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Model Predictive Control for an Uncertain Smart Thermal Grid

Samira S. Farahani*, Zofia Lukszo**, Tamas Keviczky***, Bart De Schutter***, Richard M. Murray*

Abstract— Smart Thermal Grids (STG) represents a new
concept in the energy sector that involves the use of the smart
grid concept in heat grids connecting several parties to each
other via bidirectional transport of heat. The focus of this paper
is on modeling and control of STGs in which the uncertainties
in the demand and/or supply are included. To this end, we
use Model Predictive Control (MPC), which is one of the most
widely used advanced control design methods in the process
industry. We solve the worst-case MPC optimization problem
using mixed-integer-linear programming (MILP) techniques to
provide a day-ahead prediction for the heat production in the
grid. In an example, we show that this approach successfully
keeps the supply-demand balance in the STG while satisfying
the physical constraints of the network in the presence of
uncertainties in the heat demand.

I. INTRODUCTION

Realizing sustainable societies is one of the major chal-
lenges facing humanity in the 21* century. This clarifies the
increasing interest of both research institutes and industries
in sustainable energy systems, particularly in smart energy
systems. The design goal in smart grids is to improve the
efficiency, reliability, and sustainability of the production
and the distribution of energy. Smart Thermal Grids (STGs)
can contribute to obtaining sustainable energy systems by
guaranteeing a reliable heating supply to various customers
by using renewable energy sources such as solar or geother-
mal energy. In STGs, the parties can be both producers and
consumers. This concept is known as prosumer, where an
entity (e.g. a greenhouse) fulfills the role of a consumer
when it demands more energy than it produces with its
production units (e.g. heat pumps) and fulfills the role of
a producer when the demand is less than the production of
its production units [13]. Because of this capability, STG
implementation could contribute to a further decrease in
carbon emissions, improved energy efficiency, and renewable
energy implementation [7], [18].

STGs are best applicable to neighborhoods with small-
scale utility companies and independent users. As about half
of a neighborhood’s electricity consumption is typically used
for thermal purposes [2], introducing STG neighborhoods
could have substantial benefits, such as: 1) less transport
of energy, less energy loss, and lower transportation costs,
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and 2) using the produced heat at the neighborhood level
as an energy source to avoid wasting heat. The convergence
of these two aspects brings major efficiency improvements.
Currently most of the thermal networks, for instance in the
Netherlands, are mainly connected to one main heat producer
and there is no explicit control strategy that considers both
economic optimization as well as the network constraints.
However, recently, there has been a growing interest in
implementing STGs and benefiting from its features.

Considering the complexities of such systems, mainly due
to uncertain demand and supply characteristics as well as
their large size, smart energy systems need to be managed
and controlled in an automated way in order to increase
the efficiency for both producers and consumers. To this
end, model predictive control (MPC) [21], [25] is a control
method that has been proved to be a useful tool in both
simulations and real-life applications [22], [23]. MPC uses
real-time optimization in order to determine the control
inputs for systems. MPC has the following features: it is
applicable to multi-variable and nonlinear systems; it can
handle constraints on both inputs and outputs in a systematic
way; and it is capable of tracking pre-scheduled reference
signals. MPC is based on a receding horizon approach
to obtain an optimal control sequence that minimizes the
given objective function subject to the model and operational
constraints.

In this paper, we consider worst-case MPC of STGs due
to the presence of uncertainties in the grid to provide a
day-ahead heat production plan for the thermal grid. The
uncertainties in the network can be due to the uncertainty
in the demand and/or in the production because of using
different resources such as solar energy or biogas. Although
the control aspects of thermal energy have been studied
implicitly in the context of Combined Heat and Power (CHP)
systems or general smart grids, using distributed MPC and
other similar agent-based control approaches [14], [24], the
explicit implementation of the controller for STG systems
requires careful investigation due to the structural differences
between STGs and other types of smart grids such as smart
electric grids. Smart thermal grids have been studied as
a deterministic system by few researchers [20], [27] and
uncertain/stochastic MPC has been studied by many re-
searchers [6], [9], [10], [17]; however, in the context of smart
thermal grids and MPC, to the authors’ best knowledge, this
paper will be the first attempt that studies worst-case MPC
for STGs. To model the network, we use a mixed logical
dynamical (MLD) model and we assume that the uncertainty
is bounded within a polyhedral set. Hence, the worst-case
MPC optimization problem can be recast as a Mixed-Integer-



Linear Programming (MILP) problem which can be solved
using the available algorithms.

II. SMART THERMAL GRIDS

In this work, we consider a regional network of green-
houses, which is a typical example of a thermal grid. Each
of these greenhouses is considered as an agent and the full
information of each agent, such as the production resources,
the demand request for the next day, etc., is assumed to be
available to the whole network. Each agent is facilitated with
a Combined Heat and Power (CHP) system and a boiler and
hence, is capable of local production of heat and electricity
that can be used by the same agent or be exported/sold to
the network. In this paper, we assume that the agents can
only trade heat among each other and the electricity will be
bought or sold to the electricity market only. Moreover, each
agent has a buffer system to store heat and either to use it
internally or to sell it to the other agents in the network.!
In addition to the local heat generation, there are one or
more external parties that can provide heat to the network.
In this paper, we consider all the external parties as one single
agent. The greenhouses are connected to each other and to
the external suppliers by several pipes of different sizes.
Moreover, to adjust the input and output heat to and from
the greenhouses, there are several heat exchangers located
outside the greenhouses.

To model the physical system, we discretize the system
with sampling interval of one hour. The time step counter
is denoted by k. For the sake of compactness, the model
parameters are presented in Table I.

Parameters Symbol | Unit
Transportation cost per MW Clrans £
The energy content of gas for CHP start up Zstart MW

Electrical efficiency of the CHP unit Ne -
Thermal efficiency of the CHP unit Nh -
Thermal efficiency of the boiler NBoil -
Turnaround efficiency of the buffer unit NBuf

Fuel price per MW Fprice €
CHP maintenance cost per MW Ccup €
CHP fixed start up cost Chix €
Buffer capacity of each greenhouse Bc MWh
Minimum heat production capacity for unit u | U, MWh
Maximum heat production capacity for unit u | U, MWh

TABLE I
MODEL PARAMETERS AND THEIR MEASUREMENT UNITS.

To keep our model simple, we assume that the heat
exchangers do not add additional costs to the heat production
and hence, both can be left out from the network model. The
fuel energy content (gas in our case) used by a CHP unit at
greenhouse j at time step k in MW can be specified as [14],
[26]

_ Py (k) 1

gCHPj(k) = e = HGCHPj(k) ’ ﬁ7 (1)

'In general, the greenhouses may also have access to other renewable
energy sources such as solar energy collectors, geothermal energy, etc.

where PG, (k) and Hg, j(k) are respectively the electrical
power and the heat generated by the CHP unit of greenhouse
Jj at time step k in MW. Similarly, for a boiler, we have [15]
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gBoilj(k) = HGBoilj(k) @)
where gp,iij(k) is defined similarly to gcpp;(k) and Hg, (k)
is the heat generated by the boiler of greenhouse j at time
step k in MW.

If the CHP or boiler unit are operating at greenhouse j, the
thermal power can vary at each time step between a certain
minimum and maximum for both the CHP and the boiler as

Uchp; < HGeypj(k) < Ucnpj VK, j 3)
Upoij < Hegyyj(k) < Usoitj Yk, j. “4)

Moreover, in the case that the production units, i.e., the boiler
and the CHP, of greenhouse j produce more heat than is
demanded by the greenhouse itself, the heat can be stored
in a buffer to be used at other hours or to be used by other
greenhouses in the network. We assume that each greenhouse
j can only send or receive heat to or from its immediate
neighbors, respectively. Let Hexcnij denotes the exchanged
heat between two adjacent greenhouses i and j. The buffer
state of greenhouse j can then be defined as

BSj (k) = BSj (k - 1) + NBuf (HGCHPj(k) + HGBoilj(k)

_HDj(k) +HimpEXj(k) + Z (1- aij)Hexchij> )
ieq)_/
@)

where Hp;(k) denotes the heat demand of greenhouse j
at time step k, Himpexj(k) denotes the imported heat by
greenhouse j from an external party at time step K, @;
is the set of neighbors of greenhouse j, and o;; denotes
the percentage of heat loss due to transportation between
greenhouse i and j. Moreover, we have capacity constraints
for the buffer and constraint for the amount of heat imported
from external parties or exchanged between two neighbors
due to for instance pipe or network capacity. There is also
an additional constraint for the transported heat among the
greenhouses in order to make sure that the supply-demand
balance is satisfied at each time step. These constraints are
defined as

0 <Bsj(k) <Bc; Vk,j 6)

0 < Himpexj(k) < Uimpexj V&, J (N
Hexenij = —Hexchji V' J,i € ¢; ®)

Uexchij < Hexchij < Uexchij &)

where [_JimpEx ;j is the maximum possible heat import from
external parties and Ug,.p;; and Uexchjj are minimum and
maximum amount of heat that can be exchanged between two
adjacent neighbors. Note that Hexcp;j takes both positive and
negative values indicating the imported heat by greenhouse
j from greenhouse i and exporting heat from greenhouse i
to greenhouse j, respectively.



Figure 1 illustrates the energy flow between one green-
house and the network of greenhouses, as well as the heat-
producing external parties and the energy retailers.
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Fig. 1. Energy flow between greenhouse j, network of greenhouses, heat
producing external parties, and energy retailers.

Remark 1: The connection between each greenhouse j
and the external parties in Figure 1 does not reflect the
physical connection and it is rather an indicator for the heat
flow. In fact, the external parties are physically connected to
the whole network (through a main pipe) and not to each
greenhouse individually.

Now that the mathematical model of the production units
is specified, we discuss our control strategy, which aims at
providing a day-ahead production plan for each greenhouse.

III. MODEL PREDICTIVE CONTROL FOR STGsS

Our aim is to reduce the overall production costs of
the network while providing the network’s required heat
under different operational constraints such as the limits for
the generators and the buffers. To this end, we intend to
develop an advanced control approach that is suitable for
practical applications. The control objective will be focused
on demand response [14], [28], which is the ability of
domestic net-consumption of heat to respond to real-time?
electricity prices. In this paper by “real-time” electricity
prices we mean the hourly varying supply tariff, which is
equal to the hourly day-ahead prices of the electricity market.

The control strategy that is proposed here for demand
response is Model Predictive Control (MPC). In MPC, at
each iteration, the optimal control sequence is computed over
a finite horizon, i.e., a finite period of time. MPC uses the
receding horizon principle, which means that after compu-
tation of the optimal control sequence, only the first sample
will be implemented in the next iteration. Subsequently, the
horizon will be shifted one sample, and the optimization will
be restarted with new information of the measurements.

2In general, the real-time electricity price is the one that varies almost
every 15 minutes in the electricity market on the exact day of the electricity
production.

The control objective is to minimize the total heat produc-
tion costs, which includes the variable costs of the network
related to the heat production as well as the earnings. Without
loss of generality, we assume that the network is owned by
a single owner and hence, all greenhouses cooperate with
each other in order to keep the total heat generation costs of
the network as low as possible. This means that they try to
generate as much heat as possible in order to satisfy the heat
demand of the network and buy as less as possible from the
external parties. The total heat production cost function of
greenhouse j at time step k can be defined as

C(PGCHPj (k)7HGBoilj (k)7HimPEX.i (k), 8&%;‘ (k)
=Cg (PGCHP/ (k), Hay; j (k)) +Co (PGCHPj (k))
+ Cimp (Himpex (k) + Cstart (Ui (k) — Ep(Penp,j(k)).-

(10)

The definition of each of the functions and variables is given
below.

The heat generation cost for each greenhouse depends
on the amount of fuel that is used. Therefore, considering
equations (1) and (2), it can be defined as

Co (PGCHPj (k), HGBoilj(k)) = (gCHPj(k) + 8Boilj (k)> Fhrice-
1D

For each CHP, there will also be an additional cost, namely,
the operation cost, which is defined for each greenhouse j
at time step k as
Co (PGCHPj (k) = Pocypj (k) - Ccnp- (12)

The import cost matters when the greenhouse needs to buy
heat from an external party, in the case that the generated heat
by the greenhouse itself and the amount that is imported from
other greenhouses in the network is less than its demand. The
cost of importing heat by greenhouse j at time step k can be
defined as

Cimp (HimpExj (k)) = HimpExj (k) 'HbuyingEx (k)7 (13)
where HbuyingEx(k) is the price that greenhouse j pays for
buying heat from external parties at time step k. We assume
that the taxes and the transportation cost are included in
Hpuyingex (k). Moreover, there are fixed start-up costs and
fuel-based start-up costs for a CHP unit of greenhouse j,
which can be calculated as [11]

Cstart(lvlétﬁrltbj (k)) = Hétﬁrlgj(k) <Cﬁx + &start Fprice> s (14)

where ;" is a binary variable such that 1" (k) = 1 if unit
u (CHP or boiler) of greenhouse j is started for production
of energy at time step k and ,u;tjm(k) = 0 otherwise. The
second part of the production cost is related to the electricity
earnings obtained from selling electricity to the electricity
market. The selling price is variable and is different every

hour. The electricity earnings of greenhouse j at time step k



can be written as

(PGch/( ) —Poj(k )) Pyeling (k)

if PGCHPj (k) > Ppj (k)
0 if Poeppj (k) <Ppj (k)
(15)

Ep (PGCHPj (k)) =

where Pp (k) indicates the electricity demand of greenhouse
J at time step k and Pyjjing (k) is the selling price of electricity
at time step k. Note that since we assume cooperation
between the greenhouses, there are no heat earnings while
the greenhouses exchange heat among each other.

Therefore, considering equation (10), the cost function
J(k) at time step k over the prediction horizon Nj, is defined
as

No—1 p

J= Z ZC(PGCHPj(k+l)7HGBni]j(k+l)7
=0 j=1

This cost function will be minimized subject to the con-
straints on different components of the systems. Some of
these constraints have been presented in the previous section.
In addition to those, we need extra constraints related to on-
off states of the CHP and boiler [14]. We define usmp

a binary variable such that /.Lsmp (k) =1 if unit u (CHP or
boiler) of greenhouse j is shut down at time step k and 0
otherwise. Moreover, we define the binary variable v,;;(k)
for each production unit u, i.e., the CHP and the boiler, of
greenhouse j at time step k as

1, if CHP operates
venp (k) = 17
cr; (k) {O, if CHP does not operate 1n
Vo (K) = 1, %f the bo%ler operates (18)
0, if the boiler does not operate

Therefore, the capacity constraints for the heat production,
i.e., equations (3)-(4) can be rewritten as

Ucnp;-venpj (k) <Hgeyp (k) <Uchpj-venp;(k) Yk, j (19)
UpoitjVBoilj (k) < Heyy (k) < UpoitjvBoitj (k) Yk, j.  (20)

Moreover, the following equations link the above binary
variables:

venpj (k) —vep; (k= 1) = u& ; (k) —pepp (k) ik (1)

vBoil (k) = Vot (k — 1) = u3ait ; (k) —tgen (k) ik (22)
LS (k) + uepp (k) <1 Vj.k (23)
it (k) + g (k) < 1V k. (24)

Note that this control approach is a centralized one, which
means while the overall production cost of the network is
minimized, each individual greenhouse may not have the
optimal cost at each time step.

In order to obtain a linear system with continuous and
binary variables, we apply the mixed logical dynamical

(MLD) formalism [4], which allows the transformation of
logical statements involving continuous variables into mixed-
integer linear inequalities. Accordingly, we can rewrite equa-
tion (15) as a linear equation by introducing new binary
and continuous auxiliary variables. In this way, the system
dynamics and the constraints are formulated as mixed-integer
linear equations and hence, we will solve a mixed-integer
linear programming (MILP) problem. In the next section, we
explain how to solve the worst-case MILP-MPC optimization
problem.

IV. SOLVING THE WORST-CASE MPC

At the beginning of each time step k, the controller
measures the system state of the previous step. In our
case, the state variables are Bsj, vcupj, and Vpojj. At
each control step k, we assume that the previous value
of these variables is known or measured. Then, using the
information regarding the demand and the energy price,
the controller determines the decision variables, which are
Pocyp s Hogoy js HimpEx j» Mo 7, and ™. We choose the pre-
diction horizon N, = 24, correspondmg to the 24 hours in
one day.

We also assume that there is an uncertainty in the heat
demand Hp, i.e., Hp (k) = Hp prea(k) + e(k) where Hp preq (k)
is the predicted heat demand for the greenhouses at time step
k. We gather the uncertainty for time steps k,...,k+N,—1in
the vector &(k) = [e” (k),...,eT (k+N,—1)]T € & where & =

{é(k) : Sé(k) < G} is a bounded polyhedral set. Accordingly,
we can define the worst-case MPC optimization problem as
min max J(i(k),é(k 25
min max, /(i) &(4)) (25)
s.t. P(k)a(k) +Q(k)e(k) +q(k) <0 (26)

where J is the cost function, (k) is the vector of decision
variables containing both continuous and binary variables
as well as the continuous and binary auxiliary variables
obtained from the MLD model (defined similarly to é(k)),
P(k),Q(k) are inequality constraint matrices and ¢(k) is the
inequality constraint constant vector, all defined according
to the constraints (6)-(9) and (19)-(24). Since both the cost
function J and the constraints are piecewise affine in #(k),
we can solve the optimization problem (25)-(26) as an MILP
problem.

To this end, we solve the inner optimization problem first.
For a given ii(k), the optimization problem

maxf( (k),e(k)) (27)
St Sé( )< (28)
P(k)a(k ) O(k)e(k)+q(k) <0

can be solved as a multi-parametric MILP (mp-MILP) prob-
lem, in which (k) is the parameter, using the algorithm in
[8].

Let &*(ii(k)) = argmax;) J (ii(k),é(k)) denote the solution
of the mp-MILP problem (27)-(28), which is a piecewise-
affine function in (k) (see [5], [16]). Hence, the outer



optimization problem, i.e.,

min/ (k). e" (i(k))) (29)
s.t. P(k)i(k) +Q(k)e(k) +q(k) <0 (30)

can be solved as an MILP optimization problem using the
available MILP solvers that are based on e.g. branch-and-
bound or cutting plane algorithms [3], [19].

Note that the available mp-MILP algorithms are not
very efficient when the size of the vector of param-
eters and the prediction horizon N, increases. There-
fore, we now discuss alternative approaches to mp-
MILP. One approach is to use Monte Carlo simulation
to eliminate the inner optimization problem as follows.
Let &V (k),...,e™®) denote M different noise realiza-
tions®> belonging to the polyhedral set & and let (k) =
max;() g o (J(i(k), e (K)), -, J(@(k),e™)(k))). The
optimization problem (25)-(26) can be then rewritten as

oty
st 1(k) > J(ak),e" (k)

€29
(32)

t(k) > J(a(k), e (k)
Pk)a(k) +Q(k)2"V (k) +q(k) <0

P(k)i(k) + Q(k)e™ (k) +g(k) <0

which can be solved as an MILP optimization problem.

Another approach is bilevel optimization. In this approach,
we treat the inner optimization problem as the objective
function of the outer optimization problem, i.e.,

min F(i(k)) (33)
(k)

where F (ii(k)) corresponds to the inner optimization problem
(27)-(28). Note that for a given ii(k), the inner optimization
problem can be solved as an MILP optimization problem
and then the outer optimization problem (33), which is a
binary/integer optimization problem, can be solved using e.g.
genetic algorithms [12].

V. EXAMPLE

In this section, we solve the worst-case MPC optimization
problem to obtain a day-ahead prediction plan for the heat
production for a small network of greenhouses. In this model,
we consider two green houses and an external producer. Each
of the greenhouses has a CHP unit, a boiler, and a buffer. The
aim is to minimize the heat production cost of the network
while satisfying the network constraints and supply-demand
balance.

We consider the cost function (16) and we assume that
the heat demand is uncertain, i.e., Hpj(k) = Hp predj(k) +
ej(k) where Hppreqj(k) is the predicted heat demand for
greenhouse j € {1,2} at time step k and ¢;(k) denotes the
demand uncertainty such that |e;(k)| < 1. The heat demand

3M can be defined based on the desired level of accuracy and computa-
tional efficiency [1].

External party

F

Greenhouse 1 with CHP,
buffer, and boiler

Greenhouse 2 with CHP,
buffer, and boiler

Fig. 2. Physical topology of the thermal network of the case study

is given for a random warm day of the year and the gas and
electricity prices are take from the Dutch gas and electricity
market.
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Fig. 3. Heat and electricity production and exchange plan of the thermal

network; the solid line corresponds to greenhouse 1 and the dashed line
corresponds to greenhouse 2.

The cost function is minimized subject to the constraints
(6)-(9) and (19)-(24). At each time step we have 456 con-
trol variables (240 binary variables including the auxiliary
variables from MLD model), an uncertainty vector of size
48, and 960 inequality constraints. Solving the mp-MILP
optimization problem using the MPT toolbox seems very
inefficient for a problem of this size. Alternatively, we use the
Monte Carlo approach explained in Section IV to obtain the
day-ahead heat production plan, which is solved in Matlab
R2014b on a 2.6 GHz Intel Core i5 processor. To solve the
optimization problem (31)-(32), we chose M = 500 different
uncertainty vectors e and we use the MILP solver from IBM
CPLEX. The computation time was 63.0458 min for a 0.95%
confidence level with accuracy error of 1%. Of course there
is a trade-off between the computation time and the accuracy.
In practical cases, the computation time of 1 hour for a day
ahead prediction under uncertainty is acceptable.

The optimization results are shown in Figures 3. The
first plot shows the heat demand of each greenhouse for
one day. The second and third plots shows the amount of
electricity and heat that needs to be generated by the CHP
and boiler units at each greenhouse. The forth plot shows
the amount of imported heat from the external parties. The



fifth plot illustrates the amount of heat that is imported by
each greenhouse from the other one. The last plot shows the
amount of electricity that each greenhouse has exported to
the electricity market. Here, we assume that the production
capacity of the CHP and boiler units are similar to each other
for the sake of illustration; in reality, the boilers capacities
are much higher and since they impose less production costs,
they will be used more than the CHPs. Hence, in practice,
CHPs are mainly used when the electricity price is high so
the greenhouses can benefit from selling the extra generated
electricity to the electricity market. Following this production
plan, the total heat production cost of the network during 24
hours is 22731€. Note that the total production costs of this
network for the case that the greenhouses do not exchange
heat among each other and only buy from the external heat
producers is 30194€. This shows that the current model is
more cost-efficient comparing to the model with a single
(main) producer and the greenhouses acting as a costumer
rather than being a prosumer.

VI. CONCLUSION

This paper has considered control of smart thermal grids
under uncertainties in demand and/or response. Thermal
grids refer to energy networks whose main objective is
to provide and distribute heat among their users. In this
paper, we have considered a typical thermal grid, namely
a network of greenhouses. Our aim was to provide a day-
ahead prediction plan for heat generation in the network
assuming there is uncertainty in the heat demand. To obtain
an economical plan, we minimized the total heat production
cost of the network using model predictive control. We
assumed the uncertainty to be bounded and hence, a worst-
case MPC optimization problem was solved. Since both the
cost function and the constraints are linear, the optimization
problem was formulated as a mixed-integer linear program-
ming (MILP) problem. We have discussed three approaches
to solve the obtained optimization problem and in a case
study we obtained a day-ahead production plan for a sample
network of greenhouses.

An alternative scenario to the centralized control architec-
ture is that each greenhouse tries to maximize its own benefit
and hence, they will sell heat to the other greenhouses in
the network. The efficient control approach in this case is
a distributed model predictive control, which is the topic of
our future research.
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