur transformation of L, meaning the

unitary matrix such that U = T−1LT is upper triangular with the eigenvalues of

L along the diagonal [51]. Clearly, T(n) is a Schur transformation of L(n). This

transformation has the following useful property, a clear consequence of the block

structure of the relevant matrices:

Lemma 5.2. Let X be an r × s matrix, and Y be an N ×N matrix. Then

X̂Y(s) = Y(r)X̂. (5.12)

Proof. Using Kronecker product algebra, both sides can be shown to be equal to

Y ⊗X. ¥

Applying this property to the system dynamics, we see if we let x̃ = T(n)x, and

ṽ = T(m)v, we can rewrite Equation (5.7) as

(
˙̃x

˙̃v

)
=

(
P̂A + P̂BK̂D1

P̂C1
+ P̂BK̂D2

P̂C2
U(n) P̂BK̂C

K̂B1
P̂C1

+ K̂B2
P̂C2

U(n) K̂A

)(
x̃

ṽ

)
. (5.13)

The elements of the transformed system matrix are either diagonal or upper tri-

angular. This means that stability of this system is equivalent to the stability of

the systems along the diagonal, i.e.:

˙̃xi = (PA + PBKD1
PC1

+ λiPBKD2
PC2

)x̃i + PBKC ṽi
˙̃vi = (KB1

PC1
+ λiKB2

PC2
)x̃+KAṽ

(5.14)
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which is equivalent to the controller K(s) stabilizing the system

ẋ = PAx+ PBu

y = PC1
x

z = λiPC2
x.

(5.15)

¥

We thus identify the Laplacian eigenvalues as the object of interest in un-

derstanding formation stability. In this context, the zero eigenvalue of L can be

interpreted as the unobservability of absolute motion of the formation in the mea-

surements zi. It seems that a prudent controller design strategy is to close an inner

loop around yi such that the result system is stable, and then to close an outer

loop around zi which achieves desired formation performance. For the remainder

of this paper, we concern ourselves solely with the outer loop. Hence, we assume

from now on that PC1
is empty and that PA has no eigenvalue in the open RHP.

We do not wish to exclude eigenvalues along the jω axis because many vehicle for-

mations (e.g., vehicle platoons, satellite clusters) possess those, and the presence

of unobservable secular or periodic motion of the formation may be tolerable in

those cases. If K(s) stabilizes the system in Equation (5.15) for all λi other than

the zero eigenvalue, we will say that it stabilizes the relative formation dynamics.

5.2.2 Location of Equilibrium Points

In addition to verifying stability, we wish to verify that the (relative) equilibrium

point about which it is stable is consistent with the goals of the formation. The

goal of the formation is to have zij be equal to zero for all i, j, not just for j ∈ Ji,

meaning each vehicle is positioned properly relative to every other vehicle. How-

ever, only the measurement zi is sent to the controller. We must verify conditions

under which zi = 0 for all i implies zij = 0 for all i, j.

As seen in Equation (5.10), z will be zero if y − h0 lies in the kernel of L.

The trivial solution is, of course, y = h0, which satisfies the formation goals by

construction of h0. The remainder depends on the kernel of L. If the graph is

strongly connected or has a single leader component, the kernel of L is spanned

by 1T . In this case, possible equilibria take the form y = h0 + k1T . This entire

subspace is consistent with the formation goals, since it still satisfies yi − yj =

hi0 − hj0 = hij .
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If multiple leader components exist, then the kernel of L will include a non-

constant eigenvector, and the formation will likely stabilize about a point which is

not consistent with the formation goals. This is because of the unobservability of

each leader component by the other, and the inability of the follower components

to distinguish between the two. We will therefore assume that our formation has

no more than one leader component, implying that G is irreducible and that the

Perron eigenvalue is simple. We will see again in the next chapter that formations

with multiple leader components exhibit, unsurprisingly, very poor performance.

5.2.3 Stability Theorems

We now return to the topic of formation stabilization. In general, proving simul-

taneous stabilization results can be difficult. This set of systems is special, in that

they differ only by a complex scalar. For SISO systems, we can state a second

version of Theorem 5.1 which is useful for stability and robustness analysis:

Theorem 5.3. Suppose P (s) = PC2
(sI −PA)

−1PB is SISO. Then K(s) stabilizes

the relative formation dynamics iff the net encirclement of −λ−1i by the Nyquist

plot of K(s)P (s) is zero for all nonzero λi.

Proof. The Nyquist criterion states that stability of the closed loop system in

Theorem 5.1 is equivalent to the number of CCW encirclements of −1 + j0 by

the forward loop λiP (jω)K(jω) being equal to the number of RHP poles of P (s),

which is assumed to be zero. This criterion is equivalent to the number of encir-

clements of −λ−1i by P (jω)K(jω) being zero. ¥

In the case where P (s) is MIMO, the formation can be thought of as a struc-

tured uncertainty of the type scalar time identity (see [111]) where the scalars

are the Laplacian eigenvalues. More specifically, we shall write the eigenvalues

as λi = 1 + µi and consider bounds on µi. Suppose it is known that |µi| ≤ M

for all nonzero λi. If we close the loop around the unity block and leave µiI as

an uncertainty, the resulting lower block is C(s) = P (s)K(s)(I + P (s)K(s))−1,

which is assumed to be stable. The following result from robust control theory

then applies:

Theorem 5.4. K(s) stabilizes the relative formation dynamics of the MIMO ve-

hicle P (s) if

ρ(C(jω)) < M−1 ∀ω ∈ (−∞,∞) (5.16)
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This formulation enables the control designer to use tools from robust control

theory to design a controller, assuming the perturbation of the Laplacian eigen-

values can be bounded. Not considered here is the case where the graph itself is

a function of vehicle position, and therefore must be included in the representa-

tion of the formation dynamics. Such an analysis would require tools from hybrid

systems analysis, and is outside the scope of this thesis.

5.2.4 Mixed Absolute/Relative Sensing

The results we developed thus far have focused on a formation where only relative

position measurements exists. We now briefly address the case where mixed abso-

lute and relative measurements exist. This would apply to a formation in which

some vehicles could sense the target but needed to approach it in formation, or

a case where a formation needed to avoid an obstacle which some of the vehicles

could sense.

Insofar as the target is a source of sensing information, it can be included in the

graph. Of course, it is a final component. The dynamics of the target are not rele-

vant to formation stability (assuming they are bounded), so our stability analysis

concerns only the submatrix of L containing the vehicles. In this case, the error

signal of vehicle i takes the form (assuming equal weighting of all measurements),

zi =
1

|Ji|+ 1


zi0 +

∑

j∈Ji

zij


 . (5.17)

In this case, the relevant submatrix of L will still have 1 along the diagonal, but

the off-diagonal terms will sum to − |Ji|
|Ji+1|

. Assuming all vehicles have access to

the target, then ρ(G) < 1 (Theorem 4.3), so L does not have a zero eigenvalue.

This corresponds to the fact that unobservability of bulk formation motion is no

longer relevant when the formation can view the target. From this perspective, the

presence of absolute measurements tightens the bound on λ(L), which improves

the stability picture. However, it does not guarantee that individual eigenvalues

will not be nearer to the bound than they were in the case where only relative

measurements where present.

5.2.5 Example: Double Integrator with Time Delay

Let P (s) = e−sT

s2
and K(s) = Kp +Kds. This corresponds to a double integrator

with a time delay being controlled by a PD controller. This is equivalent to the
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hovercraft of Section 2.3.2 where the force offset is zero and rotational dynamics

are ignored. Figure 5.1 shows a formation graph, and Figure 5.2 the Nyquist plot

of K(s)P (s) with the Laplacian eigenvalues. The black ‘o’ locations in Figure 5.2

correspond to the eigenvalues of the graph defined by the black arcs in Figure

5.1, and the ‘x’ locations are for eigenvalues of the graph when the dashed arc

is included as well. This example clearly shows the effect the formation has on

stability margins. The standard Nyquist plot reveals a system with reasonable

stability margins — about 8 dB and 45 degrees. When one accounts for the effects

of the formation, however, one sees that for the ‘o’ formation, the stability margins

are substantially degraded, and for the ‘x’ formation, the system is in fact unstable.

Interestingly, the formation is rendered unstable when additional information (its

position relative to vehicle 6) is used by vehicle 1. We shall return to this point

shortly.

5.3 Evaluating Formations via Laplacian Eigenvalues

The location of Laplacian eigenvalues has emerged as the parameter which enables

formation stability to be analyzed on the local level. We now turn to the question

of bounding or predicting eigenvalue location based on properties of the graph. We

begin by considering simple formation structures and their eigenvalue placement.

Examples of these graphs are shown in Table 5.1, where sample graphs, their

nonzero spectra, and the locations on the Nyquist plot are shown.

1. Complete graph. The complete graph is one where every possible arc exists.

In this case, the eigenvalues of a graph with N vertices can be analytically

determined to be zero and 1 + 1
N−1 , the latter repeated N − 1 times. For

large N , stabilization of the complete graph is equivalent to stabilizing an

individual vehicle. Of course, a complete interconnection structure can place

an enormous burden on each vehicle’s sensing and computational capacities.

2. Acyclic (directed) graph. This graph has the 1 eigenvalue repeated N times.

This can be seen from the fact that the vertices can be ordered such that L is

upper triangular with ones along the diagonal. This is the “leader-follower”

architecture discussed earlier. In this case, vehicle stabilization is truly a local

result, since other vehicles’ dynamics enter only as a disturbance. However,

this architecture has drawbacks regarding disturbance rejection.
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Figure 5.1: Formation Graph.
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Figure 5.2: Formation Nyquist Plot.
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3. Single directed cycle. This graph is periodic, and therefore has eigenvalues

at 1 − ej(i−1)/2π, i ∈ [1, N ] according to Proposition 4.3. These eigenvalues

lie on the boundary of the Perron disk in which all the eigenvalues must lie.

Note that the negative inverse of these points lie on the -0.5 vertical in the

complex plane.

4. Two-cyclic undirected graph. A graph of this type would include a vehicle

platoon with bidirectional position measurement. This graph will have an

eigenvalue at 2, due to its periodicity, and all other eigenvalues will be real,

due to the symmetry of the graph.

Figure 5.3 shows various eigenvalue regions for −L, and Figure 5.4 shows the

corresponding regions for −L−1. The region bounded by the solid line is the Perron

disk in which all eigenvalues must lie. Its inverse is the LHP shifted by -0.5. The

dashed region is a bound in the magnitude of the nonzero eigenvalues of L. It

corresponds to a shifted circle on the right-hand side of Figure 5.4. Finally, the

dash-dot line corresponds to a bound on the real component of the eigenvalues.

The inverse of this bound corresponds to a circle which touches the origin. The

shaded region represents the “desirable” region, in which the eigenvalues’ locations

do not differ substantially from −1.

As we discuss in Chapter 4, significant efforts have been made by graph the-

orists to relate eigenvalue location to various graph-theoretic properties. These

results were largely derived for undirected graphs, whose eigenvalues are real and

can be bounded using variational techniques. For directed graphs, the problem

is more challenging. Nonetheless, we can make qualitative statements about the

effect of graph structure on eigenvalue placement, and hence stability.

5.3.1 Graph Periodicity and Formation Stability

If we consider the complete graph and the single directed cycle graph of Table

5.1 as representing two extremes — one with all eigenvalues at a single location,

the other with eigenvalues maximally dispersed, we see that eigenvalue placement

can be related to the rate of mixing of information through the network. When

the graph is highly connected, the global component of an individual vehicle’s

dynamics are rapidly averaged out through the rest of the graph, and thus has

only a minor effect on stability. When the graph is periodic, the global component

of the dynamics introduces periodic forcing of the vehicle, and the rest of the

network never averages it out. This is represented on the Nyquist plot by putting
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λ(L) = {1 + 1
N−1} −1

λ(L) = {1}
−1

λ(L) ⊂ [0, 2]
−1

λi(L) = 1− e
2πj
N

i

−1

λ(L) 3 2
−1

Table 5.1: Sample Graphs, Spectra, and Nyquist Locations.
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the inverse eigenvalues nearer to the imaginary axis, thus diminishing stability

margins.

We see that aperiodicity is a desirable property of formation interconnection

topologies. With this insight, we can see why the system in Figure 5.1 loses

stability margin when a link is added. The “solid” graph possesses two 3-cycles

and two 2-cycles. When the dashed link is added, an additional 3-cycle is created,

rendering the graph more nearly 3-periodic. This drives two of the eigenvalues

nearer to the positions they would occupy if the graph were truly periodic, i.e.,

the −0.5 vertical. An interesting, and to this author’s knowledge, open challenge

is to quantify this insight: to define a measure of periodicity within a graph which

can be correlated to bounds on the eigenvalue locations.

5.3.2 Stability of Sparsely Connected Formations

Another aspect of of eigenvalue placement which deserves mention is that of weakly

connected graphs. As we discussed in Section 4.5, if we consider two disconnected

subgraphs, then clearly the Laplacian has two eigenvalues at zero. If we weakly

connect the graphs, one of the eigenvalues moves slightly away from zero. From

a controls perspective, these near-zero eigenvalues represent weakly observable

modes. On the formation Nyquist plot, they will be far from the origin, but they

have the potential to destabilize a graph if its Nyquist plot possesses an upper gain

margin. Generally speaking, they will not impact formation stability. However, one

cannot deduce stability of the formation by examining separately the eigenvalues

of the subgraphs: connecting the subgraphs perturbs all the eigenvalues, not only

the zero eigenvalue. In [23], bounds on the perturbation of these eigenvalues are

derived as a function of graph density parameters derived therein.

Most of the work cited earlier regarding eigenvalue bounding focuses on the

algebraic connectivity and its relationship to substructures in the graph. As we

have seen, the algebraic connectivity does not directly impact stability margins.

Of greater interest to this application are bounds such as λ in Figure 5.4, which

identify the region in which the majority of eigenvalues are located, with the

possible exception of isolated eigenvalues near the origin. Examining the structure

of the cycles in the graph may lead to results in this area.
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5.3.3 Weighted Graphs

It is important to note that these results do not depend on the equal weighting of

the sensed signals used to define the Laplacian in Equation (5.8). The concepts of

connectivity and periodicity explored in this (and the following) chapter depend

only on the nonzero elements of the Laplacian, not on their actual values. As such,

these results are equally valid for the case of weighted Laplacians, where the off-

diagonal elements of the Laplacian are not equal. However, we will maintain the

restriction that the off-diagonal elements sum to −1. This restriction will maintain

the Perron root of G at 1, and is implies that the averaging of sensed signals

performed by each vehicle does not add gain in the control loop. Maintaining this

constraint will be even more important in the next chapter.

This observation leads one to consider the possibility of a weighting algorithm,

by which each vehicle varies the weighting of each input it sees in order to aug-

ment stability or improve some performance criterion. This topic is an interesting

avenue of research, but lies outside the scope of this thesis: in the absence of a

weighting algorithm, we have restricted our attention to the simplest case of equal

weighting. As we have shown by example, naive decisions by an individual vehicle

can have negative consequences for the formation. To be effective, any weighting

algorithm will require some information from other vehicles. The identification of

such parameters to communicated between vehicles is a natural first step in such

a research effort.
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Chapter 6

Information Flow in Vehicle Formations

6.1 Introduction: A Motivating Example

In the previous chapter, we discussed how sparseness in the sensing graph can lead

to poor stability margins. In this chapter, we begin our discussion of information

flow design by examining the effect of sparseness on performance. Returning to

the example in Section 5.2.5, suppose six vehicles whose dynamics are double

integrators in the plane are asked to take up positions on the points of a regular

hexagon relative to one another. (In this case, the offset hi0 = [cos πi3 , sin
πi
3 ]).

Figure 6.1 shows the trajectories followed by the six vehicles as they approach

their target positions. The initial positions are marked with an ‘o,’ and the final

positions are marked with an ‘x.’ While the formation is stable and achieves its

desired position (as verified in the previous chapter), the trajectories followed by

the vehicles are very circuitous and far from optimal. This is a clear consequence

of the fact that individual vehicles do not have global knowledge of the behavior

of the formation. Specifically, the vehicles do not have knowledge of the formation

center, which would enable them to position themselves relative to the formation

center rather than relative to the small number of vehicles visible to each.

In this chapter, we will explore strategies for flow of information which enable

the vehicles to acquire the information they lack. In doing so, we must keep in

mind several areas of concern. The first is the interaction of the information flow

loops with the vehicle dynamics and the possible consequences for stability. The

tools for formation stability analysis developed in the previous chapter will be

useful in this regard. The second is the need of the information flow policy to be

robust to changes in the graph which defines the flow of transmitted information,

as well as lack of knowledge at the local level of global structures in the graph.
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Figure 6.1: Hexagon Acquisition, No Information Flow.

Finally, we wish to pursue information flow policies that minimize the amount of

information exchange yet enable robust formation control.

There is no limit to the complexity that information exchange policies could

exhibit. Because our interest is the interaction of the information exchange with

vehicle dynamics, we will eschew the approach to consensus among distributed

systems found in references such as Lynch [69], and instead pursue a “bottom-up”

approach, in which we begin with the simplest forms of information exchange which

remain amenable to stability analysis. As we shall demonstrate, even simple infor-

mation exchange, when properly designed, can yield significant results. Hopefully,

the methodology used in this and the previous chapter contains elements which

can be applied to analyzing the interaction of more complex information exchange

protocols with dynamical systems.

6.2 An Information Flow Paradigm

6.2.1 Problem Setup

In the previous chapter, we assumed that sensed information was available instan-

taneously, and we used a continuous-time model of the vehicle dynamics. In this

case, we will assume that information takes a fixed time T to travel between vehi-

cles. To facilitate analysis, we also model our vehicle as a discrete time dynamical
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system:

xik+1 = PAx
i
k + PBu

i
k

yik = PCx
i
k + PDu

i
k

(6.1)

where k is the time step of duration T and i is the vehicle index. As in the previous

chapter, the error signal used by each vehicle is

zik =
1

|J S
i |

∑

j∈J S
i

yik − yjk, (6.2)

where the index set J S
i represents the set of vehicles sensed by vehicle i, and we

can form the sensing graph based on those sets. Note that the stability results of

Chapter 5 can be reproduced for discrete time systems by plotting the response of

the discrete-time transfer function for z = ejω and applying the Nyquist criterion.

Broadly speaking, any information flow consists of vehicles receiving a trans-

mission from other vehicles and performing some computation using that infor-

mation, information from previous transmissions, and sensed information. Each

vehicle then transmits the results of their computation to other vehicles. We can

view this process as a discrete-time dynamical system where the states are the in-

formation at each vehicle. Thus, a generic information flow law can be represented

pik+1 = f(pik, p
i
k−1, . . . , {p

j
k, p

j
k−1, . . . |j ∈ J

T
i }, z

i
k+1, z

i
k . . .), (6.3)

where J T
i is the set which determines the transmitted information topology. We

will assume that J T
i = J S

i for all i, meaning the sensed information graph and

transmitted information graph are identical. We will henceforth omit the super-

script.

As discussed in the introduction, the graph which defined the information flow

topology need not coincide with the physical realization of the communication

network. Such considerations are outside the scope of this thesis. It should be em-

phasized, however, that conventional notions of network connectivity may not be

applicable in this case. In our case, an arc is present in the graph if a transmission

can reach vehicle i from vehicle j with in time ∆t. Many network systems achieve

high levels of connectivity with little guarantees on latency, and this is often a

limiting factor in control over networks. For this reason, and for others touched

upon in the introduction, we consider the communication topology as uncertain,

regardless of the means by which communication is realized.

The information flow law we are going to investigate will mimic the structure
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of the sensed information, taking the following form:

pik+1 =
∑

j∈Ji

pjk + (yik − yjk) (6.4)

or, in vector form:

pk+1 = G(m)pk + L(m)yk, (6.5)

where G(m) and L(m) are the directed adjacency matrix and Laplacian of the

graph, as defined in 4.3, dimensioned compatibly with the measurement vector

yik whose dimension is denoted m. Henceforth, we shall assume that m = 1,

and dispense with the extra notation. As discussed in the previous chapter, the

commutation result of Lemma 5.2 implies that the dimension of y is not relevant.

For the information flow laws to be derived, one can replicate all the results by

replacing the given transfer functions with the same transfer function repeated m

times along the diagonal.

6.2.2 Convergence of the Information Flow Loop

Let us explore this information flow paradigm in some detail. The information

flow component is a discrete time dynamical system which, as discussed above,

is neutrally stable due to the Perron root of G. We begin by determining the

steady-state behavior of the information flow loop. In preparation, we introduce

some definitions and related lemmas.

Let er denote the right Perron eigenvector of G, and el its left Perron eigen-

vector, normalized such that eTr el = 1. If G is irreducible, both er and el are

positive (Theorem 4.3), so such a scaling must exist. Let E = ere
T
l . The following

relationships between G and E are known to be true: (See [51], p. 498, and recall

that the Perron eigenvalue is 1.)

Lemma 6.1. Gj = E + (G− E)j .

Lemma 6.2. The eigenvalues of G−E are the eigenvalues of G with the Perron

eigenvalue replaced with a zero eigenvalue.

We now state and prove the following theorem:

Theorem 6.3. Suppose the directed graph G(G) is strongly connected and aperi-

odic, and let the input yk be fixed in time. The steady state value of the dynamical
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system in Equation (6.5), when p0 = 0, is

piss = yi −
N∑

j=1

eily
i (6.6)

where eil is the ith element of the left Perron eigenvector of G, scaled so that∑
eil = 1.

Proof. Consider the evolution of Equation (6.5):

pk = Gkp0 +




k∑

j=0

Gj


Ly. (6.7)

We assume that p0 = 0, and we wish to find

pss = lim
k→∞

pk, (6.8)

if such a limit exists.

Substituting into Equation (6.7) via Lemma 6.1, we have

pk =




k∑

j=0

Ej + (G− E)j


Ly. (6.9)

Recalling that E = ere
T
l , and that L shares eigenvectors with G, we see that er

and el are the eigenvectors of L corresponding to the zero eigenvector. Therefore,

EL = ere
T
l L = er0 = 0, and we can rewrite pk as

pk =




k∑

j=0

(G− E)j


Ly. (6.10)

Because G is assumed irreducible and aperiodic, all non-Perron eigenvalues of G

have modulus strictly less than one (Theorem 4.3). Therefore, by Lemma 6.2, we

see that ρ(G − E) < 1. The infinite expansion of pss therefore converges ([51], p.

301) and can be written as follows:

pss =




∞∑

j=0

(G− E)j


Ly

= (I −G+ E)−1Ly
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= (L+ E)−1Ly

= (L+ E)−1(L+ E − E)y

= (I − (L+ E)−1E)y. (6.11)

Now Ler = 0, and Eer = (ere
T
l )er = er(e

T
l er) = er, so (L + E)er = er ⇒

(L+ E)−1er = er, and the above equation can be rewritten

pss = (I − (L+ E)−1E)y

= (I − (L+ E)−1ere
T
l )y

= (I − ere
T
l )y

= (I − E)y. (6.12)

We now interpret the above equation. The eigenvector er is known to be 1T . The

eigenvector el is positive, and is scaled such that
∑

eil = 1. The columns of E are

therefore constant, and the rows are each eTl . Therefore, Equation (6.12) can be

written

piss = yi −
N∑

j=0

eily
i. (6.13)

¥

The information flow loop therefore has the effect of having the formation track

the formation center, where the center is defined according to a weighting given

by the graph. In this architecture, the weighting cannot be chosen, though in

principle it could be set by unevenly weighting the information when performing

the averaging. However, this would require global knowledge of the graph, which

is assumed not to be available.

6.2.3 Shaping the Information Flow

In the above section, we looked at the response of the information flow law to

a constant input. Of course, the input to the information flow law need not

be constant; it will reflect the dynamics of the formation. The designer may

wish to know the response of the filter to different inputs, and to design it to be

within certain tolerances over the range of expected inputs. With that in mind,
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we consider a more general form for the information flow filter:

qk+1 =
∑R

j=0 ajqk−j +G
∑R

j=0 bjqk−j + Lyk

pk =
∑R

j=0 cjqk−j .
(6.14)

In this version, we are computing our current information using information

from previous time steps as well as information received from other vehicles through

a filter. This formulation can also be used to account for the presence of additional

delays in data transmission. As in the previous case, we wish to determine the

steady-state value of the filter for a constant input to understand the effects of the

filter.

We begin by checking stability of the information flow law using the tools from

Chapter 5:

Theorem 6.4. The system in Equation (6.14) is (neutrally) stable if the transfer

function

F (z) =

∑R
j=0 bjz

R−j

zR+1 −
∑R

j=0(aj + bj)zR−j
(6.15)

is (neutrally) stable and its Nyquist plot avoids encirclement of the negative inverse

of any of the nonzero eigenvalues of L.

Proof. We can take the z-transform of Equation (6.14), setting aside the input,

and rewrite it as follows:

zq(z) =
R∑

j=0

ajz
−jq(z) +

R∑

j=0

bjGz
−jq(z)

=

R∑

j=0

(aj + bj)z
−jq(z)−

R∑

j=0

bjLz
−jq(z)

or, if we collect terms not including L and multiply both sides by zR,

q(z) = −

∑R
j=0 bjz

R−j

zR+1 −
∑R

j=0(aj + bj)zR−j
Lq(z). (6.16)

The transfer function in the above equation is F̂ (z), and this equation is equivalent

to the lower loop shown in Figure 6.2. This block diagram has the same structure

as the system of vehicle formations examined in Chapter 5, where it was shown

in Theorems 5.1 and 5.3 that the stability of this system is given by the Nyquist

criterion stated above. Because one set of eigenvalues of this system corresponds
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Figure 6.2: Block Diagram of Information Flow in the Loop.

to the open-loop dynamics, this system can be at best neutrally stable if F (z) is

itself neutrally stable. ¥

We now turn to the steady-state performance of the information flow law. We

assume that cj = bj , which will ensure that the information flow law does not

add gain to the loop, and which will be useful in the stability proofs of Section

6.3. Additionally, if cj = bj , then it is only necessary for each vehicle to transmit

pk =
∑R

j=0 bjq
i
k−j to its neighbors. We also assume that F (z) has all poles on the

interior of the unit circle with the possible exception of a simple pole at 1. Finally,

we assume that the polynomial
∑R

i=0 aiz
R−i has roots in the interior of the unit

circle.

Theorem 6.5. If F (z) stabilizes L in the sense of Theorem 6.4, and under the

above assumptions,

pss = c
(
I − cE − (1− c) (I − c(G− E))−1G

)
y (6.17)

where a =
∑R

j=0 aj , b =
∑R

j=0 bj, and c =
b
1−a .

Proof. If we transform Equation (6.14) to the z-domain, it can be written as

follows:
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zq(z) =
R∑

j=0

ajz
−jq(z) +

R∑

j=0

bjGz
−jq(z) + L

z

z − 1
y (6.18)

The term z
z−1y is the z-transform of a constant y. We recall the Final Value

Theorem for discrete time systems [42]:

lim
k→∞

x(k) = lim
z→1

(z − 1)X(z). (6.19)

We can rewrite Equation (6.18) as

(z − 1)q(z) =


zIN −

R∑

j=0

ajz
−j −

R∑

j=0

bjGz
−j



−1

zLy. (6.20)

The assumed neutral stability of the system implies that the matrix to be inverted

is in fact nonsingular for all |z| > 1, with z = 1 the only possible pole of modulus

1. We can therefore set z = 1 + ε, and be insured of the existence of the inverse

for arbitrarily small ε. We will analyze the expansion for nonzero ε to verify the

existence of the inverse when we take the limit, setting ε = 0.

We begin by extracting a z from the inverted matrix to cancel the z which

postmultiplies it. The resulting expression is

(z − 1)q(z) =


IN −

R∑

j=0

ajz
−j−1 −

R∑

j=0

bjGz
−j−1



−1

Ly. (6.21)

The invertibility of the matrix implies we can again use the expansion of the

inverse, Lemma 6.2 and the fact that EL = 0 to rewrite our expression as

(z − 1)q(z) =


IN −

∞∑

r=1




R∑

j=0

ajz
−j−1 −

R∑

j=0

bj(G− E)z−j−1



r
Ly. (6.22)

We now examine the eigenvalues of our system with G replaced by G−E as ε goes

to zero. The eigenvalues of this system are the poles of F (z) with its loop closed

about each eigenvalue of L. By assumption, they are all stable with the possible

exception of a pole at 1, corresponding to closing the loop about the zero eigenvalue

of L. When we replace G with G − E, we leave the eigenvalues unchanged with

the exception of the Perron eigenvalue, which is now zero. The corresponding

eigenvalues of our system are the eigenvalues of Equation (6.22) with the G − E
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term removed. These eigenvalues are the roots of
∑R

j=0 ajz
R−j , which are in the

interior of the unit disk by assumption. We therefore conclude that the series in

Equation (6.22) converges even when ε = 0, and represent the equation in inverted

form:

lim
k→∞

q(k) = (IN − a− b(G− E))−1 Ly (6.23)

where a =
∑R

j=0 aj and b =
∑R

j=0 bj . Letting c =
b
1−a , we rewrite this as

lim
k→∞

q(k) =
1

1− a
(IN − c(G− E))−1 Ly

=
1

1− a

(
(IN − c(G− E))−1 (IN − c(G− E)− (1− c)G− cE)

)
y

=
1

1− a

(
IN − (IN − c(G− E))−1 (1− c)G+ cE

)
y

=
1

1− a

(
IN − cE − (1− c) (IN − c(G− E))−1G

)
y. (6.24)

The output p(z) is (again, via Final Value Theorem)

lim
k→∞

p(k) = c
(
IN − cE − (1− c) (IN − c(G− E))−1G

)
y. (6.25)

¥

Note that c = 1 corresponds to a+ b = 1, which implies that the system has a

pole at 1. When c = 1, we recover the steady-state result of Theorem 6.3, only we

now see it to be true for any information flow filter with a pole at 1 (and which

stabilizes the graph). When c < 1, the steady-state is offset by an additional term.

Note that when c = 1, the vehicles all agree on the location of the formation center

(expressed in each vehicle’s coordinates), while when c < 1, they do not. We can

say that when c = 1, the vehicles achieve consensus on formation center. From this

perspective, having c = 1 appears to be a desirable property of the information

flow filter. However, when c = 1, the system is only neutrally stable. The reason

the filter converges to a steady state is because the input passed through L, whose

kernel is equal to the Perron eigenvector of G. However, the presence of noise

or sensor errors has the potential to introduce drift. Additionally, the eigenvalue

at 1 means that old information never decays out, rendering the system sensitive

to initial conditions. Of course, the initial conditions of the information flow law

can be set (or reset) by the vehicle, assuming the existence of a protocol which

guaranteed that this could be done without disrupting the formation.
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6.2.4 Example

To understand the effects of shaping the information flow, we will consider two

examples. The first filter is in Equation (6.5). In this case, following Equation

(6.15), F1(z) =
1

z−1 . The second filter is given by

pk+1 = 1.0625pk − 0.2313pk−1 + 0.1875Gpk − 0.0188Gpk−1 (6.26)

qk = 0.1875pk − 0.0188pk−1. (6.27)

This corresponds to F2(z) =
0.1875(z−0.1)
(z−0.25)(z−1) . The pole at 1 means that c = 1 in both

cases. Figure 6.3 shows the Nyquist plot for these two filters. The first lies along

the −0.5 vertical. Points on that line correspond to periodic graphs (see Section

4.5), which confirms Theorem 6.3. The second lies entirely to the right of the −0.5

vertical. Recalling from Section 5.3 that the Nyquist plot points generated by the

Laplacian, −λi(L)
−1, all must lie on or to the left of this vertical, we conclude that

this information flow law stabilizes any graph.

Figure 6.4 shows the response of the two filters to a step response for a sparsely

connected graph. While both settle in approximately 0.5 sec (using a time step of

0.02 sec), the first filter exhibits ringing due to the proximity of the closed loop

poles to the unit circle. The second filter has a much smoother response. We see

how the information flow filter can be designed to achieve desirable responses and

robustness to uncertainty in the graph. The information flow filter should also be

designed to have good tracking properties over the frequency range of the vehicle

dynamics.

6.2.5 Information Flow in Weakly Connected Graphs

The results derived above assumed strong connectivity in the formation graph. In

fact, we can generalize these results to the case of weakly connected graphs with

a single leader component, as discussed in Section 5.2. The results derived above

depended solely the Perron root being an isolated eigenvalue with the correspond-

ing right eigenvector being 1T . This is still the case when the graph is weakly

connected with a single leader component. The difference will be in the weighting

of the vehicles in calculation of the formation center. By examining the represen-

tation of G in Equation 4.5, it is easily verified that the left Perron eigenvector

of G is equal to [e1l , 0, 0, 0, . . . , 0], where e
1
l is the left Perron eigenvector of the

leader component. We can thus interpret the weighting of Theorem 6.3 to mean
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Figure 6.3: Information Filter Nyquist Plots.
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that only the position of the vehicles in the leader component are included in the

determination of the formation center. This is clearly necessary, since the leader

vehicles receive no information regarding the follower vehicles. What is significant

is that the formation still achieves consensus on the formation center despite the

lack of strong connectivity.

When multiple leader components exist, the situation is, unsurprisingly, far

worse. In the extreme case, where G consists of two disconnected subgraphs,

clearly each component will determine its own reference position, and the two

components will act independently. When a follower component has access to

two leader components, there will be two Perron eigenvectors, and 1T will lie in

the subspace spanned by them (Theorem 4.5). The reasoning used in Theorem

(6.3) for removing the Perron eigenvalue can still be applied, and the information

flow will achieve steady state. However, the formation will not achieve consensus:

the reference supplied to a vehicle in the follower component will coincide neither

with the reference in either leader component, nor with the reference supplied to

another vehicle in the same component. This is because achieving consensus relied

on the uniqueness of 1T as the Perron eigenvector.

6.2.6 Mixed Absolute/Relative Sensing

The results of the above section give insight into extending these results to the

case where some vehicles can sense their position relative to the target or to an

absolute reference frame. In that case, the desired graph structure is that the

target be the sole leader component of the graph to which all other vehicles have

access. (Obviously, the target cannot be anything other than a leader, since it

does not have access to the formation.) In this case, the Perron eigenvector, as

discussed above, will be [1, 0, 0, . . .]T , meaning each vehicle’s information converges

to its position relative to the target — a desirable result. Of course, the target

is not transmitting any information, so the vehicles that sense the target must

generate the information the target would be transmitting. Since the target is by

definition at its desired location, the target’s transmitted information is just zero.

6.3 Information Flow in the Loop

The information flow filter supplies each vehicle with the information it cannot

sense: a formation center about which to do control. In this setting p is the input

to the controller K(z). A block diagram for this architecture is shown in Figure
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6.2. As before, we can analyze stability with respect to uncertainties in the graph

by isolating L and applying the Nyquist criterion as in Theorem 5.3. In this case,

one determines stability by analyzing the Nyquist plot of

F (z)(1 +K(z)P (z)). (6.28)

For a given plant and controller, the information flow loop can be designed

to provide desirable margins. However, care must be taken in interpreting the

stability margins derived from this plot. The gain and phase margins of this

plot do not correspond to uncertainties in the plant in the typical fashion due

to the location of P (z) in the transfer function. Instead, they correspond more

directly to uncertainties in L. Small variations in P (z) can produce unexpected

perturbations of the Nyquist plot. A reasonable design methodology is to design

K(z) to stabilize P (z), without regard to the graph (remember that stabilizing the

formation is never easier than stabilizing an individual vehicle) and then design

F (z) to stabilize L. However, the coupling between the dynamics of the two can

produce unexpected results. In this section, we explore a means to improve this

situation.

The information flow algorithm presented earlier is necessarily reactive; it does

not anticipate the motion of the cluster. A logical means of improving performance

is to supply the information flow loop with feedforward information regarding the

expected motion of the formation.

Recalling that the information represents an averaged position of the vehicles’

positions, a logical choice for a feedforward signal is the anticipated change in

vehicle position. This can be calculated by using each vehicles’ control signal u(z)

as the input to a model of the plant, denoted P̃ (z), and differencing that. The

resulting signal

wi(z) = (1− z−1)P̃ (z)ui(z) (6.29)

is then transmitted in addition to the signal q(z) and used by each vehicle as

a correction term to p. For example, we would replace Equation (6.5) with the

following information flow law:

qk+1 = G(qk + wk) + Lyk

pk = qk + wk
(6.30)

In this case, the transmitted quantity is pik = qik + wi
k, as is clear from is premul-
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tiplication by G. Of course, this feedforward correction term is only current if the

control signal is delayed by a time step before application to the plant to allow a

time step for the information to reach the other vehicles. Alternatively, each vehi-

cle could delay the use of its sensed information until it receives the transmitted

information from that vehicle.

To allow for information flow laws more general than Equation (6.29), we will

let w(z) take on the more general form

w(z) = H(z)P̃ (z)u(z). (6.31)

The information flow block diagram for this architecture is shown in Figure 6.5.

When H(z) is chosen properly, the following result can be derived:

Theorem 6.6. Choose H(z) to be

H(z) =
1

F (z) + 1
, (6.32)

and suppose the feedback interconnection of P (z) and K(z) is well-posed. Then

the relative formation dynamics are stabilized if and only if F(z) stabilizes L in the

sense of Theorem 6.4 and K(z) stabilizes P (z).

Proof. By construction, F (z) is biproper. Using our definition of F (z), we can

write H(z) as

H(z) =
zR+1 −

∑R
j=0(aj + bj)z

R−j

zR+1 −
∑R

j=0 aiz
R−j

. (6.33)

Note that H(z) is stable due to the assumptions of Theorem 6.4.

We prove the presence of a separation principle for the system of equations,

through the use of a transformation of coordinates that isolates the subsystems

whose stability implies stability of the overall system. To do this, we first present

the system of equations in state-space form. The state-space equations of motion

for the plant are given in Equation (6.1). The predictor P̃ (z) is presumed to

be identical to the plant P (z), and has the same equations of motion with x, y

replaced by x̃, ỹ. The dynamics of the controller will be represented as

vik+1 = KAv
i
k +KBp

i
k

uik = KCv
i
k +KDp

i
k.

(6.34)

The information flow filter F (z) is defined as found in Equation (6.14), but with
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Figure 6.5: Block Diagram of Information Flow with Feedforward Correction.

the feedforward correction term added:

qk+1 =
∑R

j=0 ajqk−j +G
(∑R

j=0 bjqk−j + wk

)
+ Lyk

pk =
∑R

j=0 bjqk−j + wk.
(6.35)

Once again, it should be clear from the position of the quantity pk =
∑R

j=0 bjqk−j+

wk that it is the information which is transmitted by each vehicle.

Finally, the state space representation of the feedforward correction term, found

in Equation (6.33), is

rik+1 =
∑R

j ajr
i
k−j + ỹik

wi
k = −

∑R
j bk−jr

i
k + ỹik.

(6.36)

To simplify the representation of Equations (6.35) and (6.36) in state-space nota-

tion, we introduce the following notation. Let

HA =




0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

aR aR−1 · · · a0



, (6.37)
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let

HB =
[
0 0 · · · 1

]T
, (6.38)

and let

HC =
[
bR · · · b0

]
, (6.39)

where HB is dimensioned compatibly with HA. For the information flow law and

feedforward term, we use q̄i to denote [qik−R, q
i
k−R+1, . . . , q

i
k]
T , and similarly for r̄.

The state-space representation of Equation (6.35) can thus be represented as

q̄k+1 = ĤAq̄k + ĤBG(ĤC q̄k + wk) + ĤBLyk

pk = ĤC q̄k + wk
(6.40)

and of Equation (6.36) as

r̄k+1 = ĤAr̄k + ĤB ỹk

wk = −ĤC r̄k + ỹk.
(6.41)

If one solves Equations (6.1), (6.34), (6.40), and (6.41) for the states, the resulting

system of equations is

Xk+1 = ΨXk, (6.42)

where Xk = [xk, vk, x̃k, r̄k, q̄k] and

Ψ =




P̂A P̂B∆K̂C P̂BK̂D∆P̂C −P̂BK̂D∆ĤC P̂BK̂D∆ĤC

0 K̂A + K̂BP̂D∆K̂C K̂B∆P̂C −K̂B∆ĤC K̂B∆ĤC

0 P̂B∆K̂C P̂A + P̂BK̂D∆P̂C −P̂BK̂D∆ĤC P̂BK̂D∆ĤC

0 ĤBP̂D∆K̂C ĤB∆P̂C ĤA − ĤBP̂DK̂D∆ĤC ĤBP̂DK̂D∆ĤC

ĤBLP̂C ĤBP̂D∆K̂C φP̂C −φĤC ĤA + φĤC




(6.43)

where φ = ĤB(P̂DK̂D∆+G), and ∆ = (I − P̂DK̂D)
−1, which is invertible by as-

sumption of well-posedness of the interconnection. If we apply the transformation

T =




I 0 0 I 0

0 0 I 0 0

0 0 0 I 0

0 I 0 0 I

0 0 0 0 I




(6.44)
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to the system matrix, we recover the matrix

T−1ΨT =




P̂A 0 0 0 0

−ĤBLP̂C ĤA + ĤBGĤC 0 0 0

0 −K̂B∆ĤC K̂A + K̂BP̂D∆K̂C K̂B∆P̂C 0

0 −P̂BK̂D∆ĤC P̂B∆K̂c P̂A + P̂BK̂D∆K̂C 0

ĤBLP̂C −φĤC ĤBP̂D∆K̂C ĤB∆P̂C ĤA



.

(6.45)

Stability of the system is equivalent to stability of the blocks along the diagonal.

The first, PA, is neutrally stable by assumption. The assumption that the informa-

tion flow law stabilizes the graph is equivalent to the second block, HA+HBGHC ,

being stable. The third block along the diagonal, which comprises the third and

fourth columns/rows, is stable if K(z) stabilizes P (z). (The reader will verify that

this is the matrix derived when K(z) and P (z) are interconnected directly via

feedback.) The final block represents the states of H(z), which is stable by the as-

sumption in Theorem 6.4. We thus derive a separation principle for our formation

which demonstrates that design of the individual vehicle controller K(z) and the

information flow filter F (z) can be decoupled. ¥

Remarks Equation (6.45) can be interpreted in the following way. The first set

of states are open-loop copies of the vehicles’ dynamics, and represent mismatches

in initial conditions between the predictor and the actual vehicle. The second set

is identical to the dynamics of Equation (6.14), whose stability and convergence

properties were studied above. The output of this set of states acts as a reference

to N more copies of the vehicle dynamics in feedback interconnection with the local

controllers, found in the third and fourth rows. We see, therefore, that the effect

of this architecture is to supply the local controllers with a reference signal which,

if implemented properly, represents the error of that vehicle relative to a common

reference trajectory whose dynamics obey the open loop dynamics of an individual

vehicle. The final set of states represent the feedfoward component. These states

are unobservable in the motion of the vehicles, but are stable by design.

Several observations can be made regarding implementation. The first is that

the motion of the formation is sensitive to mismatches between initial conditions

of the vehicle and predictor. This can lead to drift of the cluster if the mismatch

is in velocities. It should be possible to improve upon this through the use of

an observer which will prevent the vehicle and predictor from diverging. Another
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solution is to initialize the predictor using earlier measurements.

The second is that if c 6= 1, meaning the information flow loop does not converge

to a common reference, then the vehicles’ final positions will incorporate those

errors as well (although the system is stable in this case as well). The position of

the vehicles will also depend on the ability of the information flow filter to track

the natural motion of the vehicles. When the natural motion of the vehicles is at

rest, we have seen that it achieves a proper steady state when c = 1. When the

natural motion is secular drift or oscillation (corresponding to poles at the origin

or along the jω axis), the quality of the reference signal will depend on the ability

of the information flow filter to track signals at the relevant frequencies.

We also note that the model of the plant P̃ (z) is not an observer, but a predictor

of vehicle motion. The zero at 1 in H(z) corresponds to differencing the input,

which generally amplifies signal noise. However, the input to H(z) is derived by

integrating u(z), so no net differencing takes place in the filter. In fact, it is possible

to compress P (z) and H(z) into a single filter, but it is easier not to do so when

proving stability.

Finally, we note that unlike the results of the previous chapter, this separation

principle does not rely on the vehicles having identical plants or controllers. It

merely relies on each vehicle’s predictor matching the vehicle dynamics and on

each vehicle implementing the same information flow and feedfoward correction

computation. This eliminates a significant obstacle to implementation. A minor

consequence is that when the vehicles have the same dynamics, the bulk motion of

the formation itself obeys the dynamics of a single vehicle, while when the vehicles

have different dynamics, that motion will be more complex.

6.4 Examples

6.4.1 Hovercraft Formations

Formation Acquisition

We return to the case with which we opened the chapter. If the information flow

law together with feedforward compensation is enabled, the vehicles follow the

trajectories shown in Figure 6.6. The trajectories are smoother, but still show some

curving due to action of the control law prior to convergence of the information

flow law. Figure 6.7 shows the trajectories followed by the vehicles when the

information flow law is enabled one second prior to enabling the control loop. In
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this case, the vehicles follow straight lines to their targets. Note that the formation

center is identical in the two cases despite the differing trajectories. This is due to

the decoupling of the information flow law from expected formation motion.

Formation Reconfiguration

In this example, the formation is already in a hexagonal formation and traveling

in the positive y direction, when a command is issued for the formation to rotate

counterclockwise. The transients for the motion of each vehicle in the y direction

are shown in Figure 6.8 for the case where information flow is disabled and in

Figure 6.9 for the case where information flow is enabled. The use of information

flow reduces the transients associated with the reconfiguration as it did with the

formation acquisition.

Target Acquisition

In this example a target becomes visible to a single vehicle as the formation is ac-

quiring the hexagon. The vehicle which views the target includes that information

as described in Section 5.2.4, and attempts to bring the vehicles into formation

with the target at the center of the hexagon. Figure 6.10 shows the formation

motion with information flow disabled. In this case, the vehicle which can view

the target has to reconcile conflicting information: its position relative to the tar-

get and relative to the other vehicles, which are unaware of the targets existence.

This causes the formation to overshoot the target, marked with a diamond, and

to slowly settle into the desired position.

Figure 6.11 shows the same situation with information flow enabled. In this

case, the information flow loop disseminates the target information to the other

vehicles, causing the information loop to treat the target as the formation leader

and use its position as the common reference, as discussed in Section 6.2.6. In this

case, the formation gracefully changes course and quickly acquires the target.

6.4.2 Satellite Reconfiguration

As discussed in the introduction, a current area of research is control of relative

satellite motion. The relative motion of a second satellite about a reference satellite

can be approximating by linearizing the Keplerian orbital mechanics about the

reference trajectory. These equations are known as Hill’s equations due to Hill’s

study of lunar motion [50] and as the Clohessy-Wiltshire equations due to their
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Figure 6.6: Hexagon Acquisition with Info Flow, no Info Pre-Convergence.
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Figure 6.7: Hexagon Acquisition with Info Flow, Info Pre-Convergence.
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Figure 6.8: y-axis Transients of Formation Reconfiguration, no Info Flow.

14 14.5 15 15.5 16 16.5 17 17.5 18
13

14

15

16

17

18

19

20

Time, sec

Y

Figure 6.9: y-axis Transients of Formation Reconfiguration, with Info Flow.
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Figure 6.10: Target Acquisition, no Info Flow.
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Figure 6.11: Target Acquisition, with Info Flow.
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work on orbital rendezvous [26]. The equations of motion about a circular reference

orbit are
ẍ = 3n2x+ 2nẏ + ax

ÿ = −2nẋ+ ay

z̈ = −n2z + az

(6.46)

where x point in the radial direction, y along track, and z out of plane. The orbit

rate is given by n. The vector [ax, ay, az]
T represents external accelerations,

either due to environmental disturbances or applied thrust. The equations, when

solved, reveal families of periodic orbits about the origin as well as secular drift

along y. The periodic solutions include a 2 × 1 inclined ellipse whose projection

onto the Earth (the yz plane) is a circle. The ground track of these satellites

remains fixed relative to one another and rotates at orbit rate. These orbits are

attractive for space-based interferometry, such as the TechSat21 mission, and were

part of the impetus for exploring missions of this type [59]. We also note that

interferometry requires accurate knowledge of relative satellite position, but drift

in absolute position is more tolerable. Hill’s equations are often used as a coarse

model for relative satellite motion despite the absence in the model of external

forces and perturbations of Earth’s gravitational field.

Note that the xy-dynamics are decoupled from the z-dynamics. Setting n = 1,

a family of unforced solutions to the xy dynamics is given by

x(t) = A cos(t+ φ)

y(t) = y0 − 2A sin(t+ φ).
(6.47)

Consider a set of six satellites, evenly spaced initially along the y-axis, that are

asked to take up stations along a Hill’s ellipse given by A = 1 at evenly spaced

φ. Each satellite can measure the full relative states of a subset of other satellites,

and an LQR controller has been designed. The offset hi0 is given by Equation

(6.47) and its derivative, with φ = πi
3 , and y0 = 0. We begin by designing the

information flow law. In this case, the reference signal which the vehicles must

determine follows a periodic trajectory. To ensure good tracking, we place poles

of the information flow law at the (discretized) frequency locations, along with a

pole at 1 so that the c = 1 condition is satisfied. A candidate information flow law

is given by

F (z) =
z2 − 1.6575z + 0.7225

z3 − 2.9975z2 + 2.9975z − 1
. (6.48)

The Nyquist plot for this information flow law is found in Figure 6.12. In this
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case, the desire for good tracking of the reference signal places limits on the range

of graphs which the information flow law stabilizes. Nonetheless, the encircled

region of Figure 6.12, which offsets the encirclement at infinity, leading to zero

net encirclements, gives reasonable latitude around the −1 point. Once F (z)

is designed, then the feedforward term H(z) is derived automatically. Figure

6.13 shows the reference signal supplied to each satellite for measurements of y

converging to a common trajectory, and Figure 6.14 shows the motion of the

satellites in the xy plane. The initial positions of the satellite are at the center,

and the final positions are marked with an ‘x.’

As in the previous case, our information flow approach greatly enhances sta-

bility. It is important to note that while the information flow law was restricted

to those with good tracking performance at the reference trajectory frequencies,

this is far less restrictive than the design of a controller which stabilized the vehi-

cle dynamics. The difference is most noticeable in the presence of plant zeros, as

would occur when only a subset of states are measurable.

6.5 Information Flow and String Stability

Thus far, we have seen that the proper design of information flow leads to improved

stability due to the separation principle of Theorem 6.4, and improved vehicle

trajectories due to the achievement of consensus among the vehicles as to the

formation center. In this section, we turn our attention to disturbance rejection in

the formation. A well-known area of concern within leader-follower formations is

the possibility that a following vehicle can amplify disturbances of a leading vehicle.

Depending on the length of the chain of vehicles, this can lead to unacceptably

large disturbances of the vehicles at the end of the chain. If we posit an infinite

chain of vehicles, and define the difference between the positions of vehicles i and

i+1 at time step k as ei(k) = yi+1k (t)− yik(t), the effect of disturbance of the lead

vehicle on the behavior of follower vehicles can be determined by looking at the

sequence

{‖e1(k)‖,‖e
2(k)‖, . . . , ‖ei(k)‖, . . .}. (6.49)

If the sequence converges to zero for any bounded input disturbance to the lead

vehicle, the formation is said to be string stable. If the sequence remains bounded,

it is said to be weakly string stable. When the graph consists of a single chain,
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Figure 6.12: Nyquist Plot for Satellite Info Flow.
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Figure 6.14: Satellite Reconfiguration Trajectories.

string stability is often determined by deriving the transfer function such that

ei+1(z) = T (z)ei(z) (6.50)

and checking the infinity norm of T (z). If it is less than one, then the sequence

converges under the 2-norm, and thus the formation is string stable. If it is one,

then the sequence remains bounded under the 2-norm, and the formation is weakly

string stable. See [96] and the references therein for more formal definitions of

string stability, and see [95] for a nonlinear approach.

A well-known property of leader-follower formation is that with only relative

state knowledge of the immediately preceding vehicle, even weak string stability

cannot be achieved [96, 106]. Candidate solutions explored in these references in-

clude having some knowledge of the lead vehicle’s position or employing a variable

speed spacing policy (i.e., having hi,i+1 = h0i,i+1 + h1i,i+1ė
i.). The former appears

to be the better strategy, but it relies on the ability to transmit the lead vehicle’s

position down the chain infinitely quickly.

With this in mind, we will analyze the string stability of a single chain formation

with information flow and feedforward correction enabled. A complete analysis of
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this approach from the perspective of string stability is beyond the scope of this

thesis, but insofar as the single chain is a known worst case, we rely on it to

demonstrate the utility of the method. Because our system involves two pieces of

information, namely position and transmitted information, we will need to consider

the behavior of both as they are transmitted down the chain. We will denote

relative position as

∆yik = yi+1k − yik (6.51)

and similarly for the other variables, e.g., ∆pik representing the difference between

pi+1k and pik. From Equations (6.1), (6.34), (6.40), and (6.41), we can derive the

following:

∆yi(z) = P (z)∆ui(z) (6.52)

∆ỹi(z) = P (z)∆ui(z) (6.53)

∆ui(z) = K(z)∆pi(z) (6.54)

∆pi(z) = ∆wi(z) + (I −H(z))(∆pi−1(z) + ∆yi(z)−∆yi−1(z)) (6.55)

∆wi(z) = H(z)∆ỹi(z), (6.56)

where

P (z) = PC(zI − PA)
−1PB + PD (6.57)

K(z) = KC(zI −KA)
−1KB +KD (6.58)

H(z) = −HC(zI −HA)
−1HB + I. (6.59)

These equations can be simplified to

∆yi(z) = P (z)K(z)
[
(I −H(z))

(
∆pi−1(z)−∆yi−1(z)

)
+∆yi

]
(6.60)

∆pi(z) = (I −H(z))
(
∆pi−1(z)−∆yi−1(z)

)
+∆yi, (6.61)

which can further be simplified to

∆yi(z) = C(z)(I −H(z))(∆pi−1(z)−∆yi−1(z)) (6.62)

∆pi(z)−∆yi(z) = (I −H(z))(∆pi−1(z)−∆yi−1(z)), (6.63)

where C(z) = (I − P (z)K(z))−1 P (z)K(z). It is now clear that string stability of

the quantity ∆pi(z)−∆yi(z) depends solely on the∞-norm of I−H(z). Further-
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more, the presumed stability of the closed loop transfer function C(z) implies that

if ∆pik −∆yik is bounded, then ∆yik will be bounded, and if ∆pik −∆yik decays to

zero, then so will ∆yik. We thus arrive at the intriguing result that string stability

is independent of the plant and controller, and depends solely on the design of the

information flow filter. Recalling that H(z) has a zero at z = 1, it follows that

I−H(z) = 1 at z = 1, and thus the∞-norm cannot be less than 1, so weak string

stability is the best that can be achieved. However, design of information flow laws

which achieve weak string stability does not appear difficult: Figure 6.15 shows

the Bode plots of I −H1(z) and I −H2(z) as defined relative to F1(z), F2(z) in

Section 6.2.4. In both cases, the transfer functions achieve weak string stability.

The first information flow law has |I −H1(z)| = 1 at all frequencies, which does

not imply particularly good disturbance rejection. The second has better string

stability properties, realizing a gain of one only at DC.

Swaroop and Hedrick [95] argue that when lead vehicle information is not

available, weak string stability is the best result than can be achieved, and these

results do not contradict that. Additionally, because only weak string stability

is achieved, it cannot be assumed that this condition is robust to errors in the

predictor model. However, it is significant that the information flow methodol-

ogy presented here provides a systematic method for achieving the best possible

(theoretical) result in a fashion which does not make assumptions on the plant

or controller. While this result is only derived here for a single chain formation,

because the result is essentially a consequence of separation principle, it should

hold for more complex leader-follower architectures.

6.6 Conclusions

The information flow architecture presented in this chapter relies on two key ideas.

The first is the use of dynamical systems as a paradigm for understanding infor-

mation exchange between vehicles, and the design of a dynamical system which

enables the vehicles to achieve consensus on the formation center. The second is

the use of feedforward compensation to render the sensed and transmitted informa-

tion timely. The resulting architecture achieves improvements in stability, vehicle

trajectories, disturbance rejection, and robustness to changes in the interconnec-

tion structure. The architecture is flexible in that it does not rely on uniform

vehicle dynamics, nor does it rely on a vehicle having any global knowledge of the

information flow graph.
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Figure 6.15: Information Flow Law Bode Plot, I −H1(z), I −H2(z).

We have also seen limitations to the method in the course of the derivation.

The first limitation is the need for an exact model of the vehicle dynamics. The

sensitivity of the method to modeling errors has not been analyzed, nor has it been

validated in an experimental setting. Simulation results do not expose high sen-

sitivity to modeling errors. Another limitation is the sensitivity to mismatches in

initial conditions, particularly in velocities, between the vehicle and the predictor.

It may be possible to improve on this through the use of an observer rather than

a predictor. A third limitation is the constraint that c = 1 in the information flow

law. The need for consensus among vehicles forces the information flow law to

be neutrally stable, which means that information never decays out. This renders

the system sensitive to sensor errors that cause the vector of measurements Lyk

to have a component which lies along the Perron vector, leading to secular drift

of the information flow. One possibility for improving on this is having a proto-

col for resetting the information to zero periodically or in response to an event

as a means of limiting any drift. Such a protocol could lie in a higher layer in

the control architecture, and may itself require stability analysis. All these issues

represent avenues of future research for improving an already potent method for

vehicle formation control.
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Chapter 7

Conclusions and Future Work

7.1 Thesis Summary

In this thesis, we have explored two topics relevant to control of vehicle formations.

The first is optimal control of vehicle motion, and the second is cooperative control

of vehicle formations. In both cases, we employed tools outside the domain of

linear control to find an analytical framework in which to address these issues.

For the former, that framework was differential geometry and the use of the affine

connection. For the latter, it was the use of graph theory and Perron-Frobenius

theory. The results of each section, which we will summarize shortly, open up new

avenues for research into vehicle control.

In Chapters 2 and 3, we examined the two classical approaches to optimal

control, namely the Euler-Lagrange equations and the Hamilton-Jacobi-Bellman

equation from the perspective of vehicle control. Our modeling framework was that

of the affine connection, which facilitates a geometric expression of the equations

of motion. We derived a novel form of the Euler-Lagrange equations using the

affine connection and revealed the role of the affine connection in the evolution

of the adjoint variables. When we restricted our view to vehicles not affected by

external forces such as potential gradients or damping, the vehicle dynamics were

observed to be time-scalable, a property which had significant implications for the

HJB approach to optimal control. We showed how time can be eliminated from

the PDE, leading to a purely spatial computation, which defines both the optimal

finite-time trajectories as well as, potentially, a stabilizing control law.

In Chapters 4–6, we explored the role of communication links in cooperative

control of vehicle formations. Our observation that the ability of vehicles to sense

or communicate with one another is itself a source of uncertainty led to an inves-
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tigation of the effects of the formation graph on stability. We proved a Nyquist

criterion for formation stability that is useful in design of stabilizing controllers and

that provides insight into how the formation graph affects stability. Information

exchange between vehicles gives the formation the possibility to overcome these

limitations, but raises concerns that the information exchange itself may not be

robust to changes in the communication topologies. To overcome this, we explored

a decentralized information flow paradigm that converges to an acceptable solution

for almost any graph. The information flow law represents a design parameter that

can be chosen to have suitable transient properties and accuracy over the frequency

range of interest. When the information flow law is coupled with a vehicle motion

predictor, we achieved the striking result that formation stability decouples into

two separate problems: the stabilization of an individual vehicle by the controller

and the stabilization of the graph by the information flow law. This architecture

has superior stability properties, in that the loss of stability margin to the graph is

recovered. It also exhibits smoother vehicle trajectories due to rapid convergence

of the information flow loop and good disturbance rejection properties in terms of

string stability. Central to this was a dynamical systems approach to information

exchange, whereby the information held by each vehicle was treated as the state

of a system whose response could be shaped.

7.2 Future Work in Optimal Control of Vehicles

The results presented in this thesis raise many questions and open interesting

avenues of research. In the case of optimal vehicle control, the incorporation of

our framework into an effective tool for computing optimal trajectories is, as yet,

an unrealized goal. In the case of cooperative formation control, there are many

possible extensions to the method, as well as challenges to overcome in order to

realize its application within a real-world setting. In the sections which follow, we

outline research directions which spring from this thesis.

7.2.1 Geometry of Optimal Control Equations

In Chapter 2, we presented a geometric formulation of the optimal control equa-

tions of motion. Exploration of the geometry of those equations within the affine

connection framework has not been performed. A traditional area of interest within

this setting is the role of symmetry in the equations. Preliminary investigation has

revealed that the equations of motion for the adjoint variable can be reduced in a
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fashion similar to that of the state variables, but the structure of that reduction

and the role of the affine connection within it has not been fully explored. Once

the reduction framework is revealed, it will be possible to analyze how optimal

trajectories within the reduced space generate motion in the unreduced space. Re-

sulting methods for optimal locomotion of affine connection control systems would

be a worthwhile extension of the methods developed in this thesis.

7.2.2 Approximation of Optimal Trajectories

In general, the geometric formulation of the optimal control equations does not

alter the fact that solving them involves solving a two-point boundary-value prob-

lem, which is computationally difficult. One approach that can simplify this is to

approximate the solution of the ODE, thereby generating a map from initial to

final conditions which could then be solved more easily. The geometric formulation

is well-suited to such an approach. In the next two paragraphs, we discuss two

methods for approximate solution which exploit the framework developed in this

thesis.

Variational Integrators One active area of research has been the development

of integrators for equations of motion which exploit the variational structure of

the equations of motion. This approach to integration, developed by Marsden and

coworkers [54, 55, 101], is attractive in that it preserves both conserved quantities

and the underlying geometric (in this case symplectic) structure of the equations.

In this thesis, we have developed an understanding of the variational approach

to the optimal control equations for mechanical systems. As such, this work is

well positioned to facilitate an application of variational integration techniques to

approximate solution of the equations of motion.

Series Expansions Another recent area of research, pursued by Bullo [15, 16],

is the derivation of series expansions of solutions to ODEs defined via affine connec-

tions. Homogeneity properties of the affine connection are exploited to show that

series expansions such as the Campbell-Backer-Hausdorff expansion require only

finite levels of bracketing of the associated vector fields. Since we have shown that

the optimal control equations are also defined by an affine connection, it should

be possible to apply these series expansions to these equations and arrive at an

approximate solution.
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7.2.3 HJB Equation and Sub-Riemannian Geometry

The approach to simplifying the HJB equation developed in Chapter 3 was suc-

cessful in eliminating time from the PDE, but the problem still relies on solution of

a PDE. When the vehicle being controlled is underactuated, the value function will

likely exhibit nonsmoothness, as we observed in the example of the nonholonomic

integrator. Because of that, the PDE is even more difficult to solve; it cannot even

be locally approximated by a quadratic. What facilitated solution of the PDE in

that case was a priori knowledge of the points of nonsmoothness. In general, those

will not be known. We also observed that the optimal trajectories originating

from those points are not unique. These phenomena have been observed before

and are often associated with the relationship between the optimal control problem

and problems in sub-Riemannian geometry [12]. Geodesics of a sub-Riemannian

manifold exhibit local nonuniqueness, entirely analagous to the nonunique optimal

trajectories we observed. Recent research [25] has addressed the computation of

the so-called conjugate loci of the sub-Riemannian manifold. An interesting re-

search direction would be to employ those tools within our framework to identify

to points of nonsmoothness, and then to identify other methods for solution or

approximation within the smooth regions.

7.3 Future Work in Cooperative Control of Vehicle

Formations

Research into cooperative control of vehicle formation is very much in its infancy.

Success in this arena will involve merging tools from computer science such as

reliable protocols, algorithm design, and networking with insights from controls

regarding dynamics, uncertainty and design. Our goal in this thesis was to suggest

a framework in which ideas from both fields — in this case, graph theory and

stability analysis — can coexist. To do so, we constructed an idealized setting

in which the links between the two could be identified and exploited. Advancing

these ideas to a point where they can be implemented in a realistic setting will

require relaxing many of these simplifications and verifying if the core ideas of

this methodology can still be exploited. One source of insight will undoubtedly be

laboratory experimentation. In the sections which follow, we outline directions in

which the theory can be advanced to pave the way for implementation.
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7.3.1 Graph Periodicity and Laplacian Eigenvalues

In Section 5.3.1, we discussed how periodic graphs represent a “worst-case” sce-

nario in terms of formation stability margin. Furthermore, the near-periodicity of

a graph was meaningful in characterizing the effects of adding or removing sources

of information in the sensing graph. At present, we lack tools to make that notion

precise. An interesting avenue of research would be to define a measure of period-

icity of a graph (as opposed to a graph being either periodic or aperiodic), which

could then be correlated to Laplacian eigenvalue locations. One reason this has

not been addressed to date is the general focus on undirected graphs. Another is

the focus on algebraic connectivity and its relation to substructures in the graph.

While algebraic connectivity may not be related to graph periodicity, the location

of the other eigenvalues, which impact stability more directly, may submit to such

a characterization.

The ability to characterize eigenvalue location would be a significant advance

of the methods developed in this thesis. For example, we currently lack an edge-

weighting methodology to improve stability margins, short of direct computation

on the graph. The ability of individual vehicles to determine which edges augment

stability margins would be quite useful. Insofar as periodicity is a quasi-local

property (each vehicle need only know about its neighbors k edges away to know

if it possesses any k-cycles), it may be possible to implement an edge-weighting

algorithm which does not require global knowledge of the graph.

7.3.2 Information-Rich Control

In this thesis, we examined formation stability for two transmission graphs: J T
i =

∅, meaning no transmission, and J T
i = J S

i , meaning the transmission and sensing

graphs are identical. We have not examined the case where J T
i ⊃ J S

i , meaning

each vehicle receives information from vehicles it cannot directly sense. This,

too, is a realistic setting, since the ability to sense other vehicles is often more

limited than the ability to receive transmissions. Another area into which the

methodology can be extended is this information-rich setting. Because the results

of Chapter 6 depend on equal sensing and transmission graphs for convergence

of the information flow filter, the extension to the information-rich case is not

immediately apparent. Research on methods to incorporate additional information

while retaining the stability separation principle would therefore be valuable in

extending these techniques.
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7.3.3 Vehicles with Nonlinear Dynamics

In this thesis, we focused on vehicles with linear dynamics for the purpose of elu-

cidating the role which graph theory plays in the analysis of formation dynamics.

Of course, many vehicles exhibit nonlinear dynamics. A significant research direc-

tion is the extension of the ideas developed in this thesis to vehicles which exhibit

nonlinear dynamics. The results of Chapter 5, with their reliance on eigenvalues,

may not readily exhibit a nonlinear characterization; the results of Chapter 6,

however, appear more promising. It is reasonable to expect that the separation

principle of Theorem 6.6 will survive when the vehicle and control law are nonlin-

ear. Exploration of this extension is a logical next step in advancing the ideas of

this thesis.

Within the universe of nonlinear controller design tools, the method of con-

trolled Lagrangians developed by Bloch, Leonard, Marsden and their students

[5, 8, 9, 10] stands out as a natural choice for implementation in this setting.

While we did not focus on the geometry of vehicle formations in Chapters 5 and 6,

the geometry of many vehicle systems corresponds nicely to the setting employed

in the method of controlled Lagrangians. As we discussed in Chapter 2, many

vehicles admit a Lagrangian formulation of their dynamics. Often, the Lagrangian

is cyclic with respect to variables corresponding to position or orientation of the

vehicle, which in turn are the directions along which sensing and actuation occur.

It is precisely this setting for which the method of controlled Lagrangians was

developed, in which one exploits this geometry and Lagrangian structure in de-

signing controllers which tend to exhibit large regions of attraction. The marriage

of those tools with the information flow paradigm put forth in Chapter 6 would

both expand the range of systems to which information flow can be applied and

facilitate the systematic implementation of the method of controlled Lagrangians

to formation control.

One research area needed to accomplish this is the extension of the separation

principle to nonlinear systems, as discussed above. Another is the extension of the

information flow method from the case where the sensed information is in Rm to

the case where it lives in an arbitrary manifold. Many vehicles’ dynamics evolve

on Lie groups, such as SO(3) for satellite orientation or SE(3) for underwater

vehicles. The results of Chapter 6 rely on the Perron-Frobenius properties of

specific matrices whose analogs when acting on Lie groups are not immediately

clear. Even designing an information flow loop whose input is in S1 is not fully
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understood. This is a topic of particular importance, since it would enable the

vehicles to achieve consensus as to relative orientation as well as relative position.

To accomplish this, one must consider the geometric analog of the cone-invariance

property exhibited by Perron-Frobenius operators (see [2]).

7.3.4 Information Flow and Software-Enabled Control

The linear controllers employed in this thesis are the simplest form of vehicle

control possible, and certainly does not represent the state of the art in vehicle

control. Just as the methods of this thesis should be extended to vehicles with

nonlinear dynamics, they should also be investigated with regard to more advanced

control paradigms. In particular, recent research has exploited advances in com-

putational power to control vehicles via real-time optimization. Recent results

include Lyapunov-based stability proofs for receding-horizon controllers [53, 85] as

well as real-time implementation of aggressive trajectory tracking via optimization

based control [37, 76]. Work on applying this methodology to control of vehicle

formations is in its infancy. Distributed optimization faces the same obstacle ad-

dressed in this thesis: the need for each vehicle to perform a computation (in this

case trajectory optimization) with only limited information about the state of the

formation.

The methods developed in this thesis may be of use in addressing this problem.

For example, formation trajectory optimization is often complicated by the fact

that one must optimize not only over trajectories but over the endpoints as well. It

is optimization over endpoints which couples each vehicle’s optimization problem.

One approach which would incorporate ideas from this thesis is for the formation

to achieve a suboptimal consensus as to the endpoint locations, and then for each

vehicle to optimize its trajectory independently. Of course, stability using the class

of controller in this setting would have to be verified using suitable extensions of

the tools developed in this thesis. Another approach currently under investigation

is for each vehicle to optimize its trajectory using a simplified model of the other

vehicles’ motion [36]. Again, the stability analysis of such an approach will depend

on what limited information is available to each vehicle, which in turn incorporates

ideas explored in this thesis.
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7.3.5 Vehicle Control Over Networks

One of the simplifications made in the development of the information flow algo-

rithm was the assumption that information is transmitted and received at evenly

spaced time steps. Means of transmission such as networks often exhibit unknown

latencies, which represent a significant obstacle in controlling across them. A re-

cent area of research is in determining the nature of time delays and generating

control laws which stabilize over long random delays. [68, 99, 102]. To make our

approach useful for vehicles which share information over networks, it must be

extended to the case of variable time delays. While the analytical setting for doing

so may be different, there is reason to believe that such an extension will be suc-

cessful. The feedforward correction term through which one achieves the stability

separation principle can overcome the latency in transmission. By predicting the

expected change in the transmitted information, it renders the different sources

of information (sensed and transmitted, in this case) coincident in time. When

this is achieved, the graph ceases to impact vehicle stability. It should be possible

to realize this in a setting where time delays are variable. For example, if each

vehicle transmits its expected motion over some time horizon (as is often com-

puted in optimization-based control methods), the recipient vehicle could use that

information to synchronize its various sources of information so long as the latency

does not exceed the transmitted horizon. The ability to synchronize information

sources would then act as a test which each vehicle could implement to decide

whether to incorporate that new information into its decision-making framework.

7.3.6 Other Vehicle Formation Tasks

Relative position maintenance is only one of the tasks a formation may undertake.

In a realistic setting, the formation will have to perform more complex tasks.

The position controller would represent only one layer of the control architecture.

Because that layer operates at the highest frequency, it is the most sensitive to

uncertainty and changes in the communication topology, and therefore represented

a logical starting point for analysis. However, future research must investigate the

interaction between this layer of the formation control architecture and events, less

frequent, which force changes in the architecture. The ability of the formation to

handle these tasks on a decentralized level of the control hierarchy will likely run

into many of the issues examined in this thesis. Several examples of more complex

formation tasks are examined below.
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Role Selection In this thesis, we assumed that each vehicle’s assignment in the

formation was predetermined and known to each other vehicle. In many settings,

vehicle assignments may be interchangeable; so long as each station of the for-

mation is occupied, it does not matter which vehicle occupies it. Furthermore,

external influences or a change in formation goal may effect a change in vehicle

assignments. The ability of the formation to assign roles to each vehicle in a dis-

tributed setting is an interesting area of research. For example, two vehicles in

communication with one another could agree to switch roles, so long as they can

communicate to the rest of the formation. Again, the ability of a distributed role-

switching algorithm to converge to an agreeable role distribution would have to

be examined. Unlike the stability analyses of this thesis, role assignments do not

live on a manifold, so analyses may involve more traditional algorithmic analysis

using tools from computer science. Nonetheless, the insights from this thesis will

still be relevant.

Collision Avoidance The information flow algorithm developed in this thesis

allows each vehicle to react to the overall formation motion rather than the motion

of the vehicles it can sense. While this is generally a desirable goal, in some in-

stances, such as collision avoidance, a vehicle must ignore the rest of the formation

and react only to its local situation. As we have seen, such an action may have

significant consequences for the information flow algorithm and for stability. One

possibility is for the vehicle to communicate its change in control policy to nearby

vehicles, which can then ignore its motion. Because collision avoidance often re-

quires large control effort and fast response times, the ability of the formation to

rapidly disseminate this new information will be essential.

Formation Merging/Splitting Another common objective is the merging or

splitting of formations. For example, a formation which encounters an obstacle

may choose to have different vehicles in the formation circumvent the obstacle in

different directions, and reunite on the far side of the obstacle. Again, the vehicles

must come to a consensus as to which vehicles belong to the same formation so the

problem of multiple leader components does not occur. The decision for formations

to merge may depend on sufficient level of inter-formation communication to avoid

the stability issues associated with sparseness in formation graphs.
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7.4 Optimal Control of Vehicle Formations

Throughout this thesis, we have treated optimal vehicle control and cooperative

control of vehicle formations as distinct topics. The ultimate goal of this research

effort remains a synthesis of the two topics. We close the thesis with a discussion

of how the two main topics of this thesis could be jointly employed.

Any sensible approach to vehicle formation control involves the partitioning of

the formation control problem into tractable subproblems. In the case of optimal

formation control, the dynamic decoupling discussed in the introduction facilitates

the partitioning of the optimal formation control problem into a set of N single

vehicle optimal control problems which can be solved independently and whose

solution would involve the methods explored in the first section of this thesis. Of

course, the formation control problem is not totally decoupled — achieving the

formation goal and preventing collision avoidance couple the trajectory generation

problem. In our development, these joint issues are handled by the information

flow. In chapter 6, the “joint” component, meaning determining a formation cen-

ter, is handled by the information flow, while each vehicle’s trajectory is determined

by a local control law. These ideas can be extended by replacing the linear con-

trol laws of Chapters 5 and 6 with nonlinear optimal control laws and relying on

the information flow low to supply each vehicle with the information it needs (e.g.

trajectory endpoints, constraints, cost functions) to perform its local computation.

Of course, extending these ideas to a nonlinear optimal control setting is far from

trivial, but we expect that tools developed here for achieving robust, distributed

information sharing with good stability properties will be essential in that setting

as well.
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