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Abstract

We consider a discrete time state estimation problem over a packet-based network. In each discrete time step, a measurement
packet is sent across a lossy network to an estimator unit consisting of a modified Kalman filter. Using the designed estimator
algorithm, the importance of placing a measurement buffer at the sensor that allows transmission of the current and several
previous measurements is shown. Previous pioneering work on Kalman filtering with intermittent observation losses is concerned
with the asymptotic behavior of the expected value of the error covariance, i.e. E[Pk] <∞ as k →∞. We consider a different
performance metric, namely a probabilistic statement of the error covariance Pr[Pk ≤ M ] ≥ 1 − ε, meaning that with high
probability the error covariance is bounded above at any instant in time. Provided the estimator error covariance has an
upper bound whenever a measurement packet arrives, we show that for any finite M this statement will hold so long as the
probability of receiving a measurement packet is nonzero. We also give an explicit relationship between M and ε and provide
examples to illustrate the theory.
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1 Introduction

Traditionally the areas of control and communication
networks are decoupled from each other as they have al-
most distinctly different underlying assumptions. For ex-
ample, control engineers generally assume perfect trans-
mission of information within the closed loop and that
data processing is done with zero time delay. On the
other hand, in communication networks, data packets
that carry the information can be dropped, delayed or
even reordered due to the network traffic conditions. In
the past there was no pressing need to relax these as-
sumptions, however, as new applications emerge the two
fields are coming closer together. For instance, advances
in large scale integration and microelectromechanical
system technology have made sensor networks a hot area
of research. In sensor networks, the measurement data
from different sensors is sent to an estimator through a
data network where data packets might be dropped if
the network has severe traffic.

In recent years, networked control problems have gained
much interest. In particular, the state estimation prob-
lem over a network has been widely studied. The problem
of state estimation and stabilization of a linear time in-
variant(LTI) system over a digital communication chan-

nel which has a finite bandwidth capacity was introduced
by Wong and Brockett [12,13] and further pursued by
[1,6,11,7]. In [10], Sinopoli et al. discussed how packet
loss can affect state estimation. They showed there exists
a certain threshold of the packet loss rate above which
the state estimation error diverges in the expected sense,
i.e. the expected value of the error covariance matrix
becomes unbounded as time goes to infinity. They also
provided lower and upper bounds of the threshold value.
Following the spirit of [10], in [5], Liu and Goldsmith ex-
tended the idea to the case where there are multiple sen-
sors and the packets arriving from different sensors are
dropped independently. They provided similar bounds
on the packet loss rate for a stable estimate, again in the
expected sense.

The problem of state estimation of a dynamical sys-
tem where measurements are sent across a lossy net-
work is also the focus of this work. Despite the great
progress of the previous researchers, the problems they
have studied have certain limitations. For example, in
both [10] and [5], they assumed that packets are dropped
independently, which is certainly not true in the case
where burst packets are dropped or in queuing networks
where adjacent packets are not dropped independently.
They also use the expected value of the error covariance
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matrix as the measure of performance. This can con-
ceal the fact that events with arbitrarily low probability
can make the expected value diverge, and it might be
better to ignore such events that occur with extremely
low probability. For example, consider the simple un-
stable scalar system with a = 2 in [10]. Let the arrival
rate γ = 0.74 < 1 − 1/a2. According to [10], the ex-
pected value of the estimation error covariance, E[Pk],
is unbounded. This is easily verifiable by considering the
event S where no packets are received in k time steps.
Then E[Pk] ≥ Pr[S]E[Pk|S] ≥ (0.26k)4kP0 = 1.04kP0.
By letting k go to infinity, we see that this event with al-
most zero probability makes the expected error diverge.

The goal of the present work is to give a more com-
plete characterization of the estimator performance by
instead considering a probabilistic description of the er-
ror covariance. We show it is bounded above by a given
bound with a high probability, i.e.

Pr[Pk ≤M ] = 1− ε . (1)

The importance of this characterization lies in the fact
that while the expected value of Pk may diverge due to
events with very low probability, in fact the actual value
of Pk can be below an acceptable limit for a vast majority
of the time. For this expression to hold, it requires an
estimator that will have a finite upper bound whenever a
measurement packet is received. We will construct such
an estimator in this paper. We will also show how to
determine the relationship between M and ε.

The rest of the paper is organized as follows. In Sec-
tion 2, the mathematical model of our problem is given.
The estimation algorithm that provides an upper bound
to the error covariance whenever a measurement packet
arrives is described in Section 3. In Section 4, we show
that M exists for any given ε. In Section 5, we give an
explicit relationship between the bound and probability
of the error covariance staying below the bound. In Sec-
tion 6 we compare our metric with that of [10] by means
of an example. The paper concludes with a summary of
our results and a discussion of the work that lies ahead.

2 Problem Set Up

2.1 Problem Setting

We consider estimating the state of a discrete-time LTI
system

xk+1 = Axk + wk

yk = Cxk + vk. (2)

As usual, xk ∈ Rn is the state vector, yk ∈ Rm is the
observation vector, wk ∈ Rn and vk ∈ Rm are zero
mean white Gaussian random vectors with E[wkwj

′] =

δkjQ ≥ 0, E[vkvj
′] = δkjR > 0, E[wkvj

′] = 0 ∀j, k.
Where δkj = 0 if k 6= j and δkj = 1 otherwise. We will
assume the pair (A,C) is observable and (A,Q

1
2 ) con-

trollable and to make the estimation problem interesting
that A is unstable.

We assume the sensor measurements yk are to be sent
across a lossy network, with negligible quantization ef-
fects, to the estimator. Thus the estimator will either
receive a perfectly communicated measurement packet
or none at all. It is assumed the network losses are ran-
dom events. Let γk be the random variable indicating
whether a packet is dropped at time k or not, i.e. γk = 0
if a packet is dropped and γk = 1 otherwise.

In addition, we assume the sensor has the ability to
store measurements in a buffer. Therefore each packet
sent through the network will contain a finite number of
the previous measurements. In packet based networks
the transmitted packet usually contains a fixed amount
space for data, therefore if less than this amount is
needed to be transmitted the packet is padded to meet
the required length[4]. We assume all the data from
the buffered measurements can fit into a single packet
and therefore the additional measurements do not in-
crease the bandwidth required nor the packet loss rates.
Figure 1 shows a schematic of the system set up.

Fig. 1. A schematic diagram of the system set up we are
considering. Note the measurement packets sent across the
network consist of the previous S + p measurements taken
by the sensor.

2.2 Kalman Filtering Across a Lossy Network

Sinopoli et al. [10] showed that the Kalman filter is still
the optimal estimator in this setting. There is a slight
change to the standard Kalman filter in that only the
time update is performed when the measurement pack-
ets are dropped. When a measurement is received the
time and measurement update steps are performed. The
filtering equations become

x̂k+1|k = Ax̂k|k (3)
Pk+1|k = APk|kA′ + Q (4)

x̂k+1|k+1 = x̂k+1|k + γk+1Kk+1(yk+1 − Cx̂k+1|k) (5)
Pk+1|k+1 = Pk+1|k − γk+1Kk+1CPk+1|k, (6)
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where ′ is the transpose operator, γk+1 ∈ {0, 1} indi-
cates if the measurement yk+1 was received and Kk+1 =
Pk+1|kC ′(CPk+1|kC ′+R)−1 is the Kalman gain matrix.
Note Eqn. (3) -(4) are the Kalman Filter Time Update
equations and Eqn. (5) - (6) are the Measurement Up-
date equations and Pk+1|k and Pk+1|k+1 are the a priori
and a posteriori error covariances respectively.

Unlike the standard Kalman filtering setting where the
error covariance matrix is a deterministic quantity (given
an initial value), the randomness of the lossy network
makes it a random variable as well. Nonetheless, its up-
date equation can still be characterized as

Pk+1 = APkA′ + Q− γkAPkC ′[CPkC ′ + R]−1CPkA′

(7)
where we simply write Pk = Pk|k−1. Given the system
parameters A,C,Q,R, then for any positive semidefinite
matrix X ≥ 0 define the following functions

h(X) = AXA′ + Q (8)
g(X) = AXA′ + Q−AXC ′(CXC ′ + R)−1CXA′ . (9)

From[10] we have that X ≥ Y ≥ 0⇒ g(X) ≥ g(Y ) and
h(X) ≥ h(Y ). We will adopt the notation that gm(X)
and hm(X) mean to apply the g and h functions m times
starting from X with g0(X) = h0(X) = X. Note that
Eqn. (9) is the discrete Algebraic Riccati Equation. We
will denote the solution to this equation by P = g(P ),
which is also the steady state covariance if all measure-
ments are received (i.e. lim

k→∞
Pk = P if γk = 1 ∀k for

any P0 ≥ 0).

For the case where γk is an independent and identically
distributed random variable with mean γ, Sinopoli et
al. [10] showed that there exists a critical value which
determines the stability of the expected value of the esti-
mation error covariance E[Pk] as k →∞. As mentioned
in Section 1, we are interested in a different metric to
evaluate the estimator performance,

Pr[Pk ≤M ] = 1− ε . (10)

In [9] the present authors first introduced this notion
for this same problem setting but under the additional
assumption that the measurement matrix, C, is invert-
ible. With C invertible the error covariance has an upper
bound whenever the Kalman filter time and measure-
ment updates are applied, i.e. whenever a measurement
packet arrives. This was the key feature that allows the
expression in Eqn. (10) to be evaluated.

With C not invertible, then given a single measurement
update step no such upper bound on the Kalman filter
error covariance can be determined. We seek an estima-
tor algorithm that will provide an upper bound whenever
a measurement packet arrives. As shown below, a sub-
optimal estimator can be constructed that uses a series

of previous measurements but has a fixed upper bound.
This estimator can be run in parallel with the Kalman
filter that uses a single measurement update, switching
to the suboptimal estimator when the error covariance
of the Kalman filter is above this bound.

2.3 Observer Based Estimator

The observer based estimator described in this section
will provide a state estimate by inverting out the known
dynamics from a finite sequence of past measurements.
Define

O(r) =


C

CA
...

CAr−1

 (11)

for any positive integer r ≥ 1. Next define S to be the
smallest integer such that the matrix is rank n, i.e.

S = min {r ≥ 1 : rank (O(r)) = n} . (12)

Since (A,C) is observable, S is guaranteed to exist and
S ≤ n . Thus by concatenating the previous S consec-
utive measurements the augmented observation vector
O(S) is full rank and hence has a pseudo-inverse. Now
denote the pseudo-inverse by

C =
(
O(S)

′
O(S)

)−1

O(S)
′
. (13)

Then at time k, given the sequence of measurements
yk−S+1, yk−S+2, . . . , yk, we can construct an estimate of
the state according to

xk = AS−1C
[

y
′

k−S+1 y
′

k−S+2 . . . y
′

k

]′
, (14)

and define the estimation error as ek = xk − xk.

Lemma 1 The a posteriori covariance,
P k|k = E[ekek

′] is

P k|k = Q̃ + AS−1CR̃C′AS−1′

−AS−1CT̃ − T̃ ′C′AS−1′ (15)

where

R̃ = diag
(
R̃S

)
+ US + US

′ (16)

Q̃ = Q̃S (17)

T̃ =
[
0m

n , T̃2, T̃3, · · · , T̃S

]
, (18)
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with

R̃S =
[
R,R + CQ̃2C

′, R + CQ̃3C
′, · · · , R + CQ̃SC ′

]
Q̃i =

i−2∑
j=0

AjQAj
′

, for i = 2, . . . , S

US =


[
0S·m

m

′

, u2
′, u3

′, · · · , uS−1
′, 0S·m

m

′]′
, if S ≥ 2

0S·m
m , if S = 1

ui =
[
0i·m

m , CQ̃iA
′C ′, CQ̃iA

2
′

C ′, · · · , CQ̃iA
S−i

′

C ′
]

T̃i =
S−2∑

j=S−i

AjQAj−S+i
′

C ′ , for i = 2, . . . , S .

The term 0j
i is used to represent a matrix with i rows and

j columns whose elements are all identically zero.

Proof: Note that for j ≥ k − S + 1 we can write

yj = C

(
Aj−k+S−1xk−S+1 +

j−k+S−2∑
i=0

Aiwj−i−1

)
+ vj .

The term in the parenthesis is xj , and note we have
separated the expression in terms of dependence on the
state at time k − S + 1 and the noise sequence from
k − S + 1 to j − 1. We can then write the estimator in
Eqn. (14) in terms of xk−S+1 by using these expressions
for the measurement signals.

xk =

AS−1C



Cxk−S+1 + vk−S+1

C(Axk−S+1 + wk−S+1) + vk−S+2

...

C

(
AS−1xk−S+1 +

j−k+S−2∑
i=0

Aiwj−i−1

)
+ vk


= AS−1 C O(S) xk−S+1

+AS−1C



vk−S+1

Cwk−S+1 + vk−S+2

...

C

(
j−k+S−2∑

i=0

Aiwj−i−1

)
+ vk



Since xk = AS−1xk−S+1+
S−2∑
i=0

Aiwk−i−1, the estimation

error for this estimator can then be easily seen to be

ek =
S−2∑
i=0

Aiwk−i−1−AS−1C



vk−S+1

Cwk−S+1 + vk−S+2

...

C

(
S−2∑
i=0

Aiwk−i−1

)
+ vk


.

The error covariance P k|k = E[ekek
′] is then found by

making use of the standard assumptions on the covari-
ances of the process and sensor noise terms, resulting in
Eqn. (15). 2

Remark 2 Note that P k|k in Eqn. (15) independent of
P k−1|k−1. In fact, it is a fixed quantity which depends
only on A,C,Q,R and S. So whenever S consecutive
measurements are available the error covariance using
this observer based estimator has an upper bound.

Remark 3 To assure that this upper bound exists when-
ever a measurement packet is received simply requires
the sensor transmit the previous S measurements at each
time step.

Since Eqn. (7) gives the a priori covariance update for the
Kalman filter, we will likewise be concerned with the a
priori covariance of this estimator. Denote the a priori co-
variance by S̄ = P k+1|k = E[ek+1ek+1

′|yk−S+1, · · · , yk],
then we have

S = AP k|kA′ + Q . (19)

3 Estimator Algorithm

We saw in the previous section that the error covariance
of the observer based estimator is a fixed value. Thus if
the previous S measurements are transmitted to the es-
timator, it guarantees that using the observer based esti-
mator yields Pk ≤ S at each time step the measurement
packet is received. As to be expected, inverting the dy-
namics to obtain the state estimate could cause S to be
quite large. If we include an additional p measurements
in the buffer, we can run the observer based algorithm
using the first S measurements and then a Kalman fil-
ter using the additional p measurements to decrease the
covariance upper bound after a measurement packet is
received.

The idea is to include a total of S + p measure-
ments in the buffer. The first S measurements,
{yk−S−p+1, yk−S−p+1, . . . , yk−p}, are used to construct
the estimate xk−p according to Eqn. (14). The remain-
ing measurements, {yk−p+1, . . . , yk}, are then used in
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running the Kalman filter time and measurement up-
dates (Eqn. (3) - Eqn. (6) with γk+1 = 1 since all the
necessary measurements are included in the measure-
ment packet) which are initialized with x̂k−p = xk−p

and Pk−p = S. After running a total of p Kalman filter
time and measurement updates we will have an estimate
x̂k whose error covariance will be

M = gp(S) . (20)

This will provide a smaller (than S) upper bound on the
error covariance that will hold whenever a measurement
packet is received, i.e.

Pk+1 ≤M, if γk = 1 . (21)

Note that since the covariance of the observer based es-
timator is a fixed quantity, S, the subsequent p Kalman
gains can be computed off-line and stored in advance. We
will call the estimator just described an observer based
estimator with Kalman filter extension.

The estimator algorithm consists of running both the
modified Kalman filter algorithm and the observer based
estimator with the Kalman filter extension (as described
above) along with some logic to choose the estimate with
the lower covariance. When no measurement packet is re-
ceived the estimator algorithm simply performs the time
update steps according to Eqn. (3) - (4) using the previ-
ous estimate and covariance. If a measurement packet is
received the measurement update steps of the Kalman
filter are run Eqn. (5) - (6) using only the most recent
measurement (which is from the current time-step yk)
from the measurement packet. The computed covariance
is checked against M . If the Kalman filter covariance is
not less than this M , then the observer based estima-
tor with Kalman filter extension is run and the estimate
and covariance are set to these computed values. This
estimation algorithm will assure an upper bound on the
error covariance M always exists whenever a packet is
received. The algorithm is described in Table 1, that it
consists of two distinct estimators: (i) the Kalman filter
using only the measurement from the current time-step
and (ii) the observer based estimator with Kalman filter
extension using the sequence of previous measurements.

Remark 4 It would be possible to use all the measure-
ments in the packet with the Kalman filter by storing the
previous estimate and covariance from time-step k−S−p
and then recomputing the Kalman filter time and mea-
surement update steps from time-step k − S − p + 1 to
k once a packet arrives. This would make use of any lost
information that eventually arrives at the filter, and as
shown in [2] the resulting covariance after applying S
time and measurement updates has an upper bound that
is equivalent to the upper bound of the observer based es-
timator under the extra condition that O(S) is square.
The disadvantage of this approach is that the S Kalman

gains would need to be computed every time-step that a
packet arrives (actually S + p if we then use the extra
p measurements to further reduce the covariance), this
would be computationally burdensome. As noted above,
the observer based estimator with Kalman filter exten-
sion does not suffer from this computational burden since
the gains can be computed off-line. Furthermore, recom-
puting the Kalman filter estimate with the older mea-
surements in the packet is only necessary if those mea-
surements were never received. It will not improve the
estimate if the measurement update for that correspond-
ing time-step was already computed, i.e. if it is not pro-
viding new information, so it would not unnecessary to
constantly utilize the old measurements to recompute the
Kalman filter estimate.

Remark 5 From the description of the algorithm and
the remark above, one can see that when the estimation
algorithm is implemented, the Kalman filter that uses the
current measurement only will be selected during a se-
quence of packet receives. When a packet is received af-
ter a long enough string of drops, however, the algorithm
will utilize the older measurements that had not yet been
received by choosing the observer based estimator with
Kalman filter extension, ultimately switching back to the
Kalman filter once a sequence of receives begins again.

4 Asymptotic Properties of Error Covariance
Matrix

As the simple example in the introduction shows, some
events with almost zero probability can make the ex-
pected value of the error covariance diverge. In prac-
tice, those rare events are unlikely to happen and hence
should be ignored. Therefore the expected value of the
error covariance matrix may not be the best metric to
evaluate the estimator performance. By ignoring these
low probability events, we hope that the error covariance
matrix is stable with arbitrarily high probability. This
is precisely captured in the following theorem.

Theorem 6 Assume the packet arrival sequences are
i.i.d. Let πg be the expected value of the packet arrival
rate. If πg > 0, then for any 0 < ε < 1, there exists
M(ε) < ∞ such that the error covariance matrix Pk is
bounded by M with probability 1− ε.

Though we assume here that the packet drops occur in-
dependently, it is shown later when we determine the
relationship between M and ε, the condition can be re-
laxed to include the case where the packet drops are de-
scribed by an underlying markov chain.

The theorem also suggests that for a given error toler-
ance M > 0, we can find min(πg) such that the error
covariance matrix Pk is bounded by M with any given
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Table 1
Algorithm for estimation scheme.

0) Given A, C, Q, R ;

• Determine S and P ;

• Choose the number of additional measurements, p,

to buffer and transmit so that M = gp(S) is as close

to P as desired and so that

Pk ≤M will hold whenever a packet is received ;

• Initialize x̂0 and P0 ;

1) Wait for packet at time k ;

• Kalman Filter Time Update ;

• If packet received at time k ;

− Kalman Filter Measurement Update ;

− If Pk � M ;

∗ Compute xk−p using Eqn. (15) ;

∗ Set x̂k−p ← xk−p and Pk−p ← S ;

∗ Loop j = 1 to p ;

◦ Kalman Filter Time and

Measurement Updates

using measurement yk−p+j ;

∗ EndLoop ;

− EndIf ;

− k ← k + 1 ;

• EndIf ;

• Goto 1 ;

specified probability .

Before we prove the theorem, we introduce the following
proposition.

Proposition 7 Define λh(X) = Tr(h(X))
Tr(X) . Then,

λh(X) ≤ 1 + λn(A′A) , λ̄n

for all X > 0 such that Tr(X) ≥ Tr(Q), where λn(A′A)
denotes the largest eigenvalue of A′A.

Proof:

λh(X) =
Tr(AXA′)

Tr(X)
+

Tr(Q)
Tr(X)

≤ 1 +
Tr(AXA′)

Tr(X)

= 1 +
Tr(A′AX)

Tr(X)

= 1 +
Tr(P ′A′APP ′XP )

Tr(P ′XP )

= 1 +
Tr(SY )
Tr(Y )

,

where S = P ′A′AP is diagonal and Y = P ′XP > 0
and has the same eigenvalues as X. Such P exists and
P ′ = P−1, as A′A is real symmetric. Hence,

λh(X)≤ 1 +
Tr(SY )
Tr(Y )

= 1 +
∑n

i=1 λi(A′A)Yii∑n
i=1 Yii

≤ 1 +
λn(A′A)

∑n
i=1 Yii∑n

i=1 Yii

= 1 + λn(A′A).

Notice that we implicitly used the fact that Yii > 0 for
all i, this follows as

Yii = ei
′Y ei > 0 . 2

Now we are ready to prove Theorem 6.

Proof of Theorem 6: Without loss of generality as-
sume at time k the packet is not received, γk = 0, oth-
erwise Pk ≤ M , M(ε) for any ε. Define πh = 1 − πg

and let k′ = max{s : s ≤ k, γs = 1}. Then k − k′ = N
with probability πgπ

N
h . Further define M0 = Tr(P0),

M1 = Tr(M) and αN = λ̄N
h . We discuss two cases for a

given ε.

(1) 0 < ε ≤ πg

Solve the following equation for N

πgπ
N
h = ε

to get

N =
⌈

log ε− log πg

log πh

⌉
,
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where dxe denotes the smallest integer that is bigger
or equal to x. Assume first that k ≥ N so that
k′ ≥ 0. Since γk′ = 1, Pk′ ≤M . Therefore

Pk ≤ αNM1I , M(ε)

with probability 1−ε, where I is the identity matrix
of appropriate dimension.

Now consider the case k < N , it is easy to see

Pk ≤ αNM0I , M(ε)

with probability at least 1− ε.
(2) πg < ε ≤ 1.

Assume first k ≥ 2. Let N = 1 so that k′ = k − 1,
i.e. , the previous packet is received and Pk−1 ≤M .
Then

Pk ≤ α1M1I , M(ε)
with probability at least 1− ε. When k = 1,

Pk ≤ α1M0I , M(ε)

with probability at least 1− ε. 2

5 Determining the M-ε Relationship

It is apparent that M(ε) given in the Theorem above is
very conservative and we seek a tighter bound for the
expression

Pr[Pk ≤M ] = 1− ε . (22)
We begin by finding an upper bound on ε given M . Re-
call the bound on the error covariance after a packet is
received is given by M as in Eqn. (21). Then define εi(k)
as the probability that at least the previous i consecu-
tive packets are dropped at time k, i.e.

εi(k) = Pr[Nk ≥ i] , (23)

with Nk the number of consecutive packets dropped at
time k. Note that Nk = (1 − γk)(1 + Nk−1). Clearly
εi ≥ εj for i ≤ j. Next define

kmin , min {k ∈ Z+ : hk(M) � M} (24)

Lemma 8 For 0 ≤ M < ∞, the quantity kmin will al-
ways exist.

Proof: To prove the existence of kmin note that for any
X > 0, lim

k→∞
Tr(hk(X)) = ∞ if A is unstable. Thus for

any scalar t > 0 there exists a kmin such that hkmin(M) �
tI and t can be chosen such that tI ≥ M . This means
λn(hkmin(M)) > t and λn(M) < t, where λn is the max-
imum eigenvalue. Then using Weyl’s Theorem [3] we see
λn(hkmin(M)−M) ≥ λn(hkmin(M))−λn(M) > 0 which
implies hkmin(M) � M . 2

Theorem 9 For unstable A assume the initial error co-
variance matrix P0 is given by P0 ≤M . Given a matrix
bound M ≥M then we have the following lower bound

Pr[Pk ≤M ] = 1− ε ≥ 1− εkmin(k) . (25)

That is the probability only depends on the number of
consecutive packets dropped at the current time and is
independent of the packet drop/receive sequence prior to
the previous received packet.

Proof : Since P0 ≤M , then assuming the next k pack-
ets are dropped we have Pk = hk(P0) and it is clear that
P0 ≤M ⇒ hk(P0) ≤ hk(M) so

Pk ≤ hk(M) .

So the necessary condition that Pk � M is

hk(M) � M ,

but by definition hk(M) ≤ M ∀k < kmin. Thus for
Pk � M it is necessary to drop at least the previous kmin

consecutive packets.

Now assume a packet is not received until time m > kmin,
that is γk = 0 for k = 0, · · · ,m − 1 and γm = 1, then
Pm+1 ≤ M from Eqn. (21). Thus for a packet received
at time m, we have

Pm+1 ≤M . (26)

Regardless of how large m is, i.e. how long between
packet receives, and how large the error covariance gets,
Eqn. (26) holds. Hence the analysis above can always
be repeated with Pm+1 replacing P0, and the probabil-
ity Pk � M depends only on the number of consecutive
packets dropped and is independent of what happens
prior to the last packet received. 2

Now we will also establish an upper bound on 1− ε that
is valid under certain conditions. Recall P is the solution
to the Riccati equation, g(P ) = P . The extra condition
we will require to establish a lower bound on ε is that
the relation

P < M (27)
holds. Now define

kmax , min {k ∈ Z+ : hk(P ) > M} , (28)

Lemma 10 It is always true that h(P ) ≥ P which im-
plies hk+1(P ) ≥ hk(P ).

7



Proof: Since P is the solution to the DARE we can
write

P = g(P ) = APA′ + Q−APC ′(CPC ′ + R)−1CPA′

≤APA′ + Q

= h(P ) .

With h(P ) ≥ P if we apply h to both sides k times we
get hk+1(P ) ≥ hk(P ). 2

Lemma 11 If A is purely unstable, kmax is guaranteed
to exist.

Proof: If A is purely unstable then lim
k→∞

λmin(hk(X)) =

∞. Thus we can again pick any finite scalar t > 0 such
that tI > M and find a kmax such that hkmax(P ) ≥ tI >
M . 2

Lemma 12 With the definitions above, if kmin and kmax

both exist then kmin ≤ kmax.

Proof: This can easily be shown by contradiction.
Assume kmin > kmax. By assumption P < M imply-
ing hkmax(P ) < hkmax(M) and if kmin > kmax then
hkmax(M) ≤ M . From the definition of kmax, how-
ever, we see hkmax(P ) > M which is a contradiction
of the previous inequality. Hence it must be true that
kmin ≤ kmax. 2

Corollary 13 If A is purely unstable and assuming P ≤
P0 ≤M , then we have the upper bound

Pr[Pk ≤M ] = 1− ε ≤ 1− εkmax(k) . (29)

Proof: Following the proof of Theorem 9, assume the
first k packets are dropped so Pk = hk(P0). A sufficient
condition for Pk � M is then

hk(P ) > M ,

since Pk = hk(P0) ≥ hk(P ). By definition hk(P ) > M
will first hold when k = kmax. Then since hk+1(P ) ≥
hk(P ), it will also hold for k > kmax. Thus dropping at
least the previous kmax consecutive packets guarantees
Pk � M . Now assume a packet is not received until time
m > kmax, then we know Pm = hm(P0) ≥ hm(P ) > M
and P ≤ Pm+1 ≤ M so the analysis is repeated with
Pm+1 replacing P0 as before. 2

The following example can help visualize the concepts
of the theorem.

Example 14 Consider the scalar system A = 1.3, C =
1, Q = 0.5 and R = 1. For this system we have P = 1.519
and with S = 1 and picking p = 0 we get M = 2.19.
Picking M = 6.25 it is easy to show kmin = 2 and kmax =
3. Thus there exists an P < X∗ ≤ M such that all for
P ≤ X < X∗ it requires 3 consecutive packets to be
dropped before the error covariance is greater than M ,
while for the region X∗ ≤ X ≤ M it only requires 2
consecutive packets be dropped. In fact it can be easily
shown that X∗ = 1.7174.

Figure 2 shows the evolution of the error covariance for
a particular sequence of packet drops. The sequence used
is hhhhggghhghhhgh(P0). As can be seen, it requires
at least 2 consecutive packets be dropped for the error
covariance to rise above the bound.

Fig. 2. Error covariance (log scale) for Example 14. For this
system it will take at least 2 and no more than 3 consecutive
dropped packets for Pk � M .

Remark 15 With the definition of εi(k) in Eqn. (23)
it is easy to see εi(k) = 0 , ∀k < i. Which leads to
Pr[Pk ≤ M ] = 1 , ∀k < kmin. In addition, for the
estimator algorithm to be implemented and Eqn. (21) to
hold requires at least S + p measurements. Therefore we
only consider time greater than max {kmin, S + p}.

For these results to be useful we need to calculate εi(k).
Figure 3 shows all possible packet sequences at time k
for a packet dropping network. From this it is clear to
see that εi(k) will be the sum of the probabilities of
each of the instances with at least the previous i packets
dropped occurring.

Corollary 16 For k > i any packet dropping network
that is either i.i.d. or reaches a steady state (for example
a Markov network), εi(k) = εi is independent of k.

The above corollary says the probability of dropping at
least the previous i packets is the same for all time. To
calculate εkmin (or εkmax) we can make use of the Markov
chain model in Figure 4.
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Fig. 3. A binary representation of the possible packet se-
quences (i.e. drop/receive) at time k. A 0 signifies a packet
was dropped and 1 signifies the packet was received.

Fig. 4. The states of the Markov chain represent the number
of consecutive packets dropped at the current time, the final
state represents kmin or more consecutive packets dropped.
The transition probability from state i to state j is given by
Ti,j . The same figure can be made for kmax.

The states of the Markov chain represent the number
of consecutive packets dropped at the current time, the
final state represents kmin or more consecutive packets
dropped. The transition probability from state i to state
j is given by Ti,j . It is clear εkmin = πkmin , the steady
state probability of the Markov chain being in state kmin.
This is easily determined to be given by

πkmin =
D

D + Tkmin,0 + Tkmin,0

kmin−1∑
l=1

l−1∏
j=0

Tj,j+1

(30)

with

D = 1− T0,0 −
kmin−1∑

l=1

Tl,0

l−1∏
j=0

Tj,j+1 .

Note that πkmin decreases as kmin increases. The same
formula holds for kmax by replacing kmin ← kmax.

The Ti,j are determined based on the type of network.
For example, an i.i.d. network with packet arrival rate
γ and drop rate 1 − γ has Tj,0 = γ ∀j ≥ 0, Tj,j+1 =
1 − γ ∀j ≥ 0, and Tkmin,kmin = 1 − γ. This leads to
πkmin = (1− γ)kmin . A first order Markov network with

transition probabilities Thh, Thg, Tgh, and Tgg leads to
πkmin = 1−Tgg

2−Thh−Tgg
(Thh)kmin−1. The probability πkmin for

any arbitrary order Markov network can be determined
in this manner. All the equations above can be used to
calculate εkmax as well by simply replacing kmin ← kmax

Theorem 9 and Corollary 13 provide bounds on ε for a
given M and the network properties, i.e. πkmin and πkmax .
It is also possible to determine bounds on M and πkmin .

Corollary 17 With the same assumptions as Theorem
9 and given the transition probabilities Ti,j of the Markov
model in Figure 4 and a lower bound 1−εkmin it is possible
to determine a suitable M such that Pr[Pk ≤ M ] ≥
1− εkmin . To do so, define

kM , min {k ∈ Z+ : πk ≤ εkmin} , (31)

with πk given in Eqn. (30). Then the tightest such bound
is

M = hkM (M) . (32)

Corollary 18 Likewise, given M and a lower bound 1−
εkmin it is possible to determine limits on the transition
probabilities Ti,j of the Markov model in Figure 4 such
that Pr[Pk ≤ M ] ≥ 1 − εkmin . With kmin as defined in
Eqn. (24), it is easy to see that we require

πkmin ≤ εmax . (33)

For the i.i.d. network this reduces to γ ≥ 1− εmax

1
kmin .

6 Simulation Example

Consider the linearized pendubot system in [8] with

A =


1.001 0.005 0.000 0.000

0.35 1.001 −0.135 0.000

−0.001 0.000 1.001 0.005

−0.375 −0.001 0.590 1.001

 , B =


0.001

0.540

−0.002

−1.066

 ,

C =

[
1 0 0 0

0 0 1 0

]
, R =

[
0.001 0

0 0.001

]
,

Q = qq′, q′ =
[

0.003 1.000 −0.005 −2.150
]

and an i.i.d. network with packet acceptance rate γ =
0.75. For this system we have S = 2, meaning [C,A′C ′]′
is full rank and we need to transmit at least 2 measure-
ments at each time step. Using the analysis presented in
this paper, we can predict with what probability the er-
ror will remain below certain bounds. The value of the
trace of M as a function of the number of additional
measurements to buffer p is shown in Figure 5. This
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curve can be used as a guide to pick the amount of data
measurements to buffer. Note the error covariance if all
measurements were received, P , has a trace of 16.27. For
the simulations presented below we used p = 7 (so we
transmit a total of S +p = 9 measurements) which gives
Tr(M) = 16.99.

0 2 4 6 8 10
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60

80

100

120

140

160

180

p

Tr(M)
Tr(P)

Fig. 5. The trace of M bound vs. p.

Figure 6 shows the M - ε relationship for this system.
A total of 10,000 simulations were run with a random
initial error covariance in the range P ≤ P0 ≤M chosen
for each simulation. The simulations were run for 500
time steps and the 1− ε calculated from the simulations
corresponds to the average over all simulations of the
percent of time the error covariance was larger than the
M bound. The staircase like plot can be explained by
the fact the probability bounds for 1 − ε are given by
1 − εkmin and 1 − εkmax which exhibit sharp jumps, i.e.
the staircase, as kmin and kmax change integer values.

10 20 30 40 50 60 70 80 90
0.75

0.8

0.85

0.9

0.95

1
M vs. ε Curve

1−ε

trace(M)

Simulation
Lower Bound
Upper Bound

Fig. 6. M bound vs. ε. The solid (blue) line is the simulated
1− ε and the dashed (red and green) lines are the predicted
1− εmax and 1− εmin.

7 Conclusions and Future Work

We analyzed the problem of state estimation where mea-
surement packets are sent across a lossy network. We
designed an estimator algorithm that is guaranteed to
have an upper bound on the estimation error covariance

whenever a measurement packet is received that relies
on transmitting the current and several previous sensor
measurements.

We showed with this upper bound that as long as the ex-
pected value of receiving packets is not identically zero,
then for any given 0 < ε < 1 there exists an M(ε) < ∞
such that the error covariance matrix Pk is bounded by
M with probability 1 − ε. This analysis is independent
of the probability distribution of packet drops.

Next, we give explicit relations for upper and lower
bounds on the probability 1 − εmin ≤ Pr[Pk ≤ M ] ≤
1−εmax. We observe that Pk � M only if a large enough
consecutive burst of packets are dropped before time k.
The size of the required burst is dependent on M .
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