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Abstract: We develop the study of primitives of human motion, which we refer to as
movemes. The idea is to understand human motion by decomposing it into a sequence of
elementary building blocks that belong to a known alphabet of dynamical systems. Where
do these dynamic primitives come from in practice? How can we construct an alphabet of
movemes from human data? In this paper we address these issues. We define conditions
under which collections of signals are well-posed according to a dynamical model class M
and thus can generate movemes. Using examples from human drawing data, we show that
the definition of well-posedness can be applied in practice so to establish if sets of actions,
reviewed as signals in time, can define movemes.

1. INTRODUCTION

Building systems that can detect and recognize human
actions and activities is an important goal of modern
engineering. Applications range from human-machine
interfaces to security to entertainment. With the devel-
opment of information technology we can expect that
computer systems will be increasingly embedded in
our environment, so that human-machine interaction
will need interfaces that are easier to use and more
natural. In particular the possibility of interacting with
computerized environment without the need for spe-
cial external equipment is attractive. Several works
(see for example (Laptev and Lindeberg, 2001; Wald-
herr et al., 1998) and the earlier work on building
human-machine interfaces using vision (Goncalves et
al., 1995; Munich and Perona, 1996; Wilson and Bo-
bick, 1995; Yacoob and Davis, 1996; Wellner, 1991))
ask the question of whether it is possible to develop
computerized equipment able to communicate with
humans in similar way. As described extensively in
(Collins et al., 2000) there is also an immediate need
for automated surveillance systems in commercial,
law enforcement, and military applications. Surveil-
lance cameras are present in banks, stores, and parking
lots; it is desirable to develop continuous automated

monitoring to alert security officers about suspicious
human activity while there is still time to prevent
a possible crime. Other applications include video-
games and animation where virtual human motion is
based on the learning and description of real human
motion (see for example (Zordan and Hodgins, 1999)
and (Silva et al., 1997)). Another important appli-
cation is biomechanics (see for example (Pedotti et
al., 1989)).

A fundamental problem in detecting and recognizing
human action is one of representation. As explained
in (DelVecchio et al., 2002), our point of view is
that human activity should be decomposed into build-
ing blocks which belong to an “alphabet” of elemen-
tary actions. We refer to these primitives of motion
as movemes. We thus aim to build an alphabet of
movemes which one can compose to represent and
describe human motion similar to the way phonemes
are used in speech. The word “moveme” intended
as primitive of motion was invented by (Bregler
and Malik, 1997). They studied periodic or stereo-
typical motions such as walking or running where
the motion is always the same and therefore their
movemes, like the phonemes, were repeatable seg-
ments of trajectory. (Goncalves et al., 1998) studied
motions that were parametrized by an initial condi-
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tion and a target. They proposed that movemes ought
to be parametrized by goal and style parameters.
Their moveme models are phenomenological and non-
causal.

What is the alphabet of movemes? Which are the
dynamical models that we should use to represent
them? Where do movemes come from in practice?
When human actions can define movemes according
to a dynamical model class M? To answer these ques-
tions we use system identification tools (Ljung, 1999;
Söderström and Stoica, 1989), we recall the formal
definition of moveme already given in (DelVecchio et
al., 2002), and we introduce the classification prob-
lem as a standard problem of pattern recognition
(Bishop, 1995; Vapnik, 1995) in a suitable space. In
(DelVecchio et al., 2002) and (DelVecchio et al., n.d.)
some classification results were presented because
they were needed for setting the solution of the seg-
mentation problem. However the assumption that the
actions considered were defining movemes was tacitly
made. In this paper we show with examples from real
data that such assumption may not hold in practice
and explain why this may happen. We thus propose
a way to establish when real data (seen as signals in
time) can allow the definition of a set of movemes.
From this study we derive the definition of well-posed
sets of signals as signals that can define movemes,
and we show how such a definition can be checked in
practice. In the case of computer drawing data we find
two sets of actions that are well-posed and define the
“reach” and the “draw” movemes. In the same dataset
we find also a class of motions that we refer to as
“free motion” for which the well-posedness test fails,
and therefore it cannot define a moveme in the already
constructed reach-draw moveme alphabet.

2. DYNAMICAL DEFINITION OF MOVEME

We recall in this section a relaxed version of the defi-
nition of moveme already presented in (DelVecchio et
al., 2002), we introduce the model class, and we set
the classification problem.

2.1 Definitions and properties

Let M(Θ) denote a linear time invariant (LTI) sys-
tem class parameterized by Θ ∈ E, E a linear
space, and let U denote a class of inputs. Let y(t) =
Y (M(Θ)|u,x0

)(t), for t ≥ t0, denote the output of
M(Θ) once parameter Θ ∈ E, input u ∈ U , and initial
conditions x0 have been chosen. Let θ ∈ E′ ⊂ E be
a parameter lying in a subspace of E, and define a
map Υ : E → E′. We write θ = Υ(Θ) to represent
the transformation from Θ ∈ E to the reduced set of
parameters θ ∈ E′.

Definition 2.1. Let M1 = {M(Θ)|θ ∈ C1} and
M2 = {M(Θ)|θ ∈ C2} denote two subsets in M

with Cj ⊂ E′ for j = 1, 2. M1 and M2 are said to be
dynamically independent if

(i) the class of systems M and the class of inputs U
are such that

Y (M(Θ1)|u1,x0
)(t) = Y (M(Θ2)|u2,x0

)(t),

for all t ≥ t0, if and only if (Θ1, u1) = (Θ2, u2)
for u1 ∈ U and u2 ∈ U ;

(ii) the sets C1 and C2 are non empty, bounded, and
have trivial intersection, i.e. C1

⋂

C2 = {∅}.

Each of the elements of a set M = {M 1, ...,M l}
of mutually dynamically independent model sets is
called a moveme. It is clear from the definition that
in order to establish if a model set is a moveme we
should have at least an other model set so to be able
to check property (ii) of the above definition. Then the
notion of a model set of being a moveme is relative to
a context comprising other model sets.

In this paper, we choose our model class M and input
u as asymptotically stable linear systems driven by a
unit step input with full state output:

ẋ = Ax + b

y = x , (1)

where A ∈ R
n×n, x = (x1, ..., xn) ∈ R

n, b ∈ R
n, so

that Θ = (A|b) ∈ E = R
n×(n+1) and θ = A ∈ E′ =

R
n×n, with Υ(A|b) = A. For such a class of models

we make the following assumption.

Assumption 2.1. Given x(t) as the output of model
(1) we assume that the initial condition x0 is such that
for any v ∈ R

n+1,

vT x(t) = 0, t ∈ [t1, t2], t2 > t1 =⇒ v = 0,

where x = (xT , 1)T .

This assumption means that the description that model
(1) provides for x(t) is minimal in the sense that x(t)
cannot also be described by a lower order dynamical
system. In fact if vT x(t) = 0, t ∈ [t1, t2], t2 > t1
for some v 6= 0 then xn(t) = α0 + α1xi(t) + .... +
αn−1xn−1(t) for any t, therefore the dynamics can be
described just in terms of x1(t), ..., xn−1(t) and xn(t)
can be derived algebraically. A direct consequence
of such an assumption is that we have a one-one
correspondence between x(t) and parameters (A|b) of
model (1), so that we have the following lemma.

Lemma 2.1. Let x(t) and z(t) be generated by two
LTI systems

ẋ = A1x + b1

ż = A2z + b2

and let Assumption 2.1 hold. Then z(t) = x(t) for all
t if and only if (A1|b1) = (A2|b2).



Proof (⇐) If (A1|b1) = (A2|b2) then z(t) = x(t) for
all t by uniqueness of solutions.
(⇒) If z(t) = x(t) for all t then ż(t) = ẋ(t)
for all t, so that A1x + b1 = A2z + b2. This im-
plies [(A1|b1) − (A2|b2)]x(t) = 0 for all t, which
by Assumption 2.1 (applied to each column) implies
(A1|b1) = (A2|b2). 2

This lemma shows that property (i) of Definition 2.1
is satisfied by our choice of M and U . Property (ii) is
verified by choosing for example Cj , j = 1, ...,m, as
balls in R

n×n with centers Aj
c ∈ R

n×n, j = 1, ...,m,
and radii rj , such that:

Cj = Brj
(Aj

c) , j = 1, ...,m

Cj
⋂

Ck = {∅}, j 6= k
(2)

where m is the number of movemes and the matrix
norm is the Frobenius norm. In what follows we
assume that the sets Cj are described by equation (2).
Then we have constructed a set M = {M 1, ...,Mm}
of m movemes where Mk = {M((A|b))|A ∈ Ck},
for k ∈ {1, ...,m} and M is in the form given by
equation (1).

Given any signal x(t) we can determine a good rep-
resentative of such a signal in the class of models
(1) by minimizing the cost function (see for example
(Ljung, 1999)):

(Â|b̂) = arg min
(A|b)

1

2

∫ T

t0

(ẋ − (A|b)x)T (ẋ − (A|b)x)dt

(3)
with x = (xT , 1)T , which gives the least squares
estimate of parameters (Â|b̂) so to get the estimate of
x in model class (1) as

˙̂x = Âx̂ + b̂, x̂(t0) = x(t0).

In the case in which x(t) has been generated by (1),
by virtue of Assumption 2.1 it is easy to check that
(3) leads to (Â|b̂) = (A|b), so that if A ∈ Cj , for
some j ∈ {1, ...,m} we can classify x(t) as output of
moveme M j just by finding k ∈ {1, .., j, ..m} such
that Â ∈ Ck. This is equivalent by virtue of (2) to
finding k ∈ {1, .., j, ..m} such that ‖Â − Ak

c‖ ≤ rk,
whose solution is unique since the sets Ck are all not
intersecting. Then

argk∈{1,.,j,..,m}{‖Â − Ak
c‖ ≤ rk}

= argk∈{1,.,j,..,m}{‖A − Ak
c‖ ≤ rk}

= j

The following section addresses the same classifica-
tion problem in a more general situation in which x(t)
has been generated by a perturbed version of system
(1).

2.2 Classification Problem

Let the signal x(t) be generated by the perturbed
version of system (1):

ẋ = Ax + b + d(t)

y = x
(4)

with A ∈ Cj , for some j ∈ {1, ...,m} and d(t)
is a bounded realization of white noise. Under what
conditions on A and d(t) can we still classify x(t) as
output of moveme M j? Since A ∈ Cj , there exists
δ < rj such that A = Aj

c + δU with U a unit norm
matrix and Aj

c center of Cj . Then system (4) becomes

ẋ = (Aj
c + δU)x + b + d(t)

y = x .
(5)

Then the problem of classifying x(t) as output of
moveme M j becomes the same as identifying j in
system (5) for some conditions on δ and d(t). In the
previous section we showed that if d(t) = 0 then we
can exactly identify Aj

c + δU and then correctly clas-
sify x(t). The presence of d(t) induces an estimation
error so that Â will not be equal to Aj

c + δU , but it
is not necessary to achieve equality for our purpose as
the following lemma shows.

Lemma 2.2. Let x(t), t ∈ [t0, T ] be generated by (5),
where Aj

c is the center of Cj for some j ∈ {1, ...,m}
as in (2). Let Â be the least squares estimate according
to (3). There exist positive constants d and δ such that
if δ ≤ δ and ‖d(t)‖ ≤ d, then

argk∈{1,...j,...m}{‖Â − Ak
c‖ ≤ rk} = j

Proof. By equation (3) we have

(Â|b̂) =

(

∫ T

t0

ẋ(t) x(t)T dt

)(

∫ T

t0

x(t) x(t)T dt

)−1

where we can invert
(

∫ T

t0
x(t) x(t)T

)

if either d(t) =

0 by Assumption 2.1, or d(t) 6= 0 by the fact that
d(t) is realization of white noise that is uncorrelated
in time. Using equation (5), this expression becomes

(Â|b̂) = (Aj
c + δU |b)

+

(

∫ T

t0

d(t)x(t)T dt

)(

∫ T

t0

x(t) x(t)T dt

)−1

which leads with some algebra to

‖Â − Aj
c‖ ≤ ‖(Â|b̂) − (Aj

c|b)‖ ≤ δ + d c

where δ and d are upper bounds on δ and d(t), and c
is a suitable positive constant which exists since x(t)
is bounded by the stability properties of the dynamics.
Then in order for ‖Â − Ak

c‖ ≤ rk to hold for k = j it
is sufficient that

‖Â − Aj
c‖ ≤ δ + d c ≤ rj (6)

which is verified if, for example, δ = rj/2 and
d = rj/(2c), which give upper bounds on δ and
d(t). Note that the uniqueness of the solution for k
comes from the fact that the sets Ck, Cj for k 6= j
are not intersecting as equation (2) guarantees. If such



a requirement is not satisfied even when equation (6)
holds, then the solution k ∈ {1, ...j, ...m} of ‖Â −
Ak

c‖ ≤ rk may not be unique, leading to ambiguity in
the classification. 2

2.3 Well-posedness

As the previous section highlighted, the basic require-
ment for solving the classification problem is the one
of having non intersecting sets in parameter space
characterizing the sets of dynamical models M j , j =
1, ...,m. In practice the sets Cj and Ck, j 6= k may
be not defined a priori but are derived from finite
sets of signals Sj and Sk, whose characteristics make
each element of one set different from each element
of the other and therefore we can say that they define
two classes of signals. When can these two classes
of signals define two movemes M j , Mk according
to Definition 2.1? Let the two classes Sj and Sk be
composed by signals sj

i (t) = Y (M(Θj
i )|xj

0i
,u

j

i

)(t),

for sj
i (t) ∈ Sj , and sk

i (t) = Y (M(Θk
i )|xk

0i
,uk

i
)(t),

for sk
i (t) ∈ Sk. Let FM be an estimation procedure

establishing a one to one mapping between the signal
Y (M(Θ)|x0,u)(t) and the couple (Θ, u) which exists
by virtue of (i) of Definition 2.1. Then we have

(Θk
i , uk

i ) = FM (sk
i (t)) sk

i (t) ∈ Sk

(Θj
i , u

j
i ) = FM (sj

i (t)) sj
i (t) ∈ Sj .

Let fs : (E × U) → E be the selection operator, such
that fs(Θ, u) = Θ, which selects the first element of
the couple (Θ, u). Then define fM := Υ ◦ fs ◦ FM ,
which associates to each signal s(t) the corresponding
parameter θ lying in E′ ⊂ E. We can then write that
Cj is the image of Sj through fM and the same for Ck:

fM (Sj) = Cj

fM (Sk) = Ck.
(7)

Definition 2.2. Classes of signals Sj and Sk with
elements sj

i (t) = Y (M(Θj
i )|xj

0i
,u

j

i

)(t), for sj
i (t) ∈

Sj , and sk
i (t) = Y (M(Θk

i )|xk
0i

,uk
i
)(t), for sk

i (t) ∈

Sk, such that the corresponding sets Cj and Ck given
in (7) are non intersecting, that is Cj

⋂

Ck = {∅}, are
said to be well-posed classes according to model M .

From this definition it follows immediately that well-
posed classes of signals define movemes according to
Definition 2.1. In practice we have access to a finite
set of signals, Sj = {sj

1(t), ..., s
j
nj

(t)} and Sk =

{sk
1(t), ..., sk

nk
(t)}, which belong to the two classes

Sj and Sk, with sj
i (t) = Y (M(Θj

i )|xj

0i
,u

j

i

)(t) for

i ∈ {1, ..., nj} and sk
i (t) = Y (M(Θk

i )|xk
0i

,uk
i
)(t)

for i ∈ {1, ..., nk}. Let Ĉj and Ĉk be the images,
through fM , of the sets Sj and Sk respectively. By
construction we have Ĉk ⊂ Ck and Ĉj ⊂ Cj , so that

potentially we can have trivial intersection between Ĉj

and Ĉk, and a no-empty intersection between the sets
Ck and Cj . This creates a problem since if we check
Definition 2.2 with Ĉj and Ĉk, which are the only
ones to which we have access, the classes of signals
Sj and Sk turn out to be well-posed. The situation is

Sj Sk Sj Sk

fMfMfMfM

Cj Ck Ĉj Ĉk

Fig. 1. Relation between sets Ĉj and Ĉk and Cj and
Ck.

depicted in Figure 1. The issue comes from the fact
that we will use the light sets (Ĉj and Ĉk) for solving
the classification problem ignoring the existence of the
dark region that is generating signals with undecidable
class. Then, one needs to check if Sk and Sj are well-
posed. The following lemma gives a possible way to
check for well-posedness without knowing the sets Cj

and Ck.

Lemma 2.3. Let y(t) = Y (M(Θ)|u,x0
)(t) denote

the output of model M for a choice of Θ, u and x0.
Assume to fix u, x0 and Θ|E−E′ , so that y(t) =
Y (M(θ))(t), and let the classes Sj and Sk be defined
as

Sj = {y(t)|y(t) = Y (M(θ))(t)

and gj(y, ẏ, t) = 0, hj(y, ẏ, t) ≤ 0}

Sk = {y(t)|y(t) = Y (M(θ))(t)

and gk(y, ẏ, t) = 0, hk(y, ẏ, t) ≤ 0}

for some functions gj , gk, hj and hk. Then the classes
of signals Sj and Sk are well-posed if and only if the
system

y(t) = Y (M(θ))(t)

gj(y, ẏ, t) = 0

hj(y, ẏ, t) ≤ 0

gk(y, ẏ, t) = 0

hk(y, ẏ, t) ≤ 0

(8)

is infeasible.

Proof (⇒). Let us show that well-posed classes Sj and
Sk imply infeasibility of (8). According to Definition
2.2 this is equivalent to showing that non-intersecting
sets Cj and Ck (defined in equation (7)) imply in-
feasibility of the system of equations (8). Let again
FM be the one to one mapping between the signal
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Fig. 2. Prototypes of the four shapes shown to the subject and example of traces in xy plane captured by the
capturing system.

Y (M(Θ)|x0,u)(t) and the couple (Θ, u) which exists
by virtue of (i) of Definition 2.1, and since input u,
initial condition x0 and Θ|E−E′ have been fixed, FM

becomes one to one correspondence between y(t) =
Y (M(θ))(t) and θ. Then we can redefine the sets Cj

and Ck as

Cj = {θ|θ = FM (y(t)), and y(t) ∈ Sj} (9)

and

Ck = {θ|θ = FM (y(t)), and y(t) ∈ Sk }. (10)

If (8) is feasible then there exist y(t) such that y(t) ∈
Sj and y(t) ∈ Sk and also there exist θ∗ : y(t) =
M(θ∗)(t), so that by (9) and (10) θ∗ ∈ Cj and θ∗ ∈
Ck, which in turn implies Ck

⋂

Cj 6= {∅}. Then we
have shown that trivial intersection of sets Cj and Ck

defined in (9) and (10) implies infeasibility of (8).
(⇐). Let us show now that if classes Sj and Sk are not
well-posed, then system (8) is feasible. By Definition
2.2, this is equivalent to show that if Ck

⋂

Cj 6= {∅}
then system (8) is feasible. Ck

⋂

Cj 6= {∅} implies
that there exist θ∗ ∈ Cj and θ∗ ∈ Ck which from
(9) and (10) implies that there exist a signal y∗(t)
such that θ∗ = FM (y∗(t)), y∗(t) ∈ Sj and θ∗ =
FM (y∗(t)), y∗(t) ∈ Sk, which means that the sig-
nal y∗(t) is both in Sj and Sk which implies that it
satisfies (8), then (8) is feasible. This completes the
proof. 2

3. EXPERIMENTS

To test our approach, we studied a 2D drawing task
in which a set of shapes were drawn by five different
subjects using a computer mouse. We briefly describe
the experiment set up in the following section.

3.1 Experimental setup

Our subjects drew using the XPaint program on a PC
running Red Hat Linux 7.2 with a screen measuring
1600 × 1200 pixels and a working window of 700 ×
500 pixels. The user left the trace of the trajectory

in the working window only when the left mouse
button was pressed. For acquiring x and y time traces
we implemented a C routine which was activated in
the background at the beginning of each experimental
session and sampled the (x, y) position of the pointer
everywhere on the screen at the rate of 100 Hz and
a spatial resolution of one pixel. The time interval
between one sample and the following one turned
out to be mostly constant except for slight variations
every once in a while due to higher priority of other
processes. In order to have constant sampling time
the data was processed through an algorithm that
linearly interpolates data in the regions in which the
time interval is not exactly 10 ms. Pixelization of
the coordinates does not heavily affect the data since
the trajectories under study are usually more than 50
pixels long.

We defined 4 different drawings by means of proto-
types: car, sun, ship, and house, reported in Figure 2.
Each of the 5 subjects was shown the prototypes and
was asked to reproduce them on a 700×500 pixel can-
vas; the dimensions of each drawing could be chosen
arbitrarily according to the ones with which the user
was more comfortable, the only specification was to
reproduce the prototypes with as high fidelity as possi-
ble in a reasonable amount of time. Each subject drew
10-20 examples for each shape. In order to accomplish
each drawing task the user had to perform a sequence
of actions such as “reach a point A” and “draw a line
up to point B”. These actions are the ones that we will
consider as candidates for being elementary motions
and then defining a pair of movemes. Thus we check
if reach and draw actions define a well posed pair of
movemes according to Definition 2.3.

3.2 Classification

We start from the hypothesis that “draws”, which are
straight lines traced with a specific intention (like
drawing a side of the house), and “reaches”, which
happen with the intention of shifting fast the equilib-
rium position, define a well-posed pair of movemes.
We segmented out by hand a set of straight draws from
houses and cars drawn by 2 of the subjects. Reach
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Fig. 3. Parameter estimates for reach and draw examples projected on the first two Fisher linear discriminants
(left). Typical velocity profile for reach and draw (right).

examples were obtained from a special experiment
session in which the users had to point and click
at random buttons appearing on a 700 × 500 pixels
window during a simple video game implemented in
MATLAB 6.0.

We considered several dynamical models for repre-
senting the reach and draw signals in time, starting
from a first order, decoupled model for x and y mo-
tion,

ẋ = a1xx + bx

ẏ = a1yy + by,

and proceeding to a second order coupled model,
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.

(11)
For estimating the dynamical parameters of all the
models proposed we considered their discrete time
version so that x, y, ẋ, ẏ, ẍ, ÿ, become xk, yk, xk+1,
yk+1, xk+2, yk+2. The reach dynamical parameters
were estimated from 140 examples of reach trajec-
tories obtained from the video game implemented in
MATLAB, and the draw dynamical parameters were
estimated from 140 examples of draw trajectories seg-
mented out from cars and houses of 2 of the subjects.
The dynamical parameters were estimated for each
one of the dynamical models proposed (first order for
x and y, decoupled; first order for x and y, coupled;
second order for x and y, decoupled; second order for
x and y, coupled).

By proceeding with standard pattern recognition tech-
niques (see (Bishop, 1995) for example), we trained
a Gaussian classifier for the parameters derived from
the 140 examples per class (training set) for each one
of the model classes proposed, and obtained the best
results for the second order for x and y, decoupled, dy-
namical model (obtained by letting a3x = 0, a4x = 0,
a3y = 0, a4y = 0 in system (11)):









ẋ
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ÿ
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0 1 0 0
a1x a2x 0 0
0 0 0 1
0 0 a1y a2y

















x
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y
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+









0
bx
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.

(12)
For such a model we obtained 3.2% training error, and
we tested the generalization properties of the resulting
classifier on a test set of 323 additional reach examples
(obtained from the MATLAB videogame) and 118
additional draw examples obtained from the drawings
of other two subjects (different from the ones used for
the training set) and obtained 3.63% test error. Figure
3 represents the projection of the parameters belong-
ing to the training set (living in R

4) on the first two
Fisher linear discriminants (Bishop, 1995) and typical
velocity profiles for the draw and reach trajectories.
We let ĈR and ĈD denote the reach and draw clusters,
respectively, according to the notation used in Section
2.3. From the right figure of Figure 3 we notice that
a reach trajectory is usually characterized by a bell
shaped velocity profile with high velocity variation in
a small time, while a draw trajectory is characterized
by an almost constant or slowly varying velocity.

3.3 Well-posedness

By looking at the sets ĈR and ĈD of Figure 3 one
notice that we have a quite good separation. for the
reach motions, so that the system Anyway, since these
two sets are just estimates of the real ones CR and
CD, we have to check that situation depicted in Figure
1 does not happen. To check this, we find candidate
constraints which can describe reach and draw tra-
jectories, so that we may apply Lemma 2.3. Reach
trajectories are asymptotically stable with bell-shaped
velocity profiles. Draw trajectories are characterized
by asymptotic stability properties and by straight lines
in (x, y) plane. These requirements for the model (12)
imply a1x = a1y and a2x = a2y . Some of these
parameters are reported in Figure 4 where we can see
that their classification is ambiguous since they lie in
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the boundary region between the first and the second
cluster. Then we have a situation analogous to the
one reported in Figure 1, where the light sets are ĈD

and ĈR and the dark set is made up by elements like
the diamonds in Figure 4. Thus there exist parameters
that generate trajectories satisfying both draw (asymp-
totic stability and straight lines in (x, y) plane) and
reach constraints (asymptotic stability and bell shaped
velocity profile with high acceleration peak) whose
class is undecidable. As an extreme example of this,
we show in Figure 5 the shape of a house that has
been artificially generated by parameters lying in the
region in between the clusters of Figure 4 (dark set
of Figure 1), which the classifier classifies as reaches.
This happens because the dynamical parameters as-
sociated to draw trajectories can significantly differ
from each other according to the particular task, and
also the velocity profile can consistently vary with
respect to the one shown in Figure 3. We show these
differences in Figure 6, where we report the draw
parameters when a user draws straight lines between
two points (as it happens in the draws of the house,
ship, car), or a line trying to trace an already existing
line, or just a line with no constraints (as it happens
in the rays of the suns). We decide therefore to use
three classes instead of one for the draw: we call them
targeting, tracing, and free motion respectively. Using
these definitions, we see from Figure 6 that there is
an evident overlapping of the parameter sets of the

reach class and free motion class. Therefore we ex-
clude from the panorama the free motion class, and
show that the draw class, seen as union of the tracing
and targeting motions, can be described in terms of
constraints gD, hD, gR, hR as introduced in Lemma
2.3, such that the system of equations (8) is infeasible.
Driven by the characteristics of the velocity profiles
of the targeting and tracing draw and reach reported
in the bottom right plot of Figure 6, we define the
following constraints. The reach trajectories achieve
the desired value in a time smaller than a fixed one
with respect to a unit step input (which implies a
certain acceleration peak), and in the draw trajectories
the velocity variation has to be smaller than a given
value. We then rewrite these constraints in the form
of Lemma 2.3 as ẋ − aẏ = gD(ẋ, ẏ) = 0 and b −
‖(ẍ, ÿ)‖ = hD(ẍ, ÿ) ≥ 0 for the draw motions, and
‖(ẍ, ÿ)‖ − c = hR(ẍ, ÿ) ≥ 0

gD(ẋ, ẏ) = 0
hD(ẍ, ÿ) ≥ 0
hR(ẍ, ÿ) ≥ 0

(13)

becomes infeasible for suitable b and c. Then if we
assume that the constraints above define fair specifica-
tions for reach and draw trajectories for the values of b
and c that make system (13) infeasible, then the reach
and draw classes of signals are well-posed according
to Lemma 2.3 . Moreover the ĈR and ĈD clusters of
Figure 3 well represent reach and draw actions, which
thus define a pair of movemes MR and MD.

4. CONCLUSIONS

We have provided the definition of well-posedness of
sets of signals. On the basis of such a definition we
provided an operative way to check if sets of actions
are well-posed according to a dynamical model class
M , and thus they can generate movemes. We have
tested our ideas on human drawing data and discov-
ered two sets of actions (reach and draw), which can
define movemes and one set of actions (free motion)
that is not well-posed according to the already formed
alphabet of reach and draw movemes.
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