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Abstract
The acrobot is a simple mechanical system patterned after a gymnast

performing on a single parallel bar. By swinging her legs, a gymnast is able
to bring herself into an inverted position with her center of mass above the
part and is able to perform manuevers about this configuration. This report
studies the use of nonlinear control techniques for designing a controller to
operate in a neighborhood of the manifold of inverted equilibrium points.
The techniques described here are of particular interest because the dynamic
model of the acrobot violates many of the necessary conditions required to
apply current methods in linear and nonlinear control theory.

The approach used in this report is to approximate the system in such a
way that the behavior of the system about the manifold of equilibrium points
is correctly captured. In particular, we construct an approximating system
which agrees with the linearization of the original system on the equilibrium
manifold and is full state linearizable. For this class of approximations,
controllers can be constructed using recent techniques from differential ge-
ometric control theory. We show that application of control laws derived in
this manner results in approximate trajectory tracking for the system under
certain restrictions on the class of desired trajectories. Simulation results
based on a simplified model of the acrobot are included.

∗Research supported in part by an IBM Manufacturing fellowship and the National

Science Foundation, under grant IRI-90-14490.
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1 Introduction

Recent developments in the theory of geometric nonlinear control provide
powerful methods for controller design for a large class of nonlinear systems.
Many systems, however, do not satisfy the restrictive conditions necessary
for either full state linearization [7, 5] or input-output linearization with
internal stability [2]. In this paper, we present an approach to controller de-
sign based on finding a linearizable nonlinear system that well approximates
the true system over a desirable region. We outline an engineering pro-
cedure for constructing the approximating nonlinear system given the true
system. We demonstrate this approach by designing a nonlinear controller
for a simple mechanical system patterned after a gymnast performing on a
single parallel bar.

There has been considerable work in the area of system approximation
including Jacobian linearization, pseudo-linearization [10, 12], approxima-
tion with a nonlinear system [8], and extended linearization [1]. Much of
the work on system approximation has been directed toward analysis and
the development of conditions that must be satisfied by the approximate
systems rather than on the explicit construction of such approximations.
Notable exceptions include the standard Jacobian approximation and the
recent work of Krener using polynomial system approximations [9]. Wang
and Rugh [12] also provide an approach for constructing configuration sched-
uled linear transformations to pseudo-linearize the system (note that this
approach provides a family of approximations rather that a single system
approximation). Rather than using polynomial systems or families of linear
systems to approximate the given system, we approximate the given nonlin-
ear system with a single nonlinear system that is full state linearizable.

We use as a guiding example the problem of controlling the acrobot (for
acrobatic-robot) shown in Figure 1. The acrobot is a highly simplified model
of a human gymnast performing on a single parallel bar. By swinging her legs
(a rotation at the hip) the gymnast is able to bring herself into a completely
inverted position with her straightened legs pointing upwards and her center
of mass above the bar. The acrobot consists of a simple two link manipulator
operating in a vertical plane. The first joint (corresponding to the gymnast’s
hand sliding freely on the bar) is free to rotate. A motor is mounted at the
second joint (between the links) to provide a torque input to the system
(corresponding to the gymnast’s ability to generate torques at the hip). A
life size acrobot is currently being instrumented for experimentation at U.C.
Berkeley.

The eventual goal in controlling this system is to precisely execute realis-
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Figure 1: Acrobot: an acrobatic robot. Patterned after a gymnast on a
parallel bar, the acrobot is only actuated at the middle (hip) joint; the first
joint, corresponding to the gymnast’s hands on the bar, is free to spin about
its axis.

tic gymnastic routines. Our modest initial goal is to understand and design
controllers capable of system control in a neighborhood of the manifold of
inverted equilibrium positions. That is, we would like to have the acrobot
follow a smooth trajectory while inverted, such as that shown in Figure 2.

This report presents a detailed study of the stabilization and tracking
for the acrobot. We begin with a complete, mathematical description of
the system in Section 2. The application of standard control techniques to
the acrobot is studied in Section 3. Section 4 briefly introduces the theory
of approximate linearization and develops a family of nonlinear controllers
using this theory. A comparison of these controllers against a standard linear
controller is given in Section 5. Finally, we discuss more general nonlinear
control problems and how our results for the acrobot can be applied to them.
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Figure 2: Motion of the acrobot along the manifold of inverted equilibrium
positions.

The application of the methods presented here require substantial alge-
braic computation. We have used Mathematica [13] to perform much of our
computation for us. We list in the body of this paper the specific Mathemat-
ica files which were used to obtain or check indicated results. The listings
for these files can be found in the appendix.



2 SYSTEM DESCRIPTION 4

2 System description

Considered as a mechanical system, the acrobot has unforced dynamics iden-
tical to those of a two link robot. Using a Lagrangian analysis (see for
example [11]), the dynamics of the acrobot can be written as

M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) =

(

0
τ

)

where θ = (θ1, θ2) is the vector of relative joint angles as shown in Fig-
ure 1, M is the (uniformly positive definite) inertia tensor, C contains the
Coriolis and centrifugal forces, G contains the effects of gravity, and τ is
the torque applied between the first and second links. Using point mass
approximations, a simple analysis yields (acrobot.m)

M(θ) =

[

a+ b+ 2c cos θ2 b+ c cos θ2
b+ c cos θ2 b

]

(1)

C(θ, θ̇) =

[

−c sin θ2 θ̇2 −c sin θ2(θ̇1 + θ̇2)

c sin θ2 θ̇1 0

]

(2)

G(θ) =

[

−d sin θ1 − e sin(θ1 + θ2)
e sin(θ1 + θ2)

]

(3)

where
a = m1l

2
1 +m2l

2
1

b = m2l
2
2

c = m2l1l2

d = gm1l1 + gm2l1
e = gm2l2

Due to the presence of rotary joints, these dynamics are highly nonlinear
and contain many important trigonometric terms. Defining

x :=

(

θ

θ̇

)

we can write the system as a standard nonlinear system, affine in the control
u := τ ,

ẋ = f(x) + g(x)u

where the system vector fields, f and g, are given by

f(x) :=

(

θ̇

−M−1(Cθ̇ +G)

)

and g(x) :=

(

0

M−1
(

0
1

)

)

(4)
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Parameter Units Balanced Actual
Value Value

l1 m 1/2 1/2
l2 m 1 3/4
m1 kg 8 7
m2 kg 8 8
g m/s2 10 9.8

Table 1: Acrobot parameters. The balanced values correspond to a version
of the acrobot which has a connected equilibrium set.

Since the system has a single input, we can find a one-dimensional set
of equilibrium points (e.g., inverted positions) that the system can achieve.
This set consists of all states where f(x0) + g(x0)u0 = 0 for some input u0.
In particular, this is only true if

θ̇ = 0

G(x0) =
(

0
1

)

u0

and it follows from equation (4) that

u0 = e sin(θ1 + θ2)
d sin θ2 = −e sin(θ1 + θ2)

We will refer to the input u0 associated with an equilibrium point x0 as the
trim. It is the DC offset needed to counteract the drift vector field, f , at x0.

The equilibrium set consists of one or more connected components. In
particular, if d = e, then we have one connected component, otherwise we
have two connected components. These two components consist of equilib-
rium points where the center of mass of the system is above and below the
axis of the first joint, respectively. It is easy to see that if (θ1, θ2) is an
equilibrium point, then (−θ1,−θ2) and (π ± θ1, π ± θ2) are also equlibrium
points (see Figure 3).

The kinematic and dynamic parameters for acrobot are given in Table 1.
Two sets of values are given. The first corresponds to an acrobot which has
an equilibrium set which is a single connected component (i.e., d = e). The
second set of values is the approximate parameter values for the physical
system at U.C. Berkeley. We have rounded units to rational numbers to
ease the computational burden. We shall use the former (“balanced”) values
unless otherwise noted.
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Figure 3: Equilibrium points for θ2 = α. In general the inverted equilibrium
points are in a separate component of the equilibrium set from the non-
inverted ones.

The equilibrium points for the two sets of parameters are shown in Fig-
ure 4. For the “balanced” parameter values, the equilibrium set consists
of all θ1 + 1

2θ2 = 0, θ1 + 1
2θ2 = π, and θ2 = ±π. This last set of points

corresponds to the case where the center of mass of the system is coincident
with the axis of the first joint, and hence every value of θ1 corresponds to
an equilibrium configuration. Note also that there is a gap in the range of
θ1 for which the “actual” system may be balanced.
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Figure 4: Equilibrium points for acrobot. The left figure is the equilibrium
set using the balanced parameter values, the right plot using the actual
parameter values.
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3 Linearization techniques

In this section we explore the application of linearization techniques to the
control of the acrobot. We distinguish between two different linearization
methods. The first is linearization about a point, in which we approximate
the vector fields f and g by their linearizations about an equilibrium point.
If the linearization is stabilizable to that equilibrium point, then in a suit-
ably small neighborhood the nonlinear system can also be stabilized (by
linear feedback). A more recent technique is feedback linearization (see, for
example, Isidori [6]). This method uses a change of coordinates and nonlin-
ear state feedback to transform the nonlinear system description to a linear
one (in the new coordinates).

3.1 Linearization about an equilibrium point

If we let (x0, u0) ∈ R
4 × R denote an equilibrium point for the acrobot, the

linearization about (x0, u0) is given by

ż = Az + bv

where
z = x− x0 v = u− u0

A = ∂
∂x

(f(x) + g(x)u)|(x0,u0) b = g(x0)

We refer to this method of linearization as Jacobian linearization since it
replaces the system vector fields by their Jacobians with respect to x and
u evaluated at a point. The linearized system is completely controllable if
and only if

det
[

b Ab · · · An−1b
]

6= 0 (5)

It is straightforward to check that the acrobot linearization is completely
controllable in a neighborhood of θ1 = θ2 = 0, θ̇1 = θ̇2 = 0 (straight up). At
this point

A =

















0 0 1 0

0 0 0 1

g
l1

− gm2

l1m1
0 0

− g
l1

g(l1m1+l1m2+l2m2)
l1l2m1

0 0

















b =

















0

0

− l1+l2
l2
1
l2m1

l2
1
m1+(l1+l2)2m2

l2
1
l2
2
m1m2

















By smoothness, it follows that the system is controllable in a neighborhood
of the origin. We defer the analysis of points where controllability is lost
until later in this section.
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Figure 5: Gravity coupling in the acrobot. By moving the center of mass to
one side of the vertical axis, we can cause the entire mechanism to rotate.

Controllability for the acrobot can be given physical interpretation. Con-
sider the case when the mechanism is pointed straight up, with its center of
mass directly above the pivot point (see Figure 5). We have direct control
of the relative angle of the second link. By moving the second link to the
left or right, we can force the center of mass to lie on either side of the pivot
point and thus force the whole mechanism to rotate. This use of gravity is
crucial in achieving control since equation (5) is not satisfied if g = 0 (Ab is
zero).

A second effect which occurs is inertial coupling between the first and
second links. Since the motor exerts a torque on the second joint relative
to the first joint, pushing the second joint in one direction causes the first
joint to move in the opposite direction. This phenomenon is seen in the
linear model by the presence of a right half plane zero; the transfer function
between the hip torque and the angle of the first joint (using the balanced
parameter values from Section 2) is:

3
(

s+ 2
√

5
3

)(

s− 2
√

5
3

)

4(s4 − 60s2 + 400)

Solving for the poles of this transfer function verifies that the acrobot is
open loop unstable.

We now return to the question of controllability and investigate equilib-
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Figure 6: Determinant of controllability matrix versus θ2. The plot on the
left corresponds to the balanced parameters and the plot on the right to the
actual parameters.

rium points at which the linearization is not controllable. Figure 6 shows a
plot of the determinant of the controllability matrix in equation (5) versus
the hip angle of the acrobot. We see that the system is controllable except
at points where θ2 = ±π. Physically this configuration corresponds to the
second link of the acrobot pointing back along the first. In this configura-
tion, the balanced acrobot can swing freely about the axis of the first link
and remain in an equilibrium position.

So far our discussion has centered about using a linear controller for sta-
bilization; our real interest is in trajectory tracking. We begin by reviewing
trajectory tracking for a linear system

ẋ = Ax+ bu

We assume the system is completely controllable and we wish to track a
desired state trajectory xd. Without loss of generality we can assume that
(A, b) are in controllable canonical form, i.e. a chain of integrators. In this
case the system can be written as

ẋ1 = x2

ẋ2 = x3
...

ẋn−1 = xn

ẋn = u

where we have placed all poles at the origin to simplify notation.
If xd(·) is a desired trajectory which satisfies ẋd = Axd + bud for some

ud (i.e., xd is achievable) then we can follow this trajectory by using

u = ẋd
n
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when xd(0) = x(0). This choice of inputs corresponds to injecting the proper
input at the end of the chain of integrators which model the system.

To achieve trajectory tracking even if our initial condition does not sat-
isfy xd(0) = x(0) we introduce the feedback control law

u = ẋd
n + α1(x

d
n − xn) + · · · + αn(xd

1 − x1)

and the error system satisfies

e(n) + α1e
(n−1) + · · · + αne = 0 e = xd − x

By choosing the α’s so that the resulting transfer function has all of its poles
in the left half plane, e will be exponentially stable to 0 and the actual state
will converge to the desired state.

In the case of a linearized system, the linearization may not be a good ap-
proximation to the system for arbitrary configurations. Since we linearized
about a single point, we can only guarantee trajectory tracking in a suf-
ficiently small ball of states about that point. There are several methods
for circumventing this problem; one of the most common is gain scheduling.
To use gain scheduling, we design tracking controllers for many different
equilibrium points and choose our gains based on the equilibrium point(s)
to which we are nearest. In fact, this can be done in a more or less contin-
uous fashion using a technique called extended linearization [12]. The basic
restriction is that the desired reference trajectory must be slowly varying.

3.2 Feedback linearization

Given a nonlinear system

ẋ = f(x) + g(x)u (6)

it is sometimes possible to find a change of coordinates ξ = φ(x) and a
control law u = α(x) + β(x)v such that the resulting dynamics are linear:

ξ̇ = Aξ + bv

In such cases we can control the system by converting the desired trajec-
tory or equilibrium point to our new coordinates, calculating the control v
in the that space, and then pulling the control back to the original coordi-
nates. If such a change of coordinates and feedback exists, we say that (6)
is input/state linearizable.
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The conditions under which a general nonlinear system can be converted
to a linear one as described above were formulated independently by Jakub-
cyzk and Respondek and Hunt, Su and Meyer. For the single input case,
the conditions are given by the following theorem.

Theorem 1 ([7, 5]). The system (6) is input/state linearizable in an open
set U if and only if

(i) dim span{g, adfg, · · · , adn−1
f g}(x) = n, ∀x ∈ U

(ii) span{g, adfg, · · · , adn−2
f g} is an involutive distribution on U

where adj
fg is the iterated Lie bracket [f, · · · , [f, g] · · · ].

The first condition is a controllability test and agrees with the lineariza-
tion when evaluated at an equilibrium point. The importance of the second
condition is more subtle.

If condition (ii) is satisfied, then there exists a smooth h : R
n → R such

that
∂h

∂x

[

g adfg · · · adn−2
f g

]

= 0 (7)

This can be seen by applying Frobenius’ theorem: since the distribution is
involutive, there exists a foliation such that the tangent space to each leaf
of the foliation is spanned by the distribution restricted to that leaf. Since
the leaves have dimension n− 1, there exists a scalar valued function h such
that the leaves are defined by h−1(a) for a ∈ R. Equation (7) is essentially
saying that the gradient of h is perpendicular to the leaves.

The standard approach in feedback linearization is to use h to define the
required change of coordinates. For single input systems we define

φ1(x) = h(x)

φi(x) = Li−1
f h(x)

where Lfh = ∂h
∂x
f is the Lie derivative of h in the direction f . The condition

in equation (7) guarantees that the input will not appear until the nth
derivative. Setting ξ = φ(x), our new equations are

ξ̇i = ξi+1 i = 1, · · · , n− 1

ξ̇n = a(x) + b(x)u

and by using u = b−1(−a + v) we have a linear system (in Brunowsky
canonical form).
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Trajectory tracking for such a system is exactly as in the linear case.
However, since we have converted the model to a linear one instead of ap-
proximating it, we do not need to stay close to any particular equilibrium
point. Thus in an open set U in which the feedback linearizability equations
are satisfied, we can achieve exponential trajectory tracking.

To check the involutivity condition for the acrobot, we must verify that
the vector fields

[g, adfg] [g, ad2
fg] [adfg, ad2

fg] (8)

lie in the distribution

∆ = span{g, adfg, ad2
fg}

This can be done by checking that the determinant of a matrix (which is
a function of x) is zero. It can be verified (exact.m) that the determinant
obtained using ∆ and the second expression in equation (8) is nonzero.
Hence the system is not input/state linearizable.

A less restrictive class of systems is the class of input/output linearizable
systems. A major difficulty is the possibility of introducing unstable internal
dynamics, called zero dynamics. Since there is no predefined output function
for acrobot, it might be possible to define an output such that the system
is input/output linearizable and has stable zero dynamics. In this case
we could again achieve trajectory tracking by relying on the stable zero
dynamics to control unobservable states. Finding such an output function
is nontrivial. Both of the obvious output functions (θ1 and θ2) have unstable
zero dynamics. As we saw with the Jacobian linearization, if we use θ1 as
the output, we obtain a right half plane zero in the linearized system. The
effect of this right half plane zero is also present in the nonlinear system.
The input/output linearizing feedback cancels this zero with a pole at the
same location and results in unstable zero dynamics. Similar problems occur
when using θ2 as the output.

To summarize, we have shown that the acrobot is stabilizable about
most equilibrium points (all but a set of measure 0) using static linear state
feedback. This simple approach is not suitable for trajectory tracking, al-
though gain scheduling and related approaches might be used to improve
performance. The more global method of input/state linearization via state
feedback cannot be applied to acrobot since the system is provably not in-
put/state linearizable. In the next section we investigate the use of approx-
imate linearization techniques to recover some of the desirable properties of
feedback linearization for systems which do not meet the necessary restric-
tive conditions.
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4 Approximate linearization

In the previous section we showed that the acrobot dynamics are not exactly
linearizable by state feedback. In this section we apply the technique of
approximate linearization to the acrobot. Briefly, we wish to find vector
fields f̃ and g̃ which are close to our original vector fields but which satisfy
the exact linearizability conditions. We then proceed to design a controller
for the approximate system and apply it to the actual system.

The usual method of approximate linearization is slightly complicated
in the case of the acrobot for two reasons: we do not have a natural output
function and we wish to track trajectories near a manifold of equilibrium
points rather than near a single point. This chapter presents a methodology
for designing a controller for a system of this type. Briefly, we will proceed
in the following manner:

1. Parameterize the controllable equilibrium manifold, E , as (x1, 0, · · · , 0).

2. Construct a smooth output, h(x), such that the linearized system at
each equilibrium point has relative degree n.

3. Using h, construct approximate vector fields f̃ and g̃ such that they
approximate f and g along the equilibrium manifold and the approx-
imate system is exactly linearizable.

4. Using f̃ and g̃, design a tracking controller for the approximate system
and apply the resulting controller to the original system.

We begin with a brief review of approximation theory using the presentation
in Hauser et. al. [3] as a guide.

4.1 Review of approximation theory

We consider systems of the form

ẋ = f(x) + g(x)u
y = h(x)

(9)

The system is input/output linearizable with relative degree n in a neighbor-
hood U if and only if for all x ∈ U

(i) LgL
i−1
f h(x) = 0 i = 1, · · · , r − 1

(ii) LgL
n−1
f h(x) 6= 0
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where Lfh = ∂h
∂x
f is the Lie derivative of h in the direction f . These

conditions are equivalent to the exact linearization conditions in Theo-
rem 1 of the previous section. That is, ∂h

∂x
annihilates the distribution

{g, adfg, · · · , adn−2
f g}. As before, we use the output ξ = h(x) and its first

n derivatives to define a new set of coordinates. Using this new set of co-
ordinates, the input/output map is given by the linear transfer function
1/sn.

If the input/output conditions are not satisfied, then we can still use
this basic construction as a method for generating approximate vector fields
which do satisfy the conditions, at least in a neighborhood of a controllable
equilibrium point. Since the behavior of the nonlinear system about an
equilibrium point is determined by its linearization, any approximate system
should agree with the linearized system at an equilibrium point (x0, u0).
That is, the approximate vector field f̃ + g̃u should agree to first order with
the original vector field f + gu, when evaluated at the equilibrium point. In
particular, this implies that the relative degree of any approximate system
should agree with the relative degree of the linearization. This motivates
the following definition: the linearized relative degree of a nonlinear system
in a neighborhood of an equilibrium point x0 is the relative degree of the
linearization about x0. We use this concept to construct an approximate
system which has relative degree equal to the linearized relative degree of
the original system.

A key concept is that of higher order. A function ψ(x) is said to be
higher order at x0 if the function and its first derivative vanish at x0. More
generally, a function is order k at x0 if the function and its first k derivatives
vanish at x0, and first order if only the function itself is zero at x0.

Let x0 be an equilibrium point of a nonlinear system with u0 the input
required to hold the system at the equilibrium point. Suppose the linearized
relative degree of the system about x0 is n. Then we can define an approx-
imate system in a neighborhood of (x0, u0) as follows: set

φ1(x) = h(x) − ψ0(x)

where ψ0 is any function that is higher order at x0. For i = 2, · · · , n, set

φi(x) = Lfφi−1(x) + u0Lgφi−1(x) − ψi−1(x)

where ψi(x) is higher order at x0. It can be shown that φ is a local diffeo-
morphism and hence defines a valid change of coordinates. If we write the
system dynamics in this new set of coordinates, we get a chain of integrators
with nonlinear perturbations (Figure 4.1).
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v hhhh

ψ(x, y)

higher order nonlinear terms

∫∫∫∫

ξ1ξ2ξ3ξ4
yh

Figure 7: Approximate linearization viewed as a chain of integrators with
nonlinear perturbations (from [HKS89]).

To see how this procedure produces an approximate system, we pull
back the Brunowsky canonical vector fields through the diffeomorphism φ
to produce the approximate vector fields:

f̃ = [Dφ]−1















φ2(x)

...
φn(x)

0















g̃ = [Dφ]−1











0
...
0
1











By construction, the approximate vector fields are input/output linearizable
with relative degree n. Furthermore, the vector fields agree with the original
vector fields to first order at x0 since we only throw away higher order terms.

There is a great deal of freedom in choosing the approximation; this
freedom is manifested through the choice of the ψi’s. If the system were
input/output linearizable, then we could have chosen ψi to be zero at each
step and we would have exactly the change of coordinates produced in the
exact linearization procedure. Another interesting case is when we choose
ψi to include all second order and higher terms; in this case our approximate
system is equivalent to the Jacobian linearization. In general, however, it
is not clear which terms to ignore in selecting coordinates. Currently the
choice of approximation is a matter of engineering judgement.

Using the approximate system, we can construct an exactly linearizing
control law which is capable of trajectory tracking. In our new coordinates,
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ξ = φ(x), the system has the form

ξ̇i = ξi+1 + ψi(x) + θi(x)(u− u0)

ξ̇n = Lfφn(x) + Lgφn(x)u+ ψn(x) + θn(x)(u− u0)
y = ξ1 + ψ0(x)

where each θi is at least uniformly first order at x0. With analogy to the
exact linearization case, we choose

u =
1

Lgφn(x)

(

−Lfφn(x) + y
(n)
d + αn−1(y

(n−1)
d − ξn) + · · · + α0(yd − ξ1)

)

(10)
where sn + αn−1s

n−1 + · · · + α0 has all its zeros in the open left half plane.
Let

ξd
i (t) := yi−1

d (t)

and define the tracking error as

e(t) := ξd(t) − ξ(t)

This error vector encodes the deviation of the actual system trajectory from
the desired trajectory of the approximate system.

For ǫ sufficiently small and desired trajectories which are ǫ-near x0 and
sufficiently slow, the control law (10) results in approximate tracking of
the desired trajectory [3]. Thus we can approximately track any trajectory
which remains close to the equilibrium point and is slowing varying. A more
explicit (and more general) formulation is presented in Section 4.4.

4.2 The equilibrium manifold

In our application, we are not interested in motion near a single equilibrium
point, but rather motion near a set of equilibrium points. Given a general
single input system, the equilibrium points are those x0 for which f(x0) +
g(x0)u0 = 0 for some u0 ∈ R. We define E to be the set of all equilibrium
points, x0, such that the linearized system is controllable about x0.

Theorem 2. E is a manifold of dimension 1.

Proof. Consider first the set Ex,u of all pairs (x0, u0) such that f(x0) +
g(x0)u0 = 0 and the system is controllable at x0. Controllability is deter-
mined by taking the determinant of a set of smooth functions and hence
there exists and open ball N ∋ (x0, u0) such that all equilibrium points
(x′, u′) ∈ N are also controllable. Let U be the union of all such N over
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x2

x1

u

Figure 8: Projection of the equilibrium points onto the state space [10].

Ex,u. Then U is open and Ex,u ⊂ U . Define the map F : U ⊂ R
n+1 → R

n

given by F : (x, u) 7→ f(x) + g(x)u. At any controllable equilibrium point,
F (x0, u0) = 0 and the Jacobian of F ,

DF (x0, u0) = (Df(x0) + u0Dg(x0), g(x0)) = (A0, b0),

is full rank. Hence 0 is a regular value of F and F−1(0) = Ex,u is a subman-
ifold of R

n + 1 of dimension (n+ 1) − n = 1.
It remains to show that the projection is also a manifold. There are two

things that can go wrong: the manifold can be tangent to the projection
direction or the manifold can cross over itself. These situations are shown
in Figure 8. These singularities can only occur if u0 cannot be written as a
function of x0. However, at any equilibrium point

f(x0) + g(x0)u0 = 0



4 APPROXIMATE LINEARIZATION 19

and u0 is not unique only if g(x0) = 0. This contradicts controllability and
hence u0 is a unique function of x0 and neither of the situations in Figure 8
can occur.

We call E the controllable equilibrium manifold and will often refer to it
simply as the equilibrium manifold (as opposed to the set of all equilibrium
or operating points). In general E consists of one or more connected compo-
nents. For the acrobot there are always two components, consisting of the
inverted and non-inverted equilibrium points.

While motion on the controllable equilibrium manifold is not possible
(since by definition ẋ = 0 on the manifold), motion near the manifold can
be achieved. In constructing an approximate system, we wish to do so in a
way that keeps the approximation close at equilibrium points. Thus we want
to throw away terms which are higher order on the equilibrium manifold (i.e.,
terms whose value and first derivative vanish on E) while keeping terms that
vary along the equilibrium manifold.

In order to construct such an approximation, it is convenient to change
coordinates so that the equilibrium manifold has a simple form. A particu-
larly convenient choice of coordinates is one in which points on the equilib-
rium manifold have the form (x1, 0, · · · , 0). We can always find a parameter-
ization of the equilibrium manifold which has this form in a neighborhood
of a controllable equilibrium point, since E is a one dimensional manifold.

For the acrobot, we have chosen to parameterize the equilibrium man-
ifold using the hip angle. For the second configuration variable we use the
angle of the center of mass of the system—this must be zero at all inverted
equilibrium points since the center of mass must lie directly above the axis
of the first link. We complete the state with the velocities of the two con-
figuration variables. These calculations are contained in (equilibrium.m).
The resulting change of coordinates (see Appendix A) is:

x1 = θ2
x2 = θ1 + e sin θ2√

d2+e2+2ed cos θ2

x3 = ẋ1

x4 = ẋ2

Other parameterizations are possible. For example, one might choose
the x and y components of the system center of mass as the configuration
variables. Unfortunately, the parameterization is singular about the straight
up position, just as it is for a two-link robot manipulator. Another advantage
of the parameterization we chose is that it simplifies some of the calculations.



4 APPROXIMATE LINEARIZATION 20

In particular, for the balanced system parameters mentioned in Section 2,
the angle of the center of mass is simply θ1 + 1

2θ2 whereas xcm and ycm

involve trigonometric functions. This is the original motivation for defining
the “balanced” set of parameters.

4.3 Constructing an (artificial) output function

In the approximation theory presented above, an output function was used
to construct the approximate system. In some applications, the system pos-
sesses a natural output function that can be used for this purpose. However,
in the case of the acrobot, no suitable output function is given so we must
construct one. In this section we present a technique for doing so. As usual,
we begin by considering the linear case.

Suppose we are given a controllable linear system

ẋ = Ax+ bu

and we are asked to find an output

y = cx

which is suitable for stable trajectory tracking. By this we mean that it is
easy to design a controller to make y(t) track a desired trajectory yd(t) while
maintaining internal stability of the system. If the system is in Brunowsky
form (i.e., a chain of integrators), then a natural output function is the
output from the last integrator. This insures that the system has no zeros
so that y(t), ẏ(t), . . . , y(n−1)(t) can be used as the n coordinates of the system
state. In particular, if the output y(t) converges to a constant value, then
the system will converge to an equilibrium point.

To construct this output when the system (A, b) is not in Brunowsky
canonical form, we note that the relative degree of the system is given by
the largest r such that

cAi−1b = 0 i = 1, · · · , r − 1
cAr−1b 6= 0

Since we want the relative degree to be n (no zeros), we require that

c
[

b Ab · · · An−2b
]

= 0. (11)

Thus, any c 6= 0 in the (1-dimensional) null space indicated by equation (11)
defines an output such that the system (c, A, b) has relative degree n.
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We now return to the nonlinear system

ẋ = f(x) + g(x)u

with the goal of constructing an output

y = h(x)

to use in constructing an approximate system for control design. If the sys-
tem with output is input/output linearizable with relative degree n around
x0 then the system is linearly controllable and satisfies the nonlinear analog
to (11) given by

∂h

∂x

[

g adfg · · · adn−2
f g

]

= 0

for all x in a neighborhood of x0. In other words, the system is input/state
linearizable—it satisfies the conditions of Theorem 1. Since many systems
such as the acrobot are not input/state linearizable, we look to approxima-
tion. Our problem is one of finding a function h and approximate vector
fields f̃ and g̃ such that

∂h

∂x

[

g̃ adf̃ g̃ · · · adn−2

f̃
g̃
]

= 0 (12)

for all x in a neighborhood of x0 or, more generally, in a neighborhood of
the equilibrium manifold.

Since it is extremely difficult to directly modify the vector fields f, g so
that the system is exactly input/state linearizable, we will first construct the
output function h and then use the approximate linearization methodology
to construct f̃ and g̃. The basic idea is to find a function h that satisfies
equation (12) at each point on the equilibrium manifold. Provided that the
original and approximate systems agree to first order on the equilibrium
manifold, the ad -chains of the two systems will span the same subspace at
each point on the equilibrium manifold, that is,

span{g, adfg, · · · , adn−2
f g} = span{g̃, adf̃ g̃, · · · , adn−2

f̃
g̃}

for x ∈ E . In fact, these calculations can be done directly with the lin-
earization of the original system on the equilibrium manifold. This point is
somewhat subtle, so we describe it in detail.

We will assume that coordinates have been chosen such that the equilib-
rium manifold E has been straightened out so that each x ∈ E has the form
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(x1, 0, . . . , 0). Let xe(x1) and ue(x1) denote the state and control for each
equilibrium point (x1, 0, . . . , 0) on E , that is,

xe(x1) = (x1, 0, . . . , 0)

and ue(·) is such that

f(xe(x1)) + g(xe(x1))ue(x1) = 0

for each x1 such that xe(x1) ∈ E .
Suppose, at first, that we trim the drift vector field

f̄(x) := f(x) + g(x)uc(x)

where uc(·) is any control satisfying uc(xe(x1)) = ue(x1). The linearization
of the trimmed system along the equilibrium manifold is then given by

ż = Ā(x1)z + b(x1)v

where

Ā(x1) := ∂f
∂x

(xe(x1)) + uc(xe(x1))
∂g
∂x

(xe(x1)) + g(xe(x1))
∂uc

∂x
(xe(x1))

= ∂f
∂x

(xe(x1)) + ue(x1)
∂g
∂x

(xe(x1)) + g(xe(x1))
∂uc

∂x
(xe(x1))

b(x1) := g(xe(x1))

In this case it is easy to verify that

adj

f̄
g(xe(x1)) = (−Ā(x1))

jb(x1)

Thus, letting c(·) be the derivative of the yet to be constructed output
function h along the equilibrium manifold,

c(x1) :=
∂h

∂x
(xe(x1)),

equation (12) (for the trimmed system) evaluated along E takes the form

c(x1)
[

b(x1) Ā(x1)b(x1) · · · Ā(x1)
n−2b(x1)

]

= 0 (13)

The equation has a smooth solution c(·) on E since the system is, by def-
inition, linearly controllable at each of these points. Unfortunately, this
linearization depends on the choice of the trim function uc(·). Certainly,
one does not expect that the choice of the trim function can materially
affect the directions in which the system can be controlled. Additionally,



4 APPROXIMATE LINEARIZATION 23

since we plan to do symbolic calculations to construct the output function,
we seek the simplest expressions for these objects.

Note that the actual trim ue(x1) needed at an equilibrium point is
uniquely defined. If, at a given equilibrium point xe(x1) we freeze the trim-
ming control uc(x) ≡ ue(x1) then the linearization will be given by

ż = A(x1)z + b(x1)v

where

A(x1) := ∂f
∂x

(xe(x1)) + ue(x1)
∂g
∂x

(xe(x1))

Note that A(x1) 6= Ā(x1) due to the presence of the ∂uc

∂x
term. In fact,

Ā(x1) = A(x1) + b(x1)
∂uc

∂x
(xe(x1))

The following lemma shows that we can use the well-defined expression A(·)
for our calculations in place of the somewhat arbitrary expression Ā(·).

Lemma 1. Given A(·), b(·), and Ā(·) as defined above,

span{b(x1), · · · , A(x1)
j−2b(x1)} = span{b(x1), · · · , Ā(x1)

j−2b(x1)}

for j = 2, 3, . . ..

Proof. The lemma is trivially true if j = 2. Suppose the lemma holds for
j ≤ k.

Ā(x1)
k+1b =

(

A(x1) + g(xe(x1))
∂uc

∂x
(xe(x1))

)

Ā(x1)
kb(x1)

= A(x1)Ā(x1)
kb(x1) + b(x1)[

∂uc

∂x
(xe(x1))Ā(x1)

kb(x1)]

The first term is contained in span{b(x1), · · · , A(x1)
k+1b(x1)} since

Ā(x1)
kb(x1) ∈ span{b(x1), · · · , A(x1)

kb(x1)}

The second term is a multiple of b(x1) and hence it is also in

span{b(x1), · · · , A(x1)
k+1b(x1)}.

Thus we see that the derivative c(·) of our output function h(·) solves
the equation

c(x1)
[

b(x1) A(x1)b0 · · · A(x1)
n−2b(x1)

]

= 0 (14)
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It is clear that c(x1) = (c1(x1), · · · , cn(x1)) (viewed as a differential one-
form) is integrable. Indeed, we integrate

dh(x) = c1(x1)dx1 + · · · + cn(x1)dxn

to get

h(x) =

∫

c1(x1)dx1 + c2(x1)x2 + · · · + cn(x1)xn

Further, since x1 parameterizes the equilibrium manifold, we have the fol-
lowing useful fact:

Lemma 2. Suppose that c(x1) 6= 0 solves (14) with xe(x1) ∈ E. Then
c1(x1) 6= 0.

Proof. By Lemma 1, we may assume that f(x) = 0 for x ∈ E . Since the
system is linearly controllable on E , the vectors

{b(x1), A(x1)b(x1), · · · , A(x1)
n−2b(x1)}

are linearly independent and c(x1) lies in the left null space of these vectors.
It suffices to show that e1 = (1, 0, · · · , 0)T is linearly independent of these
vectors since this implies c1(x1) = c(x1) · e1 6= 0. But we see that

A(x1) · e1 =
∂f

∂x1
(x)

∣

∣

∣

∣

xe(x1)

and this last expression is zero since since f(x) ≡ 0 along the equilibrium
manifold, parameterized by x1. Hence e1 is in the null space of A0 and the
vectors b0, A0b0, · · · , An−2

0 b0 are not in the null space of A0 since

{A0b0, · · · , An−1
0 b0}

are also linearly independent by the controllability assumption. Therefore e1

is linearly independent of {b0, A0b0, · · · , An−2
0 b0} and c1(x0) = c0 ·e1 6= 0.

Given this fact, we can write

dh(x) = c1(x1)dx1 + c2(x1)dx2 + · · · + cn(x1)dxn

= dx1 + c2(x1)
c1(x1)

dx2 + · · · + cn(x1)
c1(x1)dxn

= dx1 + c̃2(x1)dx2 + · · · + c̃n(x1)dxn

h(x) = x1 + c̃2(x1)x2 + · · · + c̃n(x1)xn

Any h which matches this expression to first order is also a valid output
function, with linear relative degree n. For the acrobot, the output function
which results from the above calculation is (output.m)

h(x) = x1 + (6 + 4 cosx1)x2
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4.4 Approximate tracking near an equilibrium manifold

We can now extend the approximation procedure presented in Section 4.1 to
construct a controller which tracks slowly varying trajectories near an equi-
librium manifold. To do so, we extend the concept of a higher order function.
We say a function is uniformly higher order on a manifold (parameterized
by x1) if it is higher order in (x2, · · · , xn). Thus in the approximation pro-
cedure, we will ignore terms which are small near the equilibrium manifold,
while keeping terms that vary along the manifold. This section details that
procedure and concludes with a proof of approximate tracking for control
laws constructed in this manner.

It will be convenient at this point to assume that f(x0) = 0 for x0 ∈ E .
Although we took pains to avoid making this assumption in the previous
section, the benefit of allowing f(x0) 6= 0 is outweighed here by a tremen-
dous increase in notation. We therefore assume that any nonlinear trim is
included in the drift vector field. This can be accomplished in many ways,
the simplist of which is to define

f̄(x) = f(x) − g(x)ue(x1)
v = u− ue(x1)

and write our system as

ẋ = f̄(x) + g(x)v
y = h(x)

Suppose the linearized relative degree of the system (f̄ , g) with respect to
an output function h is n on an equilibrium manifold E = {(x1, 0, · · · , 0)}.
Assuming f̄(x0) = 0 for x0 ∈ E , we define a new set of coordinates ξ =
φ(x) ∈ R

n:
φ1(x) = h(x) − ψ0(x)
φ2(x) = Lf̄φ1(x) − ψ1(x)

...
φn(x) = Lf̄φn−1(x) − ψn−1(x)

where each ψi(x) is uniformly higher order on E . The system dynamics in ξ
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coordinates are

ξ̇1 = ξ2 + ψ1(x) + θ1(x)v
...

ξ̇n−1 = ξn + ψn−1(x) + θn−1(x)v

ξ̇n = Lf̄φn(x) + Lgφn(x)v + ψn(x) + θn(x)v

y = ξ1 + ψ0(x)

(15)

where each θi(x) is at least uniformly first order on E . As in the previous
approximation procedure, the choice of ψ allows considerable freedom in
constructing the approximation. Since the linearization is controllable on E
and ∂h

∂x
(x) satisfies (14), it follows that Lgφn(x0) 6= 0 for x0 ∈ E .

Because the functions ψi are uniformly higher order on E and the func-
tions θi are at least uniformly first order on E , the approximate system

ξ̇1 = ξ2
...

ξ̇n−1 = ξn
ξ̇n = Lf̄φn(x) + Lgφn(x)v

y = ξ1

(16)

is a uniform system approximation of (f, g) on E [4]. To provide approximate
tracking control for the true system (15), we will use the exact asymptotic
tracking control law for the approximate system (16), namely,

v =
1

Lgφn(x)

[

−Lf̄φn(x) + y
(n)
d (t) +

n−1
∑

i=0

αi(y
(i)
d − φi+1(x))

]

(17)

where
sn + αn−1s

n−1 + · · · + α1s+ α0 (18)

is a Hurwitz polynomial. As before, we define ξd(t) to be the state trajectory
for the approximate system induced by the desired output, yd(·),

ξd
i (t) := y

(i−1)
d (t)

We then expect that the tracking error

e(t) := ξd(t) − ξ(t)
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will remain bounded for reasonable trajectories. In fact, we will see that the
size of the tracking error will be influenced by how far the desired trajectory
strays from the equilibrium manifold.

Since the approximate system (16) is a uniform system approximation
of the true system (15) around E , we would expect that the approximation
would be valid on, for instance, a cylindrical neighborhood of E given by

Cǫ(E) := {ξ : π1ξ ∈ E , ‖ξ − π1ξ‖ < ǫ}

where π1ξ := (ξ1, 0, . . . , 0) and ǫ is sufficiently small. We make use of the
following fact: it is always possible to choose E ′ ⊂ E so that a given function
λ(ξ) that is uniformly order ρ on E will satisfy

|λ(ξ)| < K‖ξ − π1ξ‖ρ

for all ξ ∈ Cǫ(E ′), 0 < ǫ < 1. For example, let λ(ξ) = ξ1ξ
2
2 . Choosing

E ′ = {ξ ∈ ℜ2 : |ξ1| < K, ξ2 = 0} will guarantee the λ(ξ) < Kξ22 on Cǫ(E ′),
0 < ǫ < 1.

The following theorem shows that such a control law can indeed provide
the desired result and provide stable approximate tracking in the neighbor-
hood of the equilibrium manifold.

Theorem 3. Suppose (f, g) is linearly controllable at x0 and let E be the
manifold of linearly controllable equilibrium points. Further assume that
f(xe) = 0 for xe ∈ E. Then, there exists a manifold E ′ ⊂ E, a change
of coordinates ξ = φ(x), and an ǫ > 0 such that the approximate tracking
control law (17) results in stable approximate tracking provided ξd(t) ∈ Cǫ(E ′)

and |y(n)
d (t)| ≤ ǫ for t ≥ 0, and ‖e(0)‖ ≤ ǫ. Furthermore, the tracking error

will be of order ǫ2.

Proof. Construct a system approximation as detailed above. For conve-
nience, define

ψ(ξ) = (ψ1(x), · · · , ψn(x))|x=φ−1(x)

θ(ξ) = (θ1(x), · · · , θn(x))|x=φ−1(x)

The closed loop system given by (15) and (17) can be written as

ė = Ae+ ψ(ξ) + θ(ξ)v

where A is a Hurwitz matrix with characteristic polynomial (18).
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As discussed above, we may take E ′ to be such that

‖ψ(ξ)‖ ≤ k1‖ξ − π1ξ‖2

‖θ(ξ)‖ ≤ k1‖ξ − π1ξ‖
‖Lf̄φn(ξ)‖ ≤ k1‖ξ − π1ξ‖

for ξ ∈ Cδ(E ′), δ < 1, and some k1 <∞. Since Lgφn(x) is nonzero on E , we
can also require that E ′ and δ be such that

∣

∣

∣

∣

1

Lgφn(ξ)

∣

∣

∣

∣

< k2

for ξ ∈ Cδ(E ′) and some k2 <∞. Using these bounds plus the fact that

‖ξ − π1ξ‖ ≤ ‖e‖ + ǫ

(by choice of yd(·)), it follows that there exists k3 <∞ such that

‖ψ(ξ) + θ(ξ)v‖ ≤ k3(‖e‖2 + ǫ‖e‖ + ǫ2)

where ξ ∈ Cδ(E ′).
Choose the Lyapunov function

V = eTPe

where P > 0 solves ATP+PA = −I. Differentiating V along the trajectories
of the closed loop system, for ξ ∈ Cδ(E ′) and some k4 <∞,

V̇ = −‖e‖2 + 2eTP (ψ(ξ) + θ(ξ)(u− u0(ξ))
≤ −‖e‖2 + k4‖e‖(‖e‖2 + ǫ‖e‖ + ǫ2)
≤ −1

4‖e‖2 − (1
2 − k4(‖e‖ + ǫ))‖e‖2 − (1

2‖e‖ − k4ǫ
2)2 + k2

4ǫ
4

If ‖e‖ ≤ 1
2k4

− ǫ, we have

V̇ < −1

4
‖e‖2 + k2

4ǫ
4.

and hence V̇ is strictly negative whenever 2k4ǫ
2 ≤ ‖e‖ ≤ 1

2k4
−ǫ. By making

ǫ sufficiently small, we can guarantee that e(t) will converge to a ball of
order ǫ2 for all ‖e(0)‖ sufficiently small. Note that the above analysis is
valid since

‖ξ − π1ξ‖ ≤ ǫ+ sup ‖e(t)‖ < δ < 1

is satisfied when ǫ and ‖e(0)‖ are sufficiently small, and hence ξ(t) ∈ Cδ(E ′)
under these conditions.
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Corollary 3.1. If there is a time t1 ≥ 0 such that the desired output trajec-
tory becomes constant, i.e., yd(t) ≡ y1, t ≥ t1, then the trajectory tracking
error e(t) will converge to zero and the system will converge to the constant
operating point ξ = (y1, 0, . . . , 0).

As we mentioned above, it is possible to extend this analysis such that
f(x0) = 0, x0 ∈ E is not required. Although removing this assumption
can unnecessarily complicate the analysis, there is one special case which is
illuminating. If we choose a change of coordinates such that u never appears
in the derivatives Lf+guφi, we do not need to assume that f(x0) = 0. In
this special case we can choose

φi(x) = Lfφi−1(x) − ψi−1(x)

and no θi−1 term appears in the corresponding ξ̇i since the input does not
appear (by choice of ψ). It turns out that for the approximations constructed
for the acrobot, the input never appears and hence we can make use of
this simplification and avoid the additional computational burden assocaited
with calculations involving f̄ = f + gu0. It is important to note that this
simplification is not generic and may fail to hold for specific systems.

The next chapter gives details on the results of applying this controller
formulation to the acrobot.
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5 Controller comparisons and discussion

In this section we present comparisons of a linear and nonlinear controllers
for acrobot. We present three controllers, representing various system ap-
proximations: linearization about a point, linearization about the equilib-
rium manifold, and uniformly higher order approximation. In order to prop-
erly adjust for gains, we have in all cases converted the systems into (approx-
imate) Brunowsky canonical form and then applied the appropriate design
criteria. The output function for each controller is the one derived in Sec-
tion 4.3, which gives linearized relative degree n = 4 along the equilibrium
manifold. Also, except as noted, we have used the special set of parameters
for acrobot which makes the equilibrium coordinates trivial. For simplicity,
we refer to the controllers as linear, gain-scheduled, and nonlinear.

The linear controller was constructed by linearizing the acrobot about
the completely inverted position, θ1 = θ2 = 0 (linear.m). This configura-
tion is roughly in the center of the operating region which we considered.
The controller is implemented as a linear tracking controller (see Section 3.1)
using “balancing” coordinates (i.e., the equilibrium manifold is parameter-
ized by x1).

The gain-scheduled controller is similar to the linear controller, except
that all calculations are carried out as a function of x1, the projection of
the state onto the equilibrium manifold (schedule.m). The controller is
constructed using a change of coordinates which ignores all second order and
higher nonlinearities in the variables x2, x3, x4. In that set of coordinates
we choose the gains to set the pole locations appropriately. This controller
is similar to the controllers described by [10, 12].

The nonlinear controller is constructed using a change of coordinates
which throws away higher order terms (approximate.m) in the system ve-
locities, x3, x4. Thus terms of the form x3 sinx2 are not thrown away in this
approximation. Furthermore, all nonlinearities are kept in the calculations
of Lfφn and Lgφn.

The gains for each controller were chosen using the same design crite-
ria. We placed all poles of the (approximating) closed loop system at -3.5.
This choice represented a compromise between performance and stability.
Because the acrobot is operating in an inverted position, large overshoots
can move the state out of the region of stability. Other pole locations have
been tested, but are not presented here.

All simulations were generated using a Mathematica simulation package
that converted system descriptions into C source and generated an exe-
cutable simulation program. A variable step size Runge-Kutta integrator
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Figure 9: Stability comparison. The left plot shows the ange of the second
joint, x1 = θ2. The right plot showls the angle of the center of mass of the
system, x2 = θ1 + 1

2θ2.

was used to integrate trajectories.

5.1 Stabilizing controllers

For regulation to an equilibrium point, the system performance is similar for
all three controllers (stability.m). The region of attraction is not notice-
ably different though the linear system converges somewhat more slowly.
This is due to the fact that the linear controller sees a reduced effective
gain at system configurations away from the nominal operating point. In
contrast, the nonlinear controllers provide instantaneous gain scheduling at
each position near the equilibrium manifold. This phenomenon is clearly
shown in figure 9 where the initial position was given by θ1 = 0, θ2 = .2 and
regulation to θ1 = θ2 = 0 was desired.

A slice of the region of stability is shown in Figure 10. This slice shows
the set of initial conditions with θ̇1 = θ̇2 = 0 which converged to the ori-
gin. The region of stability is roughly uniform size about the equilibrium
manifold.
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Figure 10: Region of attraction (θ̇ = 0 slice)
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5.2 Tracking controllers

A more striking difference in controller performance is apparent when we
attempt to track a trajectory (tracking.m). As evident from Figure 11,
the nonlinear controllers had significantly better output tracking capability.
A large part of the linear controller error results because a strictly linear
controller cannot calculate the input necessary to hold the nonlinear sys-
tem at more than one operating point (this requires a nonlinear function
or table lookup). The nonlinear controllers, however, directly provide the
instantaneous nonlinear trim needed at each different system configuration
along the equilibrium manifold.
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Figure 11: Tracking comparison. The upper plot shows the value of the
output function, ξ1 = h(x), as it tracks a sinusoidal reference trajectory of
magnitude 1 and frequency ω = 1 rad/sec. The lower plot shols the error
between the desired and actual output trajectories.
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5.3 Tracking with the UCB acrobot parameters

Figure 12 shows a comparison of the three controllers using the parameter
values associated with the UC Berkeley acrobot (see Table 1). For this set
of parameters, the equilibrium set has two distinct components.

For the simulation in Figure 12 it is not clear that the nonlinear con-
troller is improving the tracking error. However, if we slow down the desired
trajectory, the improvement is more apparent, as shown in Figure 13. This
improvement is not unexpected, since one of the conditions of the Theorem 3
was that the trajectory be slowly varying.
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Figure 12: Tracking comparison for UCB acrobot parameters using a fast
trajectory. The upper plot shols the output trajectory and the lower plot
shows the output error. The frequency of the reference trajectroy is ω =
0.5 rad/sec.
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Figure 13: Tracking comparison for UCB acrobot parameters using a slow
trajectory. The frequency of the reference trajectory is ω = 0.25 rad/sec.
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5.4 Discussion

The acrobot is an example of a system which violates many of the usual
assumptions which are required for defining nonlinear control laws. In par-
ticular, there is no natural output function and the system is not exactly
linearizable. This report presents a constructive technique for designing
nonlinear controls for such systems. The simulations indicate that such non-
linear control laws can improve system performance, particularly trajectory
tracking.

There are still many open issues to be resolved in constructing controllers
for systems such as the acrobot. Due to the freedom in choosing the system
approximation used to construct the control law, the performance of the
overall method depends on the skill of the engineer in choosing a good
approximation. Understanding how the choice of a given approximation
affects the controller performance would be of great benefit in improving
the results presented here. Unfortunately, there are currently very few tools
in this area of approximation theory. Our own experiments with the acrobot
indicate that intuition in this area is often misleading.

Another concern is the effect of the system approximation on the size of
the region of stability. As mentioned in the introduction, for the acrobot it is
desirable to make the regions of stability for a controller as large as possible
in order to simplify the task of moving from the rest configuration to an
inverted equilibrium point. But as the simulations of this section show (in
particular, see Figure 10), the nonlinear controllers constructed here result
in a small decrease in the region of attraction, at least in the slice of the state
space presented. Once again, tools for analyzing the regions of attraction
for a nonlinear system are not well developed.
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Figure 14: Acrobot center of mass geometry. The center of mass is located
on the line between the first and second link.

A Balancing coordinates for the Acrobot

In this appendix we derive the equations for the angle of the center of mass of
the acrobot as a function of the joint angles. Figure 14 shows the geometry
of the problem. The relationship between the center of mass, σ, and the
joint angles is

σ = θ1 + b
θ1 = σ − b

(19)

where b is a function only of θ2. The following identities hold for the triangle:

a = π − θ2
B = m2

m1+m2
l2

C = l1
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Figure 15: b versus θ2 for the UC Berkeley Acrobot.

To calculate b given θ2 we appeal first to the law of sines:

A

sin a
=

B

sin b
=

C

sin c
⇒ sin b =

B sin a

A

A can be determined by using the law of cosines:

A2 = B2 + C2 − 2BC cos a

Putting all of the equations together yields the desired formula

b = sin−1 m2l2 sin θ2
√

l22m
2
2 + (m1 +m2)2l21 + 2l1l2m2(m1 +m2) cos θ2

(20)

Using this equation and equation (19) gives the diffeomorphism between
(θ1, θ2) and (θ2, σ).

A plot of b as a function of θ2 for the UC Berkeley Acrobot is show
in Figure 15. It is clear from this picture that for θ2 < π/2, b is well
approximated by a simple linear function. The slope of equation (20) at the
origin is given by

l2m2

l1m1 + (l1 + l2)m2
.
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B Mathematica listings

This appendix contains listings for the Mathematica code used to analyze
the acrobot. The following files are included

acrobot.m dynamic equations for the acrobot
approximate.m approximate linearization
attraction.m calculate region of attraction for control laws
balance.m change of coordinates to “balancing” coordinates
compare.m generate controller comparisons
equilibrium.m parameterization of the equilibrium manifold
exact.m check involutivity conditions for feedback linearization
linear.m linear controller definition
linearize.m linearization calculations
output.m construct an artificial output function
schedule.m gain-scheduled controller
stability.m stability simulations
tracking.m tracking simulations

Simulations for the acrobot were performed using a Mathematica-based
simulation program, Simulate.m. Listings for Simulate.m are not included
here; for further information, contact the authors.
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