
Biologically Inspired Feedback Design for Drosophila Flight

Michael Epstein, Stephen Waydo, Sawyer B. Fuller, Will Dickson,
Andrew Straw, Michael H. Dickinson and Richard M. Murray

Abstract— We use a biologically motivated model of the
Drosophila’s flight mechanics and sensor processing to design a
feedback control scheme to regulate forward flight. The model
used for insect flight is the Grand Unified Fly (GUF) [3]
simulation consisting of rigid body kinematics, aerodynamic
forces and moments, sensory systems, and a 3D environment
model. We seek to design a control algorithm that will convert
the sensory signals into proper wing beat commands to regulate
forward flight. Modulating the wing beat frequency and mean
stroke angle produces changes in the flight envelope. The
sensory signals consist of estimates of rotational velocity from
the haltere organs and translational velocity estimates from
visual elementary motion detectors (EMD’s) and matched
retinal velocity filters. The controller is designed based on
a longitudinal model of the flight dynamics. Feedforward
commands are generated based on a desired forward velocity.
The dynamics are linearized around this operating point and
a feedback controller designed to correct deviations from the
operating point. The control algorithm is implemented in the
GUF simulator and achieves the desired tracking of the forward
reference velocities and exhibits biologically realistic responses.

I. INTRODUCTION

In this work we seek to use a biologically motivated model
of the Drosophila’s flight mechanics and sensor processing
units to design a feedback control scheme to regulate forward
flight. The goal is to design a stabilizing feedback control
scheme that exhibits responses similar to observed flight
behaviors. As is traditional in a control systems paradigm,
this goal was broken into two roughly separable tasks:

1) Extract estimates of relevant state variables (i.e. veloc-
ity, orientation, etc.) from the sensory inputs available
to the fly.

2) Design a feedback control law capable of stabilizing
the fly in free flight using biologically correct control
inputs.

Recent research efforts have been directed at developing
models and control algorithms that utilize similar biolog-
ically inspired designs. Humbert, et al [6], [7] use ide-
alized optical flow measurements to stabilize hovercraft.
In addition to the obvious differences in the dynamics of
the simulated hovercraft and rotorcraft, another significant
difference with our work is that we chose to estimate the
translational velocities based on visual velocity estimates

Support for this work was partially provided by AFOSR Grant FA9550-
06-1-0079 as well as a Fannie and John Hertz Foundation Fellowship for
S. Waydo and a National Science Foundation Graduate Fellowship for S.
Fuller.

All authors are in the Division of Engineering and
Applied Science at the California Institute of Technology
epstein,waydo,minster,wbd,astraw,dickinson,
murray@caltech.edu

from physically realistic optical simulations and biologically
plausible neural operations. Humbert used a mathematically-
derived description of perfect estimates of retinal velocities
within pre-defined environmental geometries and linearized
the results about a reference trajectory to arrive at a formal
relation between such retinal velocities and control system
inputs. Unfortunately, our choice of more physically realistic
constraints makes such a formal analysis substantially more
difficult. This is because we did not make the simplifying
assumption that instantaneous estimates of retinal velocities
across visual space were available, but rather that such veloc-
ity estimates would have to be computed from information
falling on simulated light receptors. Deng, et al [2], [1] model
a micro-aerial vehicle designed to mimic insect flight that has
parallels to this work. One main difference appears to be
that the authors were concerned with attitude control during
hovering, while in this work we consider trajectory tracking
of forward flight. The authors model the micromechanical
flying insect [5] whose design is based on a typical housefly,
while in this work we use the model developed in GUF [3]
thus subtle differences arise in the models.

The paper is organized as follows. Section II briefly
describes the GUF simulation model. The controller design
is described in Section III. A method of obtaining velocity
estimates from the visual system is described in Section IV.
Simulation results of the controller implemented in GUF are
shown in Section V. The paper concludes with a summary
and description of future work in Section VI.

II. INSECT FLIGHT MODEL

The model used for insect flight is the Grand Unified
Fly (GUF) [3]. This model is in the form of a numerical
simulation comprised of five main components: an articulated
rigid-body simulation, a model of the aerodynamic forces
and moments, a sensory systems model, a control model and
an environment model. A brief description of the GUF sim-
ulation environment is provided below; for a more complete
description see [3].

In the context of this paper, the rigid body simulation of
the fly and aerodynamic forces is the plant that we wish to
control. It is represented by a system of three rigid bodies
(two wings and a body) connected by a pair of actuated ball-
joints. At each instant of the simulation, the aerodynamic
forces and moments acting on the wings and body of
the fly are calculated using an empirically derived quasi-
steady state model. The model is based on experimental
measurements of force and moment coefficients taken from a
dynamically-scaled robotic model in a tow tank. The model

2007 American Control Conference
http://www.cds.caltech.edu/~murray/papers/eps+07-acc.html



wing kinematics are based on data captured from high-speed
video sequences of real fly flight. The forces and moments
produced by the wings are modulated by deforming these
baseline kinematics along certain characteristic actuation
modes believed to be those employed by the fly.

The two key sensory systems of interest that are mod-
eled in GUF are the visual system and the halteres. The
halteres produce estimates of the rotational velocity of the
fly. Since they provide complete information about the rota-
tional velocity we assume that we have direct measurements
of those states rather than using a detailed model of the
halteres. The visual system can provide estimates of the fly’s
translational velocity relative to the external environment as
well as the presence of approaching obstacles or distant
targets. The environmental model provides input to both
the sensory systems and the aerodynamics model. Different
visual information can be presented to the sensory system al-
lowing the flexibility of placing the insect in different virtual
habitats, simulating both field and laboratory conditions. The
environmental model can also impart wind gusts to provide
disturbances.

The goal is to design a control law that uses the sensory
outputs to make the appropriate modulations in the wing
kinematics and produce stable flight behavior. A schematic
of the feedback loop for fly flight is shown in Figure 1.

Fig. 1. Schematic of feedback control loop for fly flight.

III. LONGITUDINAL FLIGHT MODEL AND CONTROLLER
DESIGN

A. Longitudinal Flight Model

To design a controller for the fly feedback loop we started
with a longitudinal flight model based on the stroke averaged
forces. That is, we only considered the averaged forces
generated during a complete revolution of the wing, while
the GUF simulation actually calculates the forces hundreds
of times per wing beat. Rather then looking at the full 6
degree-of-freedom rigid body we also restricted our focus to
motion in the x−z plane including pitching about the y axis
as shown in Figure 2. Note our coordinate system has x in
the forward direction and z up, with y defined by the right-
hand rule from these. In this setting the states of the fly are
forward and vertical velocities (ẋ, ż), as well as pitch angle

and pitch rate (θ, θ̇). We have used the notation that (xb, zb)
signify the body frame coordinates and (x, z) are the global
inertial frame. We will use rotation matrices of the form

Ci,j(ξ) =
[

cos ξ sin ξ
− sin ξ cos ξ

]
(1)

to represent a vector in reference frame i that is given in
frame j, where ξ is the angle between the two reference
frames, i.e. xi = Ci,j(ξ)xj . The pitch angle θ defines the
rotation matrices relating the two frames; to go from the
body to global frame the rotation matrix is given by Cgb(θ).
Likewise the body angle β defines the rotation between the
parallel and normal axes and the body frame, so the rotation
matrix going from the Normal-Parallel axes to the body
frame is Cb,NP(β).

Fig. 2. Schematic of fly’s longitudinal motion. Global reference frame is
given by (x, z) and the body frame by (xb, zb). The pitch angle is θ and
β is a fixed value and is termed the body angle.

The longitudinal dynamics of the fly are given by

ẍ =
1
m

(Fb,x + Fw,x) (2)

z̈ =
1
m

(Fb,z + Fw,z)− g (3)

θ̈ =
1
I

(Mb,y + Mw,y) , (4)

where g is the acceleration due to gravity, m is the mass of
the fly and I the inertia about the y axis. The forces and
moments acting on the fly have been broken up into body
and wing components. The body forces and moments are
denoted by (Fb,·,Mb,y) and the wing forces and moments
by (Fw,·,Mw,y), where the · signifies the corresponding
component along a particular axis.

The body forces are only a function of the flight aero-
dynamics, that is they do not directly depend on the fly’s
inputs but rather only on its current state and physical and
aerodynamic parameters according to

FN = −1
2
ρSCNvNv

FP = −1
2
ρSCP vP v

where ρ is the air density, S is the surface area, (CN , CP ) are
the aerodynamic coefficients along the normal and parallel



axes respectively, v =
√

v2
xb

+ v2
zb

the velocity magnitude
and (vN , vP ) represent the velocity components along the
normal and parallel axes respectively. To express these forces
in the global frame simply apply the transformation[

Fb,x

Fb,z

]
= Cgb(θ)Cb,NP(β)

[
FN

FP

]
(5)

The body moment is calculated according to

Mb,y =
1
2
ρSLCMv2 (6)

where L is the body reference length, CM is the moment
coefficient given by

CM =
4∑

k=1

ak sin kα + bk cos kα , (7)

where α = tan1 vN

vP
is the angle of attack and (ak, bk) are

fixed coefficients determined experimentally from a dynam-
ically scaled model in a tow tank [3].

The wing forces and moments in the equations of motion
are dependent on the set point of the wings. The inputs
that affect the fly in the longitudinal model are the wing
beat frequency f and mean stroke angle φ. To design a
controller for this system we need an input-output map that
describes how changes in (f , φ) affect the states. To generate
this map the GUF simulation was run by fixing the wing
beat frequency and mean stroke position to various values
and recording the forces and moments produced by the
fly’s wings. The simulation model calculates the forces and
moments hundreds of times during each wing beat, but for
the purposes of designing a controller we took the average of
these across each wing stroke. It was assumed the produced
forces and moments were dependent on the forward and
vertical velocities and the inputs (mean stroke position and
wing beat frequency). The dependence was assumed to be
up to third order and a least squares fit of the simulated data
was used to find the coefficients. Expressed in global frame
coordinates we haveFw,x

Fw,z

Mw,y

 = Cgb(θ)A(vxb
, vzb

, f , φ)b (8)

where b represent the coefficients that were fit by least
squares and A is the matrix whose elements are third order
polynomials of the velocities and input controls.

B. Linearization About an Operating Point

To clarify, our model has the states X and inputs U

X =
[
ẋ ż θ θ̇

]T
U =

[
φ f

]T
. (9)

We seek to design controllers that stabilize longitudinal flight
at fixed speeds along the x-axis only. That is we seek an
operating point of the form

(X∗,U∗) =




ẋdes
0
θ∗

0

 ,

[
φ∗

f ∗

] , (10)

which is defined by ẋdes. A forward velocity in the world
frame is specified and from that the other states and inputs
are determined. The dynamics can then be linearized about
this operating point and a feedback controller can be de-
signed for the linearized dynamics. The process of finding
an operating point and linearizing about it for the stroke-
averaged model was done numerically using MATLAB’s
“findop” and “linmod2” commands.

The parameter values used in the design and simulation
are shown in Table I.

TABLE I
PHYSICAL PARAMETER VALUES.

Parameter Value
m 0.9315 mg
I 0.4077 mg · mm2

β 25 deg
S 1.8 mm2

L 2.5 mm
CN 1.3
CP 0.6
ρ 0.0013 mg / mm3

[a1, a2, a3, a4] [0.0167, 0.0878,−0.005,−0.0063]
[b1, b2, b3, b4] [−0.0494,−0.0136,−0.0028, 0.0027]

C. Control Design

A convenient feature of the dynamics is that the linearized
system takes a very similar form across a wide range of for-
ward velocity operating points, enabling us to design a single
controller at a representative operating point that works well
throughout the flight envelope. Our chosen operating point
was ẋ = 0.25 m/s, in the middle of the positive velocity
operating range of 0 to 0.5 m/s. At this operating point, the
linearization takes the form

d

dt


ẋ
ż
θ

θ̇

 =


−0.0076 −0.0004 0.0102 0
0.0025 −0.0115 −0.0001 0

0 0 0 1
−0.0055 −0.0037 0.0003 0




ẋ
ż
θ

θ̇



+


0.0034 0.0135
0.0009 0.0773

0 0
0.0320 0.0242

[
u1

u2

]
(11)

where we abused notation slightly to let the linearized states
represent the deviations from the states of the operating point
and [u1, u2] the deviations from the control inputs of the
operating point. Our control objective is to regulate about a
desired forward velocity. Two key features of Equation 11
inform this design. The first is that the ẋ dynamics are much
more strongly coupled to θ than to ż, and so ż can be safely
ignored in the control design. The second is that the two
control inputs u1 and u2 affect ẋ and θ̇ differently, so we
can choose a control vector v along which we can control
θ̇ (and hence θ) without directly affecting ẋ. We do this by
finding the null space of the first row of the control matrix,
setting [

u1

u2

]
=

[
0.9691
−0.2467

]
v.



We can now develop an inner-loop controller to regulate the
single input-single output transfer function from v to θl . We
will then design an outer loop controller to regulate ẋ using
the pseudo-control θ, taking advantage of the strong coupling
between θ and ẋ. For the moment we will set aside the
control of the altitude rate ż.

1) Pitch Control: At the design operating point of ẋ =
0.25 m/s, the transfer function from v to θ is

Hvθ =
0.025(s + 0.0142)(s + 0.0075)

(s + 0.0425)(s + 0.0132)(s2 − 0.0366s + 0.0013)
.

This transfer function has two poles and zeros on the negative
real axis and a pair of unstable complex poles. Our controller
must pull the unstable poles to the left-half plane, which is
not possible with proportional feedback only. A simple PD
controller with a zero at s = −0.01 has this desired effect.
However, as we are working with a stroke-averaged model
of the fly dynamics, we also want to ensure that the control
signals remain well inside the 200 Hz wingbeat frequency
to avoid producing controls that have no meaning within
the context of the full GUF model. As our units of time
are milliseconds, 200 Hz corresponds to ω = 1.26 rad/ms.
Good performance was achievable with a rolloff frequency
of 0.2 rad/ms, comfortably inside the wingbeat frequency.
Choosing the gain to maximize phase margin we arrive at
the pitch controller

Cθ(s) = 1.2
s + 0.01
s + 0.2

, (12)

which is a standard lead compensator.
2) Forward Velocity Control: We control the forward

velocity by altering the desired pitch angle. A simple integral
controller of the form

Cẋ(s) =
0.01
s

so
δθ(s) = Cẋ(s)ẋ(s) (13)

provides adequate, stable performance and good tracking of
velocity set points away from the design point.

3) Altitude Rate Control: Up until this point we have
neglected the altitude rate portion of the dynamics. This is a
reasonable approach because the altitude rate does not couple
strongly into the forward velocity dynamics. However, if
we wish to fly for long periods of time without significant
excursions in altitude we need to provide some control of
this state. Because ż depends much more strongly on the
wingbeat frequency u2 than on u1, we simply increase the
frequency command by an amount proportional to the error
in ż, or

δf = −ż. (14)

This controller drastically reduces excursions in z. For better
performance an integrator could be included here as well,
but for the purposes of our simulations performance is quite
adequate.

4) Feedforward Terms: So far we have only found the
change in inputs needed to control the insect. We need to
add this to a feedforward term that makes the desired forward
velocity an equilibrium point. This feedforward term can be
computed from a polynomial fit to the linearization of the
longitudinal model at various operating points. These fits are
as follows:

φ∗ = 0.1915ẋdes − 0.1254 (15)
f ∗ = −0.0534ẋ2

des − 0.0054ẋdes + 0.2209,

where ẋdes is the desired forward velocity.
The forward velocity controller only outputs the change in

pitch angle desired to adjust the forward velocity. We also
must calculate a feedforward pitch angle from a polynomial
fit to the operating point of the longitudinal model as

θ∗ = 0.7115ẋdes + 0.0391. (16)

5) Estimation: We have thus far used three state variables
as the inputs to our controllers: ẋ, ż, and θ. Of these, ẋ
and ż can be estimated from optical flow. The pitch angle
θ, however, is more likely to be estimated by the fly from
the pitch rate θ̇ as sensed by the halteres. For this initial
implementation we simply use the integral of θ̇ to estimate
θ. This provides performance similar to pure state feedback,
but in the future a true estimator could be used to improve
this behavior.

Fig. 3. Simulink diagram of control implementation. The S-function block
is a wrapper around the stroke-averaged nonlinear fly model. The MATLAB
function blocks compute the feedforward terms from the polynomial fits
based on the stroke-averaged model. The innermost loop regulates pitch
angle, the next loop regulates forward velocity using desired pitch, and the
outermost loop adjusts the wingbeat frequency to regulate altitude rate.

IV. SENSORY MODEL AND VISUAL PROCESSING

The sensory systems provide estimates ˆ̇x, ˆ̇z, θ̂, ˆ̇
θ of the

fly’s state variables ẋ, ż, θ, θ̇. To simplify our analysis
we restrict this discussion to known world geometries and
sinusoidal visual patterns. We assume the head maintains a
constant attitude regardless of body pitch, which is plausible
as the fly has the ability to pitch its head. We expect the
foundations of this work to be able to generalize to more
complex environment geometries.



A. Pitch Rate Estimation

An estimate of the fly’s pitch rate is available from the
fly’s halteres, small vestigial wings that beat in anti-phase
with the wings and function as rate gyroscopes. In this work
we use the actual pitch rate as the estimate, but future work
may incorporate a more elaborate model of the halteres, as
described in [3].

B. Velocity Estimation by Retinal Velocity Pattern

Retinal velocity is a geometric quantity that measures the
rate of deformation of scenery projected onto the retina as
it passes by. Electrophysiology performed on the blowfly
has found a class of cells, the lobula plate tangential cells
(LPTC’s), that are stimulated by specific velocity patterns
over large fields of the retina. Certain of these cells appear
to be activated by flow patterns corresponding to rolling or
linear translation.[8] This suggests that flies use wide-field
velocity field patterns to aid in flight navigation. In this work
we estimate the state variables ẋ and ż by observing the
retinal velocity flow field of the fly during flight.

1) Visual Rendering in GUF model: Our model consists
of a single eye with 642 facets arranged in a sphere, each of
which performs a Gaussian visual blur to emulate the optics
of flies.[3] This number is comparable to the approximately
1400 visual sensors of the fruit fly’s eyes. Real flies utilize
two eyes, but there is little stereo overlap so a single spherical
eye suffices for the model. The visual field is rendered in
OpenGL using the Open Scene Graph library as six scenes
assembled into a cube map and projected onto the visual
sphere (Figure 4).

Fig. 4. Image of a visual environment encountered by the fly (top)
and a rendering of the world as seen through the receptors of the fly
model (bottom). Sinusoidal grating stripes on the floor enable forward
velocity estimates, and horizontal stripes on the wall enable vertical velocity
estimates.

2) Elementary Motion Detectors: The retinal velocity at
each point in the visual field is estimated using Hassenstein-
Reichardt Elementary Motion Detectors (HR-EMD’s) be-
tween pairs of visual sensor elements. Behavioral studies
have shown evidence that insects use HR-EMD’s to estimate
retinal velocity.[9] The differenced delay-and-correlate oper-
ation performed by the HR-EMD gives a constant response
to a zero-mean sinusoid signal moving by the pair of
sensors (Figure 5). Each EMD operates between pairs of
nearest-neighbor facets, and each facet has six (occasionally
five) neighbors, giving approximately 3-fold times as many
EMD’s as sensors, or 1920. The time constant of the low-
pass filter in the HR-EMD in used this work is 35ms.

Fig. 5. The Hassenstein-Reichardt Elementary Motion Detector (HR-
EMD). The luminance reading from sensor A is correlated with (multiplied
by) a time-lagged (low-pass filtered) signal from sensor B and vice versa,
then the two correlations differenced to generate an estimate of retinal
velocity. C is the contrast, λ is the wavelength in radians, and v is the
velocity of the sinusoidal luminance signal, and ∆φ is the angle between
the pair of sensors. Image credit: [4]

The HR-EMD suffers from a number of non-idealities that
make its estimates differ from true retinal velocity. These
include aliasing at high spatial frequencies and aliasing at
high image velocity. The former is eliminated by Gaussian
blurring the image sensors, eliminating high-frequency spa-
tial components. Note that distant textures become a uniform
gray in the faceted fly-eye view of Figure 4, a consequence
of blurring. Velocity aliasing is avoided by moving fly
slowly enough that the EMD’s are operating in the low-speed
monotonic regime, ensuring the function can be inverted to
recover velocity. Sinusoidal gratings (stripes) on the floor and
walls enable velocity estimates by HR-EMD. Refinements by
[4] and others to the HR-EMD to make velocity estimates
from more realistic images are planned for future work.

3) Matched Filters: Velocity estimates are made by cor-
relating wide-field motion sensitivity patterns with retinal
velocity estimates made by the EMD’s. The correlation
operation is analogous to the arrangement synaptic weights
stimulating LPTC cells that constitute the motion sensitivity
patterns.

A given motion sensitivity pattern is known as a filter. One
approach to deriving filters might be to use spherical sinu-



soidal harmonics. But in this work, we derive filters based on
EMD-estimated retinal velocity patterns experienced during
stereotyped motions. Such filters, known as “matched filters”,
may be a reasonable approximation to biological processes,
which often derive patterns based on experience rather than
theoretical constructs.

Two filters were generated. The ẋ filter, mẋ, was the time-
averaged EMD response vector ε as the fly was moved over
a floor of infinite extent covered by stripes. Similarly, the ż
filter, mż , recorded the response to vertical motion between
parallel striped vertical walls. Each is a 1920 × 1 vector.
Figure 6 shows the matched filter mẋ generated for forward
velocity. While the stereotyped environments used to derive
the matched filters differ from the environment they were
used in (a corridor), they yielded nearly correct estimates.
The reason is that because of the sensors’ spatial blurring,
the filter’s most responsive portion of the visual field was
within the walls of the corridor.

Fig. 6. An image of the matched filter mẋ rendered on the front (left)
and rear (right) visual hemispheres. Each arrow represents the magnitude
of sensitivity between each pair of visual receptors, drawn along the
line connecting the two sensors. The apparent difference in “sensitivities”
between the front and rear is only a consequence the arrowheads pointing
generally upward versus downward.

4) Estimating Velocity: The filter outputs are

fẋ(ε) = mẋ • ε (17)
fż(ε) = mż • ε

where ε is the current EMD response vector and mẋ and
mż are the matched filters for forward and vertical velocity,
respectively. The operator • denotes the vector dot product.

The EMD response function of velocity in the monotonic
region can be approximated by the sinusoid

f(ε) = a[cos(bv + π) + 1] = g(v) (18)

where v is the velocity ẋ or ż and a and b are scalars adjusted
to maximize fit to true velocities. This function was inverted
to find the velocity estimate v̂ = g−1(f(ε)) for f(ε) within
the domain of g−1.

Figure 7 shows a comparison of the velocity estimates by
EMD matched filters to truth values for forward and vertical
velocities. Velocity estimates approximate true velocity near
the operating point of ẋ = 0.25 m/s and ż = 0 m/s and

diverge near saturation. Different forward velocities had no
effect on estimates of vertical velocity.

Fig. 7. Velocity estimates by EMD matched filters comparison to truth
values. Estimate data points appear as boxes. The forward velocity estimate
saturates as the velocity approaches the saturation velocity for the EMD’s.
Because the operating point for vertical velocity was zero, lower velocities
were tested and no saturation is apparent.

V. SIMULATIONS IN GUF

We implemented the longitudinal controller with visual
estimation scheme described above on GUF. This is a good
test to see if our simplified controller for the longitudinal
dynamics and stroke averaged model will work on the full
articulated rigid body with the full wing dynamics (not
the stroke averaged model) using the translational velocity
estimates from the visual system. In addition, out of plane
motion was constrained to be consistent with our focus on
in plane motion.

The simulation was run with a step command in forward
velocity from 0 to 0.25 m/s commanded at 1000 ms with a
small initial error. The results are shown in Figure 8. As
can be seen the performance is quite good. The forward
velocity as estimated by the visual system converges to the
commanded velocity (the true velocity is slightly offset).
The vertical velocity deviation is kept very small. The high
frequency content in the signals is due to the wing beats.
Figure 9 shows the values the controller set for the inputs
(f , φ). Plotted are both the feedforward component, based
only on the desired forward velocity, and the feedback
component. The nonzero feedback component of the input
can be due to initial error (both at the start and when the
desired set point is changed), using the longitudinal model
to compute the feedforward commands as well as the offset
in the visual estimates compared to the true velocity values.

VI. CONCLUSIONS AND FUTURE WORK

We have demonstrated the feasibility of using estimates
of the fly’s states based on biologically available sensor
information to stabilize forward flight using biologically
available actuation signals. A great deal of both short- and
long-term work remains to fully explore even simple forward
flight within the GUF model. A similar approach can be
followed to design controllers for the lateral dynamics so
we can stabilize the full 6 degree-of-freedom GUF model.



0 1000 2000 3000 4000 5000

−0.2

0

0.2

0.4

time (ms)

x 
ve

l (
m

/s
)

set point
actual
visual estimate

0 1000 2000 3000 4000 5000

−0.1
−0.05

0
0.05

time (ms)

z 
ve

l (
m

/s
)

actual
visual estimate

0 1000 2000 3000 4000 5000
−20

0

20

time (ms)

θ 
(d

eg
)

Fig. 8. Simulation response in GUF using the longitudinal controller
with translational velocity estimates from the visual system and rotational
velocity estimates from the halteres. The measured states are in blue, with
the velocity estimates in green. The commanded forward velocity is in red.

0 1000 2000 3000 4000 5000
150

200

250

f (Hz)

Total Command
Feedforward Component

0 1000 2000 3000 4000 5000
−10

−5

0

5

10

φ (deg)

t (msec)

Fig. 9. Simulation control values in GUF. The applied control values are
in blue, with the feedforward component in green.

The work on visual estimation used in the simulation
estimated forward velocity in a simplified visual environ-
ment. As environments become more complex, for example
by including less-regular textures or open environments,
alternate estimation strategies may be required.

Once we have developed a stable flight control
system within the GUF environment, many longer-
term investigations will be possible. The behavior of this
simple control system in more complex environments and

under various external conditions will elucidate where this
model is adequate and where it needs to be augmented
to explain real fly behavior. It is our suspicion that some
seemingly high-level behaviors such as the slowdown on
landing approach may emerge from the basic properties of
the sensory-motor system. The existence of a baseline stable,
closed-loop model will enable investigation of numerous
real-world behaviors.

It is also important to note that although there is no reason
to think flies compartmentalize tasks in the way we did,
this exercise has been useful to generate a proposed control
scheme and visual estimator block which are independent
and relatively simple. This allows analysis using conventional
tools which would be significantly more difficult on a more
coupled model. Nevertheless, interpreting the biological rel-
evance of our findings using such an arbitrary division of the
estimation-and-control problem into smaller sub-problems
must be done with caution. For example, although altitude-
coupling with visual estimates of forward velocity is an
issue that animals have presumably confronted, it is entirely
possible this feature is exploited to slow down while flying
lower rather than ’overcome’ to produce more accurate
state estimates. Using these results to gain understanding in
biology and vice-versa will continue.

REFERENCES

[1] Xinyan Deng, Luca Schenato, and S. Shankar Sastry. Flapping flight
for biomimetic robotic insects: Part ii - flight control design. IEEE
Transactions on Robotics, 22(4):789–803, 2006.

[2] Xinyan Deng, Luca Schenato, Wei Chung Wu, and S. Shankar Sastry.
Flapping flight for biomimetic robotic insects: Part i - system modeling.
IEEE Transactions on Robotics, 22(4):776–788, 2006.

[3] William B. Dickson, Andrew D. Straw, Christian Poelma, and
Michael H. Dickinson. An integrative model of insect flight control. In
AIAA, 2006.

[4] Ron O. Dror, David C. O’Carroll, and Simon B. Laughlin. Accuracy
of velocity estimation by reichardt correlators. Journal of the Optical
Society of America A, 18(2):241–252, February 2001.

[5] R. Fearing, K. Chiang, M. Dickinson, D. Pick, M. Sitti, and J. Yan.
Wing transmission for a micromechanical flying insect. In IEEE Int.
Conf. Robot. Autom., 2000.

[6] J. Sean Humbert, Richard M. Murray, and Michael H. Dickinson. A
control-oriented analysis of bio-inspired visuomotor convergence. 2005.

[7] J. Sean Humbert, Richard M. Murray, and Michael H. Dickinson. Sen-
sorimotor convergence in visual navigation and flight control systems.
2005.

[8] Holger G. Krapp and Roland Hengstenberg. Estimation of self-motion
by optic flow processing in single visual interneurons. Nature, 384:463–
466, 1996.

[9] Werner Reichardt. Sensory Communication: Contributions to the
Symposium on Principles of Sensory Communication, chapter 17 ”Au-
tocorrelation, a principle for the Evaluation of Sensory Information by
the Central Nervous System”, pages 303–317. MIT Press, 1959.


